On locally o-minimal structures

Hiroshi Tanaka

joint works with

Tomohiro Kawakami, Kota Takeuchi and Akito Tsuboi

Anan National College of Technology

RIMS Model Theory Meeting December 1, 2010 RIMS

Iocal o-minimality

uniform local o-minimalily and strong local o-minimality

3 local monotonicity

Let *L* be a language containing <.

Let $\mathcal{M} = (M, <, ...)$ be an *L*-structure expanding a dense linear ordering <.

Definition 1.1

- $A \subseteq M$ is said to be convex in \mathcal{M} if for any $a, b \in A$, we have $(a, b) \subseteq A$.
- If additionally sup A, inf A ∈ M ∪ {-∞, ∞},
 then A is called an interval in M.

Example 1.2

Let $Q_1 = (\mathbb{Q}, <)$.

- (-1, 1), [-1, 1], [-1, 1), (-1, 1], $\{1\}$ are intervals.
- $(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}$ is not an interval but a convex set.

Example 1.3

- Let $Q_2 = (\mathbb{Q} \times \mathbb{Q}, <)$, where < is the lexicographic ordering.
 - $\{0\} \times \mathbb{Q}$ is not an interval but a convex set.

Let $\mathcal{M} = (M, <, ...)$ be an *L*-structure expanding a dense linear ordering <.

Definition 1.4

• *M* is said to be o-minimal if

any definable subset of M is a finite union of intervals.

• \mathcal{M} is said to be weakly o-minimal if

any definable subset of M is a finite union of convex sets.

The notion of local o-minmality and strongly local o-minimality was introduced by C. Toffalori and K. Vozoris.

Definition 1.5

M is said to be locally o-minimal if for any *a* ∈ *M* and any definable *X* ⊆ *M*, there is an open interval *I* ∋ *a* such that *X* ∩ *I* is a finite union of intervals.

The notion of local o-minmality and strongly local o-minimality was introduced by C. Toffalori and K. Vozoris.

Definition 1.5

- *M* is said to be locally o-minimal if for any *a* ∈ *M* and any definable *X* ⊆ *M*, there is an open interval *I* ∋ *a* such that *X* ∩ *I* is a finite union of intervals.
- *M* is said to be strongly locally o-minimal if for any *a* ∈ *M*, there is an open interval *I* ∋ *a* such that for any definable *X* ⊆ *M*, *X* ∩ *I* is a finite union of intervals.

The notion of local o-minmality and strongly local o-minimality was introduced by C. Toffalori and K. Vozoris.

Definition 1.5

- *M* is said to be locally o-minimal if for any *a* ∈ *M* and any definable *X* ⊆ *M*, there is an open interval *I* ∋ *a* such that *X* ∩ *I* is a finite union of intervals.
- *M* is said to be strongly locally o-minimal if for any *a* ∈ *M*, there is an open interval *I* ∋ *a* such that for any definable *X* ⊆ *M*, *X* ∩ *I* is a finite union of intervals.
- M is said to be uniformly locally o-minimal if for any a ∈ M and any formula φ(x, y) ∈ L, there is an open interval I ∋ a such that φ(M, b) ∩ I is a finite union of intervals for any b ∈ M.

A typical example of locally o-minimal structures is the following structure.

Example 1.6 (Marker and Steinhorn)

 $\mathcal{R} = (\mathbb{R}, \langle, +, \sin(x))$ is strongly locally o-minimal.

Facts

In locally o-minimal structures, the following are known.

Proposition 1.7 (Toffalori and Vozoris)

Any weakly o-minimal structure is locally o-minimal.

Proposition 1.8 (Toffalori and Vozoris)

Local o-minimality is preserved under elementary equivalence.

Remark 1.9 (Toffalori and Vozoris)

Strong local o-minimality is not preserved under elementary equivalence.

Uniformly locally o-minimal structures

Proposition 2.1 (Kawakami, Takeuchi, Tsuboi, and T.)

Let \mathcal{M} be a uniformly locally o-minimal structure. Suppose that \mathcal{M} is ω -saturated. Then, \mathcal{M} is strongly locally o-minimal.

Uniformly locally o-minimal structures

Proposition 2.1 (Kawakami, Takeuchi, Tsuboi, and T.)

Let \mathcal{M} be a uniformly locally o-minimal structure. Suppose that \mathcal{M} is ω -saturated. Then, \mathcal{M} is strongly locally o-minimal.

Proof.

- Let $a \in M$ and $\varphi(x, y) \in L$.
- By the uniformity of *M*, there is an open interval *I* ∋ *a* such that for any *b* ∈ *M*, we can take *n_b* ∈ ℕ so that φ(*M*, *b*) ∩ *I* is a union of *n_b* many intervals.
- By the saturation of \mathcal{M} , the set $\{n_b : b \in M\}$ is uniformly bounded, denoted by $n_{\varphi} \in \mathbb{N}$.

Proof.

- Let $\theta_{\varphi}(u, v) \equiv$ for any $z \in M$, the set $\{x \in (u, v) : M \models \varphi(x, z)\}$ is a union of at most n_{φ} many intervals.
- Let $\Gamma(u, v) \equiv \{u < a < v\} \cup \{\theta_{\varphi}(u, v) : \varphi \in L\}.$

Proof.

- Let $\theta_{\varphi}(u, v) \equiv$ for any $z \in M$, the set $\{x \in (u, v) : M \models \varphi(x, z)\}$ is a union of at most n_{φ} many intervals.
- Let $\Gamma(u, v) \equiv \{u < a < v\} \cup \{\theta_{\varphi}(u, v) : \varphi \in L\}.$
- By compactness, $\Gamma(u, v)$ is consistent.
- By the saturation of \mathcal{M} , there are $c, d \in M$ such that $\mathcal{M} \models \Gamma(c, d)$.
- The open interval (c, d) witnesses to the strong local o-minimality of *M*.

We show that there is an ω -saturated locally o-minimal structure that is not uniformly locally o-minimal.

Example 2.2

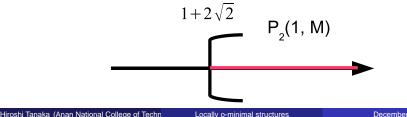
Let $L = \{\langle, P_q\}_{q \in \mathbb{Q}^+}$ and $M := (\mathbb{Q}, \langle, P_q)_{q \in \mathbb{Q}^+}$.

Here,
$$P_q(a,b) \iff a + \sqrt{2} \cdot q \le b$$
 in \mathbb{R} .

Let $M^* > M$ be ω -saturated.

Then, M^* is locally o-minimal but not uniformly locally o-minimal.

For example, when a = 1, q = 2,



Example 2.3

Let $L = \{<, P_q\}_{q \in \mathbb{Q}^+}$ and $M := (\mathbb{Q}, <, P_q)_{q \in \mathbb{Q}^+}$. Here, $P_q(a, b) \iff a + \sqrt{2} \cdot q \le b$ in \mathbb{R} .

Example 2.3

Let $L = \{<, P_q\}_{q \in \mathbb{Q}^+}$ and $M := (\mathbb{Q}, <, P_q)_{q \in \mathbb{Q}^+}$. Here, $P_q(a, b) \iff a + \sqrt{2} \cdot q \le b$ in \mathbb{R} .

Proof.

Th(M) admits elimination of quantifiers.

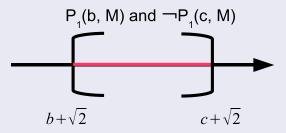
So, *M* is weakly o-minimal and hence locally o-minimal.

Proof.

However, M is not uniformly locally o-minimal.

```
:) For any open interval I = (b, c) \ni 0,
```

we have $P_1(b, M) \land P_1(c, M) \neq \emptyset$.

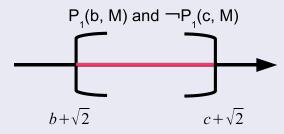


Proof.

However, M is not uniformly locally o-minimal.

```
:) For any open interval I = (b, c) \ni 0,
```

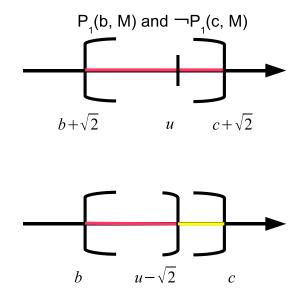
we have $P_1(b, M) \land P_1(c, M) \neq \emptyset$.



We take $u \in M$ such that $P_1(b, u) \wedge P_1(c, u)$.

Then, the set $P_1(M, u)$ divedes into two convexes C_1 and C_2 . Neither C_1 nor C_2 are intervals.

Uniformly locally o-minimal structures



Definition 3.1

- A local o-minimal structure M = (M, <,...) have local monotonicity if for any definable X ⊆ M, any definable f : X → M and any a ∈ M there are an open interval I ∋ a and intervals X₀, X₁, ..., X_n such that any f|X_i is constant, strictly increasing, or strictly decreasing.
- If additionally any $f|X_i$ is continuous, we have local monotonicity with continuity.

In general, locally o-minimal structures do not have local monotonicity. However, the following holds.

Fact 1 (Toffalori and Vozoris)

Any strongly locally o-minimal structure satisfies local monotonicity.

In general, locally o-minimal structures do not have local monotonicity. However, the following holds.

Fact 1 (Toffalori and Vozoris)

Any strongly locally o-minimal structure satisfies local monotonicity.

Fact 2 (Toffalori and Vozoris)

Any locally o-minimal expansion $(\mathbb{R}, <, ...)$ of $(\mathbb{R}, <)$ is strongly locally o-minimal.

Fact 3 (Kawakami and T.)

Any locally o-minimal expansion $(\mathbb{R}, <, ...)$ of $(\mathbb{R}, <)$ satisfies local monotonicity with continuity.

In general, a strongly locally o-minimal structure dose not satisfy local monotonicity with continuity.

Example 3.2

 $M = (\mathbb{Q} \times \mathbb{Q}, <, 0, f(x), E(x, y)).$

Here, < is the lexicograhic ordering, 0 := (0, 0),

and for any (p, q), (p_1, q_1) , $(p_2, q_2) \in \mathbb{Q} \times \mathbb{Q}$,

 $f((p,q)) := (q,0) \text{ and } E((p_1,q_1), (p_2,q_2)) \iff p_1 = p_2.$

In general, a strongly locally o-minimal structure dose not satisfy local monotonicity with continuity.

Example 3.2

 $M = (\mathbb{Q} \times \mathbb{Q}, <, 0, f(x), E(x, y)).$

Here, < is the lexicograhic ordering, 0 := (0, 0),

and for any (p, q), (p_1, q_1) , $(p_2, q_2) \in \mathbb{Q} \times \mathbb{Q}$,

 $f((p,q)) := (q,0) \text{ and } E((p_1,q_1), (p_2,q_2)) \iff p_1 = p_2.$

Then, for $x = (x_1, x_2), y = (y_1, y_2) \in M$,

 $\begin{aligned} x < y & \Longleftrightarrow x_1 < y_1 \qquad \text{or } (x_1 = y_1 \land x_2 < y_2) \\ & \Leftrightarrow (\neg E(x,y) \land x < y) \text{ or } (E(x,y) \land f(x) < f(y)). \end{aligned}$

Hence, Th(M) admits elimination of quantifiers.

Example 3.3

 $M = (\mathbb{Q} \times \mathbb{Q}, <, 0, f(x), E(x, y)).$ $f((p, q)) := (q, 0) \text{ and } E((p_1, q_1), (p_2, q_2)) \iff p_1 = p_2.$

Let
$$a = (a_1, a_2), b = (b_1, b_2) \in M$$
.

- The set $\{x \in M : f(x) = (a_1, 0)\} = \mathbb{Q} \times \{a_1\}$ is discrete.
- The set $\{x \in M : E(x, a)\} = \{a_1\} \times \mathbb{Q}$ is convex.

Hence, *M* is strongly locally o-minimal.

Example 3.3

 $M = (\mathbb{Q} \times \mathbb{Q}, <, 0, f(x), E(x, y)).$ $f((p, q)) := (q, 0) \text{ and } E((p_1, q_1), (p_2, q_2)) \iff p_1 = p_2.$

Let
$$a = (a_1, a_2), b = (b_1, b_2) \in M$$
.

- The set $\{x \in M : f(x) = (a_1, 0)\} = \mathbb{Q} \times \{a_1\}$ is discrete.
- The set $\{x \in M : E(x, a)\} = \{a_1\} \times \mathbb{Q}$ is convex.

Hence, M is strongly locally o-minimal.

However, for open interval (a, b),

the set $f((a, b)) = (a_1, b_1) \times \{0\}$ is discrete.

Therefore, for any $c \in (a, b)$, f(c) is not continuous.

M dose not satisfy local monotonicity with continuity.

For every $n \in \mathbb{N}$, we inductively introduce cells in M^n . The definiton of cells in locally o-minimal structures is the same as that of cells in o-minimal structures. For every $n \in \mathbb{N}$, we inductively introduce cells in M^n .

The definiton of cells in locally o-minimal structures is the same as that of cells in o-minimal structures.

Definition 4.1

Let $C \subseteq M$.

• $C = \{a\}$, where $a \in M$, is called a 0-cell and dim C := 0

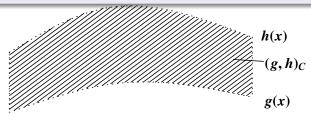
• If C is an open interval, the C is called a 1-cell and dim C := 1.

Local cell decomposition property

Definition 4.2

Suppose that $C \subseteq M^n$ is a cell with dim C = k.

- Let f: C → M be definable and continuous. Then
 C₁ := graph(f) := {(x, f(x)) : x ∈ C} is a k-cell in Mⁿ⁺¹ and we put dim C₁ = k.
- Let g, h be definable continuous functions from C to $M \cup \{\pm \infty\}$ with g < h on C. Then $C_2 := (g, h)_C := \{(x, y) : x \in C, g(x) < y < h(x)\}$ is a (k + 1)-cell in M^{n+1} and we put dim $C_2 = k + 1$.



Definition 4.3

- \mathcal{M} is said to have the cell decomposition property if for any $n \in \mathbb{N}$ and any definable $X \subseteq M^n$, there is a finite partition of X into cells.
- M is said to have the local cell decomposition property if for any n ∈ N, any a ∈ Mⁿ, and any definable X ⊆ Mⁿ, there is an open box B ⊆ Mⁿ containing a and a finite partition of X ∩ B into cells.

Theorem 4.4 (Knight, Pillay and Steinhorn)

Any o-mininal structure has the cell decomposition property.

Theorem 4.5 (Kawakami and T.)

Let $\mathcal{R} = (\mathbb{R}, <, \cdots)$ be a locally o-minimal expansion of $(\mathbb{R}, <)$.

- R has the local cell decomposition property.
- ② Let *n* ∈ \mathbb{N} . Let *X* ⊆ \mathbb{R}^n be a cell, *f* : *X* → \mathbb{R} a definable function and *a* ∈ \mathbb{R}^n . Then, there exists an open box *B* ⊆ \mathbb{R}^n containing *a* and a finite partition *P* of *X* ∩ *B* into cells such that for any *Y* ∈ *P*, *f*|*Y* is continuous.

Actually, Theorem 4.5(1) holds in strongly locally o-minimal structures.

Proposition 4.6 (Kawakami, Takeuchi, Tsuboi, and T.)

Any strongly locally o-minimal structure M has the local cell decomposition property.

To show Proposition 4.6, we first give a characterization of strong local o-minimality.

Definition 4.7

Let *M* be an *L*-structure and $A \subseteq M$.

O Def^{*n*}(A, M) := { $D \cap A^n : D \subseteq M^n$ is *M*-definable}.

 $\operatorname{Def}(A, M) := \bigcup_{n \in \omega} \operatorname{Def}^n(A, M).$

2 The structure $A_{def} := (A, (X)_{X \in Def(A,M)}).$

To show Proposition 4.6, we first give a characterization of strong local o-minimality.

Definition 4.7

Let *M* be an *L*-structure and $A \subseteq M$.

O Def^{*n*}(A, M) := { $D \cap A^n : D \subseteq M^n$ is *M*-definable}.

 $\operatorname{Def}(A, M) := \bigcup_{n \in \omega} \operatorname{Def}^n(A, M).$

2 The structure $A_{def} := (A, (X)_{X \in Def(A,M)}).$

Remark 4.8

If $A \subseteq M$ is definable, then $\text{Def}(A_{\text{def}}) = \text{Def}(A, M)$,

that is, for any $X \subseteq A$,

X is definable in $A_{def} \iff X$ is definable in M.

Tsuboi gave the following characterization of strong local o-minimality at Model theory summer school 2010 (August).

Proposition 4.9

The following are equivalent.

- M is strongly locally o-minimal.
- **②** For any $a_1, \ldots, a_n \in M$, there are intervals $I_1 = (b_1, c_1], \ldots, I_n = (b_n, c_n]$ with $a_i \in (b_i, c_i)$ such that, by putting $I := \bigcup_{i=1,\ldots,n} I_i$, *I*def is o-minimal.

Proposition 4.10 (Kawakami, Takeuchi, Tsuboi, and T.)

Any strongly locally o-minimal structure M has the local cell decomposition property.

Local cell decomposition property

Proof.

Let $a = (a_1, a_2, \dots, a_n) \in M^n$ and $X \subseteq M^n$ definable.

By the strong local o-minimality of M,

there are intervals $I_1 = (b_1, c_1], \dots, I_n = (b_n, c_n]$ with $a_i \in (b_i, c_i)$ such

that $I_{\text{def}} := (I_1 \cup I_2 \cup \cdots \cup I_n)_{\text{def}}$ is o-minimal.

Proof.

Let
$$a = (a_1, a_2, \dots, a_n) \in M^n$$
 and $X \subseteq M^n$ definable.

By the strong local o-minimality of M,

there are intervals $I_1 = (b_1, c_1], \dots, I_n = (b_n, c_n]$ with $a_i \in (b_i, c_i)$ such that $I_{def} := (I_1 \cup I_2 \cup \dots \cup I_n)_{def}$ is o-minimal.

We put $B := (b_1, c_1) \times \cdots \times (b_n, c_n) (\subseteq I^n)$. Then, $(a_1, \ldots, a_n) \in B$,

and *B* is definable in I_{def} because *B* is definable in *M*.

Proof.

Let
$$a = (a_1, a_2, \dots, a_n) \in M^n$$
 and $X \subseteq M^n$ definable.

By the strong local o-minimality of M,

there are intervals $I_1 = (b_1, c_1], \dots, I_n = (b_n, c_n]$ with $a_i \in (b_i, c_i)$ such that $I_{\text{def}} := (I_1 \cup I_2 \cup \dots \cup I_n)_{\text{def}}$ is o-minimal.

We put $B := (b_1, c_1) \times \cdots \times (b_n, c_n) (\subseteq I^n)$. Then, $(a_1, \ldots, a_n) \in B$,

and *B* is definable in I_{def} because *B* is definable in *M*.

Hence, by the o-minimality of I_{def} ,

there is a finite partition \mathcal{P} of $X \cap B$ into cells in I_{def} .

Since *B* is an open box, any $Y \in \mathcal{P}$ is also a cell in *M*.

This proprosition is proved.

A diagram

Locally o.m

