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Intervals and convex sets

Let L be a language containing <.

Let M = (M, <, . . .) be an L-structure expanding a dense linear

ordering <.

.

Definition 1.1

.

.

.

. ..

.

.

A ⊆ M is said to beconvexinM if

for anya, b ∈ A, we have(a, b) ⊆ A.

If additionallysup A, inf A ∈ M ∪ {−∞,∞},
thenA is called anintervalinM.
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Intervals and convex sets

.

Example 1.2

.

.

.

. ..

.

.

Let Q1 = (Q, <).

(−1, 1), [−1, 1], [−1, 1), (−1, 1], {1} are intervals.(
−
√

2,
√

2
)
∩ Q is not an interval but a convex set.

.

Example 1.3

.

.

.

. ..

.

.

Let Q2 = (Q × Q, <), where < is the lexicographic ordering.

{0} × Q is not an interval but a convex set.
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O-minimal (weakly o-minimal) structures

Let M = (M, <, . . .) be an L-structure expanding a dense linear

ordering <.

.

Definition 1.4

.

.

.

. ..

.

.

M is said to beo-minimalif

any definable subset ofM is a finite union of intervals.

M is said to beweakly o-minimalif

any definable subset ofM is a finite union of convex sets.
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Locally o-minimal structures

The notion of local o-minmality and strongly local o-minimality was

introduced by C. Toffalori and K. Vozoris.

.

Definition 1.5

.

.

.

. ..

.

.

M is said to belocally o-minimalif for any a ∈ M and any definable

X ⊆ M , there is an open intervalI ∋ a such thatX ∩ I is a finite union

of intervals.

M is said to bestrongly locally o-minimalif for any a ∈ M , there is an

open intervalI ∋ a such that for any definableX ⊆ M , X ∩ I is a finite

union of intervals.

M is said to beuniformly locally o-minimalif for any a ∈ M and any

formulaφ(x, y) ∈ L, there is an open intervalI ∋ a such that

φ(M, b) ∩ I is a finite union of intervals for anyb ∈ M .
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Examples

A typical example of locally o-minimal structures is the following

structure.

.

Example 1.6 (Marker and Steinhorn)

.

.

.

. ..

.

.

R = (R, <,+, sin(x)) is strongly locally o-minimal.
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Facts

In locally o-minimal structures, the following are known.

.

Proposition 1.7 (Toffalori and Vozoris)

.

.

.

. ..

.

.

Any weakly o-minimal structure is locally o-minimal.

.

Proposition 1.8 (Toffalori and Vozoris)

.

.

.

. ..

. .

Local o-minimality is preserved under elementary equivalence.

.

Remark 1.9 (Toffalori and Vozoris)

.

.

.

. ..

.

.

Strong local o-minimality is not preserved under elementary equivalence.
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Uniformly locally o-minimal structures

.

Proposition 2.1 (Kawakami, Takeuchi, Tsuboi, and T.)

.

.

.

. ..

.

.

LetM be a uniformly locally o-minimal structure. Suppose thatM is

ω-saturated. Then,M is strongly locally o-minimal.

.

Proof.

.

.

.

. ..

.

.

Let a ∈ M and φ(x, y) ∈ L.

By the uniformity of M, there is an open interval I ∋ a such that

for any b ∈ M , we can take nb ∈ N so that φ(M, b) ∩ I is a union

of nb many intervals.

By the saturation of M, the set {nb : b ∈ M} is uniformly

bounded, denoted by nφ ∈ N.

�
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.
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Uniformly locally o-minimal structures

.

Proof.

.

.

.

. ..

.

.

Let θφ(u, v) ≡ for any z ∈ M , the set {x ∈ (u, v) : M |= φ(x, z)} is a

union of at most nφ many intervals.

Let Γ(u, v) ≡ {u < a < v} ∪ {θφ(u, v) : φ ∈ L}.

By compactness, Γ(u, v) is consistent.

By the saturation of M, there are c, d ∈ M such that M |= Γ(c, d).

The open interval (c, d) witnesses to the strong local

o-minimality of M.

�
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Uniformly locally o-minimal structures

We show that there is an ω-saturated locally o-minimal structure that

is not uniformly locally o-minimal.

.

Example 2.2

.

.

.

. ..

.

.

Let L = {<, Pq}q∈Q+ and M := (Q, <, Pq)q∈Q+ .

Here, Pq(a, b) ⇐⇒ a+
√

2 · q ≤ b in R.

Let M∗ ≻ M be ω-saturated.

Then, M∗ is locally o-minimal but not uniformly locally o-minimal.

For example, when a = 1, q = 2,
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Uniformly locally o-minimal structures

.

Example 2.3

.

.

.

. ..

.

.

Let L = {<, Pq}q∈Q+ and M := (Q, <, Pq)q∈Q+ .

Here, Pq(a, b) ⇐⇒ a+
√

2 · q ≤ b in R.

.

Proof.

.

.

.

. ..

. .

Th(M) admits elimination of quantifiers.

So, M is weakly o-minimal and hence locally o-minimal. �
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Uniformly locally o-minimal structures

.

Proof.

.

.

.

. ..

.

.

However, M is not uniformly locally o-minimal.

∵) For any open interval I = (b, c) ∋ 0,

we have P1(b, M) ∧ P1(c, M) , ∅.

We take u ∈ M such that P1(b, u) ∧ P1(c, u).

Then, the set P1(M, u) divedes into two convexes C1 and C2.

Neither C1 nor C2 are intervals. �
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Uniformly locally o-minimal structures
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Local monotonicity

.

Definition 3.1

.

.

.

. ..

.

.

A local o-minimal strucutureM = (M, <, . . .) havelocal monotonicity

if for any definableX ⊆ M , any definablef : X → M and anya ∈ M

there are an open intervalI ∋ a and intervalsX0, X1, . . ., Xn such that

any f |Xi is constant, strictly increasing, or strictly decreasing.

If additionally any f |Xi is continuous, we havelocal monotonicity with

continuity.
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Local monotonicity

In general, locally o-minimal structures do not have local

monotonicity. However, the following holds.

.

Fact 1 (Toffalori and Vozoris)

.

.

.

. ..

.

.

Any strongly locally o-minimal structure satisfies local monotonicity.

.

Fact 2 (Toffalori and Vozoris)

.

.

.

. ..

. .

Any locally o-minimal expansion (R, <, . . .) of (R, <) is strongly locally

o-minimal.

.

Fact 3 (Kawakami and T.)

.

.

.

. ..

.

.

Any locally o-minimal expansion (R, <, . . .) of (R, <) satisfies local

monotonicity with continuity.
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Local monotonicity

In general, a strongly locally o-minimal structure dose not satisfy

local monotonicity with continuity .

.

Example 3.2

.

.

.

. ..

.

.

M = (Q × Q, <, 0, f (x), E(x, y)).

Here, < is the lexicograhic ordering, 0 := (0, 0),

and for any (p, q), (p1, q1), (p2, q2) ∈ Q × Q,

f ((p, q)) := (q, 0) and E((p1, q1), (p2, q2)) ⇐⇒ p1 = p2.

Then, for x = (x1, x2), y = (y1, y2) ∈ M ,

x < y ⇐⇒ x1 < y1 or (x1 = y1 ∧ x2 < y2)

⇐⇒ (¬E(x, y) ∧ x < y) or (E(x, y) ∧ f (x) < f (y)).

Hence, Th(M) admits elimination of quantifiers.
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Local monotonicity

.

Example 3.3

.

.

.

. ..

.

.

M = (Q × Q, <, 0, f (x), E(x, y)).

f ((p, q)) := (q, 0) and E((p1, q1), (p2, q2)) ⇐⇒ p1 = p2.

Let a = (a1, a2), b = (b1, b2) ∈ M .

The set {x ∈ M : f (x) = (a1, 0)} = Q × {a1} is discrete.

The set {x ∈ M : E(x, a)} = {a1} × Q is convex.

Hence, M is strongly locally o-minimal.

However, for open interval (a, b),

the set f ((a, b)) = (a1, b1) × {0} is discrete.

Therefore, for any c ∈ (a, b), f (c) is not continuous.

M dose not satisfy local monotonicity with continuity.
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Local cell decomposition property

For every n ∈ N, we inductively introduce cells in M n.

The definiton of cells in locally o-minimal structures is the same as

that of cells in o-minimal structures.

.

Definition 4.1

.

.

.

. ..

.

.

Let C ⊆ M .

C = {a}, wherea ∈ M , is called a0-cell anddim C := 0

If C is an open interval, theC is called a1-cell anddim C := 1.
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Local cell decomposition property

.

Definition 4.2

.

.

.

. ..

.

.

Suppose thatC ⊆ M n is a cell withdim C = k.

Let f : C→ M be definable and continuous. Then

C1 := graph( f ) := {(x, f (x)) : x ∈ C} is a k-cell in M n+1 and we put

dim C1 = k.

Let g, h be definable continuous functions fromC to M ∪ {±∞} with

g < h onC. ThenC2 := (g, h)C := {(x, y) : x ∈ C, g(x) < y < h(x)} is

a (k + 1)-cell in M n+1 and we putdim C2 = k + 1.

h(x)

g(x)

(g, h)C
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Local cell decomposition property

.

Definition 4.3

.

.

.

. ..

.

.

.

.
.

1 M is said to have thecell decomposition propertyif for any n ∈ N and

any definableX ⊆ M n, there is a finite partition ofX into cells.

.

.

.

2 M is said to have thelocal cell decomposition propertyif for any n ∈ N,

anya ∈ M n, and any definableX ⊆ M n, there is an open boxB ⊆ M n

containinga and a finite partition ofX ∩ B into cells.
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Local cell decomposition property

.

Theorem 4.4 (Knight, Pillay and Steinhorn)

.

.

.

. ..

.

.

Any o-mininal structure has the cell decomposition property.

.

Theorem 4.5 (Kawakami and T.)

.

.

.

. ..

.

.

Let R = (R, <, · · · ) be a locally o-minimal expansion of (R, <).

.

.

.

1 R has the local cell decomposition property.

.

.

.

2 Let n ∈ N. Let X ⊆ Rn be a cell, f : X → R a definable function and

a ∈ Rn. Then, there exists an open box B ⊆ Rn containing a and a

finite partition P of X ∩ B into cells such that for any Y ∈ P, f |Y is

continuous.
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Local cell decomposition property

Actually, Theorem 4.5(1) holds in strongly locally o-minimal

structures.

.

Proposition 4.6 (Kawakami, Takeuchi, Tsuboi, and T.)

.

.

.

. ..

.

.

Any strongly locally o-minimal structure M has the local cell

decomposition property.
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Strong local o-minimality

To show Proposition 4.6, we first give a characterization of strong

local o-minimality.

.

Definition 4.7

.

.

.

. ..

.

.

Let M be anL-structure andA ⊆ M .

.

.

.

1 Defn(A, M) := {D ∩ An : D ⊆ M n is M-definable}.
Def(A, M) :=

∪
n∈ω Defn(A, M).

.

.

.

2 The structureAdef := (A, (X)X∈Def(A,M)).

.

Remark 4.8

.

.

.

. ..

.

.

If A ⊆ M is definable, then Def(Adef) = Def(A, M),

that is, for any X ⊆ A,

X is definable in Adef ⇐⇒ X is definable in M .
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Strong local o-minimality

Tsuboi gave the following characterization of strong local

o-minimality at Model theory summer school 2010 (August).

.

Proposition 4.9

.

.

.

. ..

.

.

The following are equivalent.

.

.

.

1 M is strongly locally o-minimal.

.

.

.

2 For anya1, . . . , an ∈ M , there are intervalsI1 = (b1, c1], . . .,

I n = (bn, cn] with ai ∈ (bi , ci) such that, by puttingI :=
∪

i=1,...,n I i ,

Idef is o-minimal.
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Local cell decomposition property

.

Proposition 4.10 (Kawakami, Takeuchi, Tsuboi, and T.)

.

.

.

. ..

.

.

Any strongly locally o-minimal structure M has the local cell

decomposition property.
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Local cell decomposition property

.

Proof.

.

.

.

. ..

.

.

Let a = (a1, a2, . . . , an) ∈ M n and X ⊆ M n definable.

By the strong local o-minimality of M ,

there are intervals I1 = (b1, c1], . . ., I n = (bn, cn] with ai ∈ (bi , ci) such

that Idef := (I1 ∪ I2 ∪ · · · ∪ I n)def is o-minimal.

We put B := (b1, c1) × · · · × (bn, cn) (⊆ I n). Then, (a1, . . . , an) ∈ B,

and B is definable in Idef because B is definable in M .

Hence, by the o-minimality of Idef,

there is a finite partition P of X ∩ B into cells in Idef.

Since B is an open box, any Y ∈ P is also a cell in M .

This proprosition is proved.

�
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