Existentially closed models of the theory of differential fields with a cyclic automorphism

Makoto Yanagawa

University of Tsukuba

September 15, 2014

Motivation

Let *C* be any field and choose an arbitrary element $q \in C \setminus \{0, 1\}$. Let \Bbbk_0 denote the prime field included in *C*, and set $\Bbbk = \Bbbk_0(q)$, the subfield of *C* generated by *q* over \Bbbk_0 .

Definition. The *q*-integer, the *q*-factorial and *q*-binomial, respectively, denotes

$$[k]_{q} = \frac{q^{k} - 1}{q - 1}, \ [0]_{q} = 0,$$

$$[k]_{q}! = [k]_{q}[k - 1]_{q} \cdots [1]_{q}, \ [0]_{q}! = 1,$$

$$\binom{m}{n}_{q} = \frac{[m]_{q}!}{[n]_{q}![m - n]_{q}!},$$

where $k, m, n \in \mathbb{N}$ with $m \ge n$.

Suppose that R is a field containing $\mathbb{k}(t)$ and $\sigma_q : R \to R$ is a ring automorphism such that it is an extension of the q-difference operator $f(t) \mapsto f(qt)$ on $\mathbb{k}(t)$.

Definition (C.Hardouin). We say that a sequence $\delta_R^* = (\delta_R^{(k)})_{k \in \mathbb{N}}$ of maps on R is an iterative q-difference operator on R if it satisfies the following condition:

1.
$$\delta_{R}^{(0)} = \mathrm{id}_{R}$$
,
2. $\delta_{R}^{(1)} = \frac{1}{(q-1)t}(\sigma_{q} - \mathrm{id}_{R})$,
3. $\delta_{R}^{(k)}(x+y) = \delta_{R}^{(k)}(x) + \delta_{R}^{(k)}(y)$, $x, y \in R$,
4. $\delta_{R}^{(k)}(xy) = \sum_{i+j=k} \sigma_{q}^{i} \circ \delta_{R}^{j}(x) \delta_{R}^{(i)}(y)$, $x, y \in R$,
5. $\delta_{R}^{(i)} \circ \delta_{R}^{(j)} = {i+j \choose i}_{q} \delta_{R}^{(i+j)}$

Remark. Assume that q is not a root of unity. Then,

$$[k]_q=1+q+q^2+\cdots+q^{k-1}\neq 0$$

for all k > 0. If $\delta_R^* = (\delta_R^{(k)})_{k \in \mathbb{N}}$ is an iterative *q*-difference operator on *R*, conditions 1, 2 and 5 above require

$$\delta_R^{(1)} = \frac{1}{(q-1)t} (\sigma_q - \mathrm{id}_R), \quad \delta_R^{(k)} = \frac{1}{[k]_q!} (\delta_R^{(1)})^k, \ k \in \mathbb{N}.$$

Conversely, if we define $\delta_R^{(k)}$ by above, then $\delta_R^* = (\delta_R^{(k)})_{k \in \mathbb{N}}$ forms an iterative *q*-difference operator on *R*. Therefore under the assumption, an iterative *q*-difference ring is nothing but a difference field (R, σ_q) .

Motivation		

From now on, we assume q is a root of unity of order N > 1.

Fact (Masuoka and Y., 2013).

- 1. For any iterative q-difference field $(R, (\delta_R^{(k)})_{k \in \mathbb{N}})$, the q-difference operator σ_q on R is of order N, that is $\sigma_R^N = \mathrm{id}_R$.
- 2. There is the smallest iterative q-difference field k(t).

Motivation		

Theorem (Masuoka and Y., 2013). There is a functor

 $\mathcal{F}: \{\mathsf{IqD-fields}\} \to \{\mathsf{models} \text{ of } DF_{\sigma}\}$

and satisfies the following properties:

- 1. \mathcal{F} is a strictly embedding,
- 2. for any model (R, σ) of DF_{σ} there is $\mathcal{F}^{-1}(R)$ whenever $R \supset \mathcal{F}(\mathbb{k}(t))$ and $\sigma^{N} = \mathrm{id}_{R}$, and
- 3. ${\mathcal F}$ has a good property for model theory.

Motivation		

 DF_{C_N} denotes the theory $DF_{\sigma} \cup \{ \forall x(\sigma^N(x) = x) \}.$

Corollary. Suppose that q is a root of unity of order N > 1. Then the theory IqDF and the theory $DF_{C_N} \cup \text{Diag}(\mathcal{F}(\Bbbk(t)))$ have same model theoretical property.

To study IqDF, first, to study about DF_{C_N} .

Question. Does the theory DF_{C_N} admit a model companion?

Introduction	

Introduction

Definition. Let K be a field and δ be a additive map on K. We say that (K, δ) is a differential field if δ satisfies the Leibnitz rule:

$$\delta(ab) = a\delta(b) + \delta(a)b$$
, for all $a, b \in K$.

The language of differential fields, denoted by L_{δ} , is the language of rings with a new unary function symbol δ . *DF* denotes the theory of differential fields (of characteristic 0) in the language L_{δ} .

Motivation Introduction Some results References

Suppose that T is a theory in a language L. L_{σ} denotes the language L with a new unary function symbol σ . We consider the theory

 $T_{\sigma} = T \cup "\sigma$ is an automorphism".

Example. Let $K = \mathbb{Q}(X), \delta = \frac{d}{dX}$, and $\sigma(X) = X + 1$. Then $\blacktriangleright K \models Fld$, $\flat (K, \delta) \models DF$, $\flat (K, \sigma) \models Fld_{\sigma}$, and $\flat (K, \delta, \sigma) \models DF_{\sigma}$.

Introduction	

Model companion

Let T be a theory in a language L.

A model M of T is existentially closed if for any extension $N \models T$ of M and quantifier-free formula $\varphi(x)$ over M,

if
$$N \models \exists x \varphi(x)$$
 then $M \models \exists \varphi(x)$.

Definition. Suppose that T is a $\forall \exists$ -theory. We say that T admits a model companion if the class

$$\mathcal{K} = \{ M \models T \mid M \text{ is existentially closed.} \}$$

is elementary.

Fact.

- 1. (Tarski) *Fld* admits a model companion. $\rightarrow ACF$.
- 2. (Robinson) DF admits a model companion. \rightarrow DCF
- 3. (Macintyre) Fld_{σ} admits a model companion. $\rightarrow ACFA$.
- 4. (Hrushovski) DF_{σ} admits a model companion. \rightarrow DCFA

Example. The theory of groups does not admit model companion.

Remark. The automorphism σ of any model of ACFA (or DCFA) does not have finite order.

Suppose that $(K, \sigma) \models ACFA$. Let n(> 0) be a natural number. We define $\tilde{\sigma}$ on $K(X_1, \ldots, X_{n+1})$ by

$$\begin{aligned} \widetilde{\sigma}(X_i) &= X_{i+1} \quad (i < n), \\ \widetilde{\sigma}(X_{n+1}) &= X_1, \\ \widetilde{\sigma}|_{\mathcal{K}} &= \sigma. \end{aligned}$$

Then $(K(X_1, \ldots, X_{n+1}), \tilde{\sigma})$ is a model of Fld_{σ} extending (K, σ) and $K(X_1, \ldots, X_{n+1}) \models \exists x \bigwedge_{0 < i < n+1} \sigma^i(x) \neq x.$

Some results

Existentially closed models of the theory of differential fields with a cyclic automorphism

	Some results	

First approach

We want to construct an existentially closed model of DF_{C_N} , where DF_{C_N} is $DF_{\sigma} \cup \{ \forall x (\sigma^N(x) = x) \}$.

Let (K, δ, σ) be a model of *DCFA*.

We consider the fixed field

$$\mathsf{K}^{\langle \sigma^{\mathsf{N}} \rangle} := \{ \mathsf{a} \in \mathsf{K} \mid \sigma^{\mathsf{N}}(\mathsf{a}) = \mathsf{a} \}$$

of σ^N in K. Then $(K^{\langle \sigma^N \rangle}, \delta|_{K^{\langle \sigma^N \rangle}}, \sigma|_{K^{\langle \sigma^N \rangle}})$ is naturally a model of DF_{C_N} , since $\sigma \circ \delta = \delta \circ \sigma$ in K.

	Some results	

Question. Is
$$(K^{\langle \sigma^N \rangle}, \delta|_{K^{\langle \sigma^N \rangle}}, \sigma|_{K^{\langle \sigma^N \rangle}})$$
 an existentially closed model of DF_{C_N} ?

Answer. I don't know, but it has the property close to existentially closed.

Suppose that (F, δ, σ) is an extension of $(K^{\langle \sigma^N \rangle}, \delta|_{K^{\langle \sigma^N \rangle}}, \sigma|_{K^{\langle \sigma^N \rangle}})$ and $\varphi(x)$ is a quantifier-free formula over $K^{\langle \sigma^N \rangle}$ such that

> $(F, \delta', \sigma') \models \exists x \varphi(x).$ $K \otimes_{\kappa \langle \sigma^N \rangle} F$ Κ $K^{\langle \sigma^N}$

We can define derivation and difference on $K \otimes_{K^{\langle \sigma^N \rangle}} F$. We assume $K \otimes_{K^{\langle \sigma^N \rangle}} F$ is an integral domain. Then there is a model K' of DF_{σ} such that

$$K \subset K'$$
 and $K' \models \exists x (\varphi(x) \land \sigma^N(x) = x).$

Since K is existentially closed, $K \models \exists x (\varphi(x) \land \sigma^N(x) = x)$. This means $K^{\langle \sigma^N \rangle} \models \exists x \varphi(x)$.

Probrem. Is $K \otimes_{\kappa \langle \sigma^N \rangle} F$ always an integral domain?

In my opinion, there is little possibility that the answer is yes.

Second approach

We will modify N.Sjögren's argument in "The Model Theory of Field with a Group action". In this paper, he show the following theorem:

Theorem (N.Sjögren, 2005). Fld_{C_N} admits a model companion.

More precisely, a model (K, σ) of Fld_{C_N} is existentially closed iff it holds the following properties

- 1. K and $K^{\langle \sigma \rangle}$ are pseudo-algebraically closed,
- 2. $\operatorname{Gal}(K \cap (K^{\langle \sigma \rangle})^{alg}/K^{\langle \sigma \rangle}) \simeq C_N(\simeq \mathbb{Z}/N\mathbb{Z}),$
- 3. $\operatorname{Gal}((K^{\langle \sigma \rangle})^{\operatorname{alg}}/K^{\langle \sigma \rangle}) \simeq \operatorname{Gal}(K^{\operatorname{alg}}/K) \simeq \mathbb{Z}_N$

Remark. To prove \Rightarrow , We need some knowledge of pro-finite group. To prove \Leftarrow , on the other hand, the following lemma is essentially:

Lemma. The above conditions 2 and 3 imply that (K, σ) has no algebraic C_N -field extension.

	Some results	

(Sketch of proof of \Leftarrow)

- Suppose K' be a extension of K and φ(x) := "f(x) = 0" is an L_σ(K)-formula such that K' ⊨ f(a) = 0 for some a ∈ K'.
- ▶ Since σ is of order N, there is finite tuple $b \in K$ such that $K = K^{\langle \sigma \rangle}(b)$ and $K' = K'^{\langle \sigma \rangle}(b)$
- We write $a_i = \sum_j c_{ij} b_j$, and consider V = V(c/K).
- ► Since K has no algebraic G-extension, V is absolutely irreducible, so V has K-rational point c'.
- ▶ We put $a'_i = \sum_j c'_{ij} b_j \in K$, then $K \models f(a') = 0$.

	Some results	

By modifying the Sjögre's proof, we can prove the following result.

Lemma. Suppose that (K, δ, σ) is an existentially closed model of DF_{C_N} . Then the following properties hold:

- 1. K and $K^{\langle \sigma \rangle}$ are pseudo-differentially closed,
- 2. $C_{\mathcal{K}} = \{a \in \mathcal{K} \mid \delta(a) = 0\}$ and $C_{\mathcal{K}^{\langle \sigma \rangle}} = (C_{\mathcal{K}})^{\langle \sigma \rangle}$ are pseudo-algebraically closed.

Comments.

- 1. If the property "one has no differentially algebraic C_N -field extension" is possible to imply from the common first-order property among existentially closed models of DF_{C_N} , then (I think that) it is possible to prove that DF_{C_N} admits a model companion.
- 2. To do this, we need more knowledge of differential Galois group. (However, I luck it now...)

References

- 1. C.Hardouin, *Iterative q-difference Galois theory*, J.Reine Angrew. Math.644, 2010
- A.Masuoka and M.Yanagawa, ×_R-bialgebras associated with iterative q-differencerings, International Journal of Mathematics 24, 2013.
- N.Sjögen, The Model Theory of Fields with a Group Action, Research Reports in Mathematics, Department of Mathematics Stockholm University, 2005.