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Intervals and convex sets

Let L be a language containing <.
Let M = (M,<,...) be an L-structure expanding a dense linear
ordering <.

Definition 1.1

@ A C M is said to beconvexin M if
foranya, b € A, we have(a, b) C A.

@ If additionallysup A, inf A € M U {—oo, oo},
thenA is called anntervalin M.
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Intervals and convex sets

Example 1.2

Let Q1 = (Q, <).
o (-1,1),[-1,1],[-1,1), (-1,1], {1} are intervals.
° (— ‘/Z ‘/5) N Q is not an interval but a convex set.

v

Example 1.3

Let Q2 = (Q x @, <), where < is the lexicographic ordering.

@ {0} x Qs not an interval but a convex set.

\
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O-minimal (weakly o-minimal) structures

Let M = (M,<,...) be an L-structure expanding a dense linear
ordering <.

Definition 1.4

@ M is said to beo-minimalif
any definable subset & is a finite union of intervals.

@ M is said to beveakly o-minimalif
any definable subset & is a finite union of convex sets.
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Locally o-minimal structures

The notion of local o-minmality and strongly local o-minimality was
introduced by C. Toffalori and K. Vozoris.

Definition 1.5

@ M is said to beocally o-minimalif for any a € M and any definable
X € M, there is an open intervals> a such thatX n | is a finite union
of intervals.
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Locally o-minimal structures

The notion of local o-minmality and strongly local o-minimality was
introduced by C. Toffalori and K. Vozoris.

Definition 1.5
@ M is said to beocally o-minimalif for any a € M and any definable
X € M, there is an open intervals> a such thatX n | is a finite union

of intervals.

@ M is said to bestrongly locally o-minimaif for any a € M, there is an
open interval 3 asuch that for any definabl ¢ M, X n | is a finite
union of intervals.
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Locally o-minimal structures

The notion of local o-minmality and strongly local o-minimality was
introduced by C. Toffalori and K. Vozoris.

Definition 1.5

@ M is said to beocally o-minimalif for any a € M and any definable
X € M, there is an open intervals> a such thatX n | is a finite union
of intervals.

@ M is said to bestrongly locally o-minimaif for any a € M, there is an
open interval 3 a such that for any definablé € M, X N | is a finite
union of intervals.

@ M is said to beuniformly locally o-minimalif for any a € M and any
formulag(x,y) € L, there is an open intervéls a such that
¢(M, b) n | is a finite union of intervals for anlg € M.
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A typical example of locally o-minimal structures is the following
structure.

Example 1.6 (Marker and Steinhorn)
R = (R, <, +, sin(X)) is strongly locally o-minimal.
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In locally o-minimal structures, the following are known.

Proposition 1.7 (Toffalori and Vozoris)
Any weakly o-minimal structure is locally o-minimal.

Proposition 1.8 (Toffalori and Vozoris)
Local o-minimality is preserved under elementary equivalence.

Remark 1.9 (Toffalori and Vozoris)
Strong local o-minimality is not preserved under elementary equivalence.
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Uniformly locally o-minimal structures

Proposition 2.1 (Kawakami, Takeuchi, Tsuboi, and T.)
Let M be a uniformly locally o-minimal structure. Suppose that M is
w-saturated. Then, M is strongly locally o-minimal.
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Uniformly locally o-minimal structures

Proposition 2.1 (Kawakami, Takeuchi, Tsuboi, and T.)

Let M be a uniformly locally o-minimal structure. Suppose that M is
w-saturated. Then, M is strongly locally o-minimal.

v

@ Let ae M and ¢(x,y) € L.

@ By the uniformity of M, there is an open interval | 5 asuch that
forany b € M, we can take np € N so that ¢(M, b) N | is a union
of np many intervals.

@ By the saturation of M, the set {n, : b € M} is uniformly
bounded, denoted by n, € N.
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Uniformly locally o-minimal structures

@ Let 6,(u,v) =forany ze M, theset {x € (u,v): ME ¢(x,2)}isa
union of at most n, many intervals.

o LetI'(u,v) ={u<a<VvjuU{f,(u,Vv):pel}
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Uniformly locally o-minimal structures

@ Let 6,(u,v) =forany ze M, theset {x € (u,v): ME ¢(x,2)}isa
union of at most n, many intervals.

o LetI'(u,v) ={u<a<VvjuU{f,(u,Vv):pel}

@ By compactness, I'(u,V) is consistent.

@ By the saturation of M, there are ¢, d € M such that M [ I'(c, d).

@ The open interval (c, d) witnesses to the strong local
o-minimality of M.
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Uniformly locally o-minimal structures

We show that there is an  w-saturated locally o-minimal structure that
is not uniformly locally o-minimal.

Here, Pg(a,b) < a+ V2. g< binR.
Let M* > M be w-saturated.

Then, M* is locally o-minimal but not uniformly locally o-minimal.

For example, when a=1,qg=2,

14242 P (1, M)
o -
-
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Uniformly locally o-minimal structures

Here, Pg(a,b) < a+ V2. g< binkR.
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Uniformly locally o-minimal structures

Here, Pg(a,b) < a+ V2. g< binR.

Th(M) admits elimination of quantifiers.
So, M is weakly o-minimal and hence locally o-minimal. O
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Uniformly locally o-minimal structures

However, M is not uniformly locally o-minimal.
**) For any open interval | = (b, c) 3 0,
we have Pi(b, M) A P1(c, M) £ 0.

P_(b, M) and =P (c, M)

1,
L _

b+ c+2
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Uniformly locally o-minimal structures

However, M is not uniformly locally o-minimal.
**) For any open interval | = (b, c) 3 0,
we have Pi(b, M) A P1(c, M) £ 0.

P_(b, M) and =P (c, M)

1,
—

b+2 c+\2
We take u € M such that P1(b,u) A P1(c,u).

Then, the set P1(M, u) divedes into two convexes C; and C,.
Neither C; nor C, are intervals. O
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Uniformly locally o-minimal structures

P_(b, M) and =P (c, M)
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Local monotonicity

Definition 3.1

@ Alocal o-minimal strucutureM = (M, <, ...) havelocal monotonicity
if for any definableX € M, any definabld : X - M and anya € M
there are an open intervalb a and intervalsXg, Xi, ..., X, such that
any f|X; is constant, strictly increasing, or strictly decreasing.

e If additionally anyf|X; is continuous, we havecal monotonicity with
continuity:.

Hiroshi Tanaka (Anan National College of Techn Locally o-minimal structures December 1, 2010 15/28



Local monotonicity

In general, locally o-minimal structures do not have local
monotonicity. However, the following holds.

Fact 1 (Toffalori and Vozoris)
Any strongly locally o-minimal structure satisfies local monotonicity.

December 1, 2010
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Local monotonicity

In general, locally o-minimal structures do not have local

monotonicity. However, the following holds.

Fact 1 (Toffalori and Vozoris)
Any strongly locally o-minimal structure satisfies local monotonicity.

Fact 2 (Toffalori and Vozoris)
Any locally o-minimal expansion (R, <, ...) of (IR, <) is strongly locally
o-minimal.

| \

Fact 3 (Kawakami and T.)
Any locally o-minimal expansion (R, <, ...) of (R, <) satisfies local

monotonicity with continuity.

A
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Local monotonicity

In general, a strongly locally o-minimal structure dose not satisfy
local monotonicity  with continuity .

M = (Qx Q,<,0, f(x), E(X,Y)).

Here, < is the lexicograhic ordering, 0 := (0, 0),

and for any (p, d), (P1, da), (P2, d2) € @ x Q,

f((p’ q)) = (qa O) and E((pl9 ql)’ (pZa QZ)) & L= P
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Local monotonicity

In general, a strongly locally o-minimal structure dose not satisfy
local monotonicity  with continuity .

M = (Qx Q,<,0, f(x), E(X,Y)).

Here, < is the lexicograhic ordering, 0 := (0, 0),

and for any (p, d), (P1, da), (P2, d2) € @ x Q,

f((p’ q)) = (Qa O) and E((pl9 ql)’ (pZa QZ)) & L= P

Then, for x = (X1, X2), Y = (Y1, ¥2) € M,

X<y & X1<y1 or (X1 =y1 A X2 <Yo)
< (RE(X,yY) A X <y)or (E(X,¥) A T(X) < (y)).

Hence, Th(M) admits elimination of quantifiers.
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Local monotonicity

M= (Q@xQ,<,0, f(x), E(x,)).
f((p’ q)) = (qs O) and E((pl9 q1)9 (pZ’ qZ)) = = P

Let a = (ag, @), b = (by, by) € M.

@ Theset {x € M : f(X) = (a1,0)} = Q x {a1} is discrete.

@ Theset {x € M : E(X,a)} = {a1} x Q is convex.

Hence, M is strongly locally o-minimal.
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Local monotonicity

M= (Q@xQ,<,0, f(x), E(x,)).
f((p’ q)) = (qs O) and E((pl9 q1)9 (pZ’ qZ)) — =P

Let a = (ag, @), b = (by, by) € M.
@ Theset {x € M : f(X) = (a1,0)} = Q x {a1} is discrete.
@ Theset {x € M : E(X,a)} = {a1} x Q is convex.
Hence, M is strongly locally o-minimal.
However, for open interval (a, b),
the set f((a, b)) = (a1, b1) x {0} is discrete.

Therefore, for any ¢ € (a, b), f(c) is not continuous.
M dose not satisfy local monotonicity with continuity.
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Local cell decomposition property

For every n € N, we inductively introduce cells in M".
The definiton of cells in locally o-minimal structures is the same as
that of cells in o-minimal structures.

Hiroshi Tanaka (Anan National College of Techn Locally o-minimal structures December 1, 2010 19/28



Local cell decomposition property

For every n € N, we inductively introduce cells in M".
The definiton of cells in locally o-minimal structures is the same as
that of cells in o-minimal structures.

Definition 4.1

LetC C M.

@ C = {a}, wherea € M, is called a-cellanddim C := 0

o If Cis an open interval, th€ is called al-cellanddim C := 1.
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Local cell decomposition property

Definition 4.2
Suppose that € M"is a cell withdim C = k.

@ Letf : C—> M be definable and continuous. Then
Cy := graph(f) := {(x, f(X)) : x € C}is ak-cellin M™?! and we put
dim C; = k.

@ Let g, h be definable continuous functions fra@to M U {#o0} with
g< honC. ThenC; := (g, h)c :={(X,y) : x€ G, g(Xx) <y < h(x)}is
a(k + 1)-cellin M™?! and we pudim C, = k + 1.
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Local cell decomposition property

Definition 4.3

@ M is said to have theell decomposition properif for any n € N and
any definableX € M", there is a finite partition oX into cells.

@ M is said to have thiocal cell decomposition properif/for any n € N,
anya € M", and any definablX € M", there is an open boR € M"
containinga and a finite partition oX N B into cells.
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Local cell decomposition property

Theorem 4.4 (Knight, Pillay and Steinhorn)

Any o-mininal structure has the cell decomposition property.

Theorem 4.5 (Kawakami and T.)

Let R = (R, <,---) be a locally o-minimal expansion of (R, <).

@ R has the local cell decomposition property.
Q LetneN. Let X C R"beacell, f : X - R adefinable function and
a € R". Then, there exists an open box B € R" containing aand a

finite partition P of X N B into cells such that for any Y € P, f|Y is
continuous.
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Local cell decomposition property

Actually, Theorem 4.5(1) holds in strongly locally o-minimal
structures.

Proposition 4.6 (Kawakami, Takeuchi, Tsuboi, and T.)

Any strongly locally o-minimal structure M has the local cell
decomposition property.
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Strong local o-minimality

To show Proposition 4.6, we first give a characterization of strong
local o-minimality.

Definition 4.7
Let M be anL-structure andA € M.

© Def"(A,M):={Dn A": D ¢ M"is M-definablg.
Def(A, M) := Une,, Def"(A, M).
© The structureAges := (A, (X)xeDef(A,M))-
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Strong local o-minimality

To show Proposition 4.6, we first give a characterization of strong
local o-minimality.

Definition 4.7

Let M be anL-structure andA € M.
© Def"(A,M):={Dn A": D ¢ M"is M-definablg.
Def(A, M) := Une, Def"(A, M).
@ The structuréAger := (A, (X)xepef(a,M))-

Remark 4.8

If A € M is definable, then Def(Ager) = Def(A, M),
that is, for any X € A,

X is definable in Aget & X is definable in M.
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Strong local o-minimality

Tsuboi gave the following characterization of strong local
o-minimality at Model theory summer school 2010 (August).

Proposition 4.9

The following are equivalent.

@ M is strongly locally o-minimal.
@ Foranyay,...,a, € M, there are intervalk; = (by, ¢4], ...,

I'n = (bn, cn] With & € (bj, ¢;) such that, by putting := Ui=1,..n li,
| gef is O-minimal.
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Local cell decomposition property

Proposition 4.10 (Kawakami, Takeuchi, Tsuboi, and T.)
Any strongly locally o-minimal structure M has the local cell
decomposition property.
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Local cell decomposition property

Proof.
Let a = (&g, az,...,an) € M"and X € M" definable.

By the strong local o-minimality of M,

there are intervals |7 = (by, c1], ..., In = (bn, cn] with & € (b, ¢;) such

that lgef := (12U I2 U -«+ U I p)gef is 0-minimal.
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Local cell decomposition property

Proof.
Let a = (a, a,...,an) € M"and X € M" definable.

By the strong local o-minimality of M,

there are intervals |7 = (by, c1], ..., In = (bn, cn] with & € (b, ¢;) such
that lgef := (12U I2 U -«+ U I p)gef is 0-minimal.

We put B := (bg, ¢1) x -+ % (bn, Cp) (€ IM). Then, (az,...,an) € B,
and B is definable in | 4ef because B is definable in M.
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Local cell decomposition property

Proof.

Let a = (a, a,...,an) € M"and X € M" definable.

By the strong local o-minimality of M,

there are intervals |7 = (by, c1], ..., In = (bn, cn] with & € (b, ¢;) such
that lgef := (12U I2 U -«+ U I p)gef is 0-minimal.

We put B := (bg, ¢1) x -+ % (bn, Cp) (€ IM). Then, (az,...,an) € B,
and B is definable in | 4ef because B is definable in M.

Hence, by the o-minimality of | gef,

there is a finite partition % of X N B into cells in | ef.

Since Bis an openbox,any Y € Pisalsoacellin M.

This proprosition is proved.
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Locally 0.m

Uniformly l.o.m

x?
Weakly o.m Strongly l.o.m
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