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Motivation

Let C be any field and choose an arbitrary element g € C \ {0,1}.
Let ko denote the prime field included in C, and set k = ko(q),
the subfield of C generated by g over k.

Definition. The g-integer, the g-factorial and g-binomial,
respectively, denotes

qk

1
[klq = -1 [0]q =0,
[Klg! = [Klglk — 1]q - [1]q, [0]¢! =1,
(m) _ [m]q!
n)g [nlg![m—nlg"’

where k, m,n € N with m > n.
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Suppose that R is a field containing k(t) and 04 : R — R is a ring
automorphism such that it is an extension of the g-difference
operator f(t) — f(qt) on k(t).

Definition (C.Hardouin). We say that a sequence §f = (55?1());(@\;
of maps on R is an iterative g-difference operator on R if it
satisfies the following condition:

1. 69 = idg,

2. 88) = (pe(og — idg),

3. 08(x +y) =680 0) +6(y), x,y €R,

4. 85 (xy) = 14k 0 0 0R(x)0X (), x,y € R,
5. 5( i o 5( J) _ (I+J) 6(’+.I)
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Remark. Assume that g is not a root of unity. Then,
Klg=1+q+¢+ - +q"1#0

for all k > 0. If 5 = (5§;,k))keN is an iterative g-difference operator
on R, conditions 1, 2 and 5 above require

w_ 1 . | _ 1 )
op’ = . t(aq idr), dp [k]|(5 ), keN.

Conversely, if we define 65?1() by above, then 6% = (6%));(61\; forms
an iterative g-difference operator on R. Therefore under the
assumption, an iterative g-difference ring is nothing but a
difference field (R, 0q).
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From now on, we assume g is a root of unity of order N > 1.

Fact (Masuoka and Y., 2013).

1. For any iterative g-difference field (R, (5%));(61\1), the
g-difference operator o4 on R is of order N, that is a,’g =idg.

2. There is the smallest iterative g-difference field k(t).
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Theorem (Masuoka and Y., 2013). There is a functor

F : {lgD-fields} — {models of DF,}
and satisfies the following properties:
1. F is a strictly embedding,

2. for any model (R, o) of DF, there is F~1(R) whenever
R > F(k(t)) and ¢V = idg, and

3. F has a good property for model theory.
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DF¢,, denotes the theory DF, U {Vx(c"(x) = x)}.

Corollary. Suppose that g is a root of unity of order N > 1. Then
the theory IgDF and the theory DF¢, U Diag(F(k(t))) have same
model theoretical property.

To study IqDF, first, to study about DFc, .

Question. Does the theory DFc, admit a model companion?

Existentially closed models of the theory of differential fields with a cyclic automorphism Makoto Yanagawa



Introduction

Introduction

Definition. Let K be a field and § be a additive map on K. We say
that (K, 9) is a differential field if 0 satisfies the Leibnitz rule:

d(ab) = ad(b) + d(a)b, forall a,b € K.
The language of differential fields, denoted by Lg, is the language

of rings with a new unary function symbol §. DF denotes the
theory of differential fields (of characteristic 0) in the language Ls.
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Introduction

Ts

Suppose that T is a theory in a language L. L, denotes the

language L with a new unary function symbol o. We consider the
theory

T, = T U “o is an automorphism”.

Example. Let K = Q(X),6 = 2%, and o(X) = X + 1. Then
» K |= Fld,
» (K,0) = DF,
» (K,o) = Fld,, and
» (K,d,0) = DF,.
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Introduction

Model companion

Let T be a theory in a language L.

A model M of T is existentially closed if for any extension N |= T
of M and quantifier-free formula ¢(x) over M,

if NE3dxp(x) then M Jp(x).

Definition. Suppose that T is a V3-theory. We say that T admits
a model companion if the class

K ={M =T | Mis existentially closed.}

is elementary.
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Introduction

Fact.

[

Tarski) Fld admits a model companion. — ACF.

Robinson) DF admits a model companion. — DCF

2.
3. (Macintyre) Fld, admits a model companion. — ACFA.
4

~ A~~~

Hrushovski) DF, admits a model companion. — DCFA

Example. The theory of groups does not admit model companion.
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Introduction

Remark. The automorphism ¢ of any model of ACFA (or DCFA)
does not have finite order.

Suppose that (K, o) = ACFA. Let n(> 0) be a natural number.
We define o on K(X1,...,Xnt1) by

&(X,) = X,'_|_1 (f < n),
5(Xn+l) = le
olk =o.

Then (K(X1,...,Xnt1),0) is a model of Fld, extending (K, o)
and K(X1,..., Xoy1) F Ix Agcicnir10'(x) # x.
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Some results
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Some results

First approach

We want to construct an existentially closed model of DFc,, where
DF¢, is DF, U {¥x(c"(x) = x)}.

Let (K, d,0) be a model of DCFA.
We consider the fixed field
K" = {ae K| oMNa)=a}

of o™ in K. Then (K<"N>,5|K<UN>,J|K<UN>) is naturally a model of
DFc,, sincecod =600 in K.
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Some results

Question. Is (K™ 6| _.n,, 0], on ) an existentially closed model
KoMy Tl (ol y
of DF¢,?

Answer. | don't know, but it has the property close to existentially
closed.
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Some results

Suppose that (F,d,0) is an extension of (K<UN>,5|K<ON>,O'|K<GN>)
and ¢(x) is a quantifier-free formula over K(") such that

(F,d',0") E Ixp(x).

K® F

KoMy
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Some results

We can define derivation and difference on K @ (v, F. We

assume K @, v, F is an integral domain. Then there is a model
K’ of DF, such that

KcK' and K'E3x(e(x)Ad"(x) = x).

Since K is existentially closed, K = 3x(¢(x) A a"N(x) = x). This
means K(©") |= 3xo(x).

Probrem. Is K ®,(,n, F always an integral domain?

In my opinion, there is little possibility that the answer is yes.
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Some results

Second approach

We will modify N.Sjogren’s argument in “The Model Theory of
Field with a Group action”.

In this paper, he show the following theorem:

Theorem (N.Sjogren, 2005). Fldc, admits a model companion.
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Some results

More precisely, a model (K, o) of Fldc, is existentially closed iff it
holds the following properties

1. K and K{9) are pseudo-algebraically closed,
2. Gal(K N (K@) /K{?)) ~ Cy(~ Z/NZ),
3. Gal((K(?)% /K(7)) ~ Gal(K?8 /K) ~ Z
Remark. To prove =, We need some knowledge of pro-finite

group. To prove <, on the other hand, the following lemma is
essentially:

Lemma. The above conditions 2 and 3 imply that (K, o) has no
algebraic Cy-field extension.
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Some results

(Sketch of proof of <)

» Suppose K’ be a extension of K and ¢(x) := “f(x) = 0" is an
Ls(K)-formula such that K’ |= f(a) = 0 for some a € K'.

» Since o is of order N, there is finite tuple b € K such that
K = K{9)(b) and K’ = K"\?)(b)
» We write a; = >, ¢jjbj, and consider V = V/(c/K).

» Since K has no algebraic G-extension, V is absolutely
irreducible, so V' has K-rational point ¢’.

» We put &} = Zj c,{jbj € K, then K = f(a') = 0.
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Some results

By modifying the Sjogre’s proof, we can prove the following result.

Lemma. Suppose that (K, d,0) is an existentially closed model of
DFc,. Then the following properties hold:

1. K and K{9) are pseudo-differentially closed,
2. Ck ={a€ K |d(a) =0} and Cx(oy = (Ck)') are
pseudo-algebraically closed.
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Some results

Comments.

1. If the property “ one has no differentially algebraic Cp-field
extension” is possible to imply from the common first-order
property among existentially closed models of DFc,,, then (I
think that) it is possible to prove that DF¢, admits a model
companion.

2. To do this, we need more knowledge of differential Galois
group. (However, | luck it now...)
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