## **Unsaturated generic structures**

## Koichiro IKEDA

Hosei University

RIMS model theory meeting Nov. 29, 2010

Koichiro IKEDA Unsaturated generic structures

# Acknowledgement

This work is in progress with Hirotaka Kikyo.

## **Our Result**

## Theorem 2 (I. and Kikyo)

There is a strictly superstable generic structure whose theory is non-trivial.

- generic structure = ab initio generic structure
- strictly superstable = superstable but not  $\omega$ -stable

## Question (Baldwin, 1993)

Is there a strictly superstable generic structure?

## **Theorem 1**

### Theorem 1 (I., 2010)

There is a strictly superstable generic structure.

We explain the outline of the proof of this theorem.

# 1) The edge relation is binary, and $\alpha = 1$ . (I.e., $\delta(A) = |A| - |R(*, *)^A|$ .)

- 1) The edge relation is binary, and  $\alpha = 1$ . (I.e.,  $\delta(A) = |A| - |R(*, *)^A|$ .)
- 2) For example, for  $\eta = (01101)$ ,  $E_{\eta}$  is defined as follows.



3) Fix a 1-1 onto map  $f: 2^{<\omega} \rightarrow \{3, 4, 5, \cdots\}$ .

- 3) Fix a 1-1 onto map  $f: 2^{<\omega} \rightarrow \{3, 4, 5, \cdots\}$ .
- 4) For example, take  $\eta \in 2^{<\omega}$  with  $f(\eta) = 6$ .

- 3) Fix a 1-1 onto map  $f: 2^{<\omega} \rightarrow \{3, 4, 5, \cdots\}$ .
- 4) For example, take  $\eta \in 2^{<\omega}$  with  $f(\eta) = 6$ .
- 5) Then  $D_{\eta}$  is defined as follows.



6) Let **K** be a class generated by  $D_{\eta}$ 's. (**K** is closed under substructures and amalgamation.)

- 6) Let **K** be a class generated by  $D_{\eta}$ 's. (**K** is closed under substructures and amalgamation.)
- 7) Let M be the K-generic. Then the picture is as follows.



8) Moreover, a big model is as follows.



## Lemma

### Lemma 1

Th(M) is not small.

Clear.

Lemma 2

Th(M) is superstable.

Not clear.

## **Richness**

## Definition

Let  $D \leq \mathcal{M}$ . Then D is said to be rich, if for any finite  $A \leq D$  and  $B \in K$  with  $A \leq B$  there is  $B' \cong_A B$  with  $B' \leq \mathcal{M}$ .

#### Remark

A generic structure is rich.

#### Poorness

## Definition

Let  $D \leq \mathcal{M}$ . *D* is said to be poor, if for any finite  $A \leq D$  there is  $B \in K$  with  $A \leq B$  such that there is no  $B' \cong_A B$  with  $B' \leq \mathcal{M}$ .

#### Remark

A poor set is not rich.

## Poorness

The below structure is divided into the following two areas.



#### Definition

A generic structure  $\mathcal{M}$  is said to be ultrahomogeneous, if whenever  $A, B \leq \mathcal{M}$  and  $A \cong B$ , then tp(A) = tp(B).

When  $\boldsymbol{\mathcal{M}}$  is ultrahomogeneous, it is easy to count the number of types.

#### Remark

A saturated generic structure is ultrahomogeneous. (Hrushovski's examples are saturated.)

# Ultrahomogeneous

## Remark

The below structure is not ultrahomogeneous.



#### Definition

A generic structure *M* is said to be almost ultrahomogeneous, if whenever  $A, B \leq M, A \cong B$  and  $tp(A_p) = tp(B_p)$ , then tp(A) = tp(B).

# Almost ultrahomogeneous

## Remark

The below structure is almost ultrahomogeneous.





When  $\mathcal{M}$  is almost ultrahomogeneous, it is also easy to count the number of types. Then we have

Lemma 2

Th(M) is superstable.

Hence *M* is strictly superstable.

# Triviality

#### Definition

A theory T is said to be trivial, if every pairwise independent set is independent.

- Hrushovski's strongly minimal structure
  ⇒ The edge relation is ternary, and α = 1
- Prushovski's pseudoplane
  ⇒ The edge relation is binary, and α < 1</li>
- The structure of Theorem 1

 $\Rightarrow$  The edge relation is binary, and  $\alpha = 1$ 

# Ternary, and $\alpha = 1$



# Binary, and $\alpha = 1/2$



#### Fact

Let B, C be closed and  $A = B \cap C$  be algebraically closed. Then the following are equivalent:

- B and C are independent over A;
- B and C are free over A, and BC is closed.

# Binary, and $\alpha = 1$



# Triviality

#### Definition

A theory T is said to be trivial, if every pairwise independent set is independent.

- Hrushovski's strongly minimal structure
  ⇒ The edge relation is ternary, and α = 1 ⇒ nontrivial
- Irushovski's pseudoplane
  ⇒ The edge relation is binary, and α < 1 ⇒ nontrivial</li>
- The structure of Theorem 1

 $\Rightarrow$  The edge relation is binary, and  $\alpha = 1 \Rightarrow$  trivial

# Question

### Question

Is there a strictly superstable generic structure whose theory is nontrivial?

## Answer

## Theorem 2(I. and Kikyo)

There is a strictly superstable generic structure whose theory is nontrivial.

## Answer

## Theorem 2(I. and Kikyo)

There is a strictly superstable generic structure whose theory is nontrivial.

#### Remark

The proof is similar to that of Theorem 1. We can construct the following two types of generic structures:

- The edge relation is terary and  $\alpha = 1$ ;
- The edge relation is binary and  $\alpha = 2/3$ .

# Ternary, and $\alpha = 1$



binary,  $\alpha = 1$ 

ternary,  $\alpha = 1$ 

# Binary, and $\alpha = 2/3$



binary,  $\alpha = 1$ 

binary,  $\alpha = 2/3$