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Our Result

.

Theorem 2 (I. and Kikyo)

.

.

.

. ..

. .

There is a strictly superstable generic structure whose theory is
non-trivial.

Koichiro IKEDA Unsaturated generic structures



Baldwin’s Question

generic structure = ab initio generic structure

strictly superstable = superstable but not ω-stable

.

Question (Baldwin, 1993)

.

.

.

. ..

.

.

Is there a strictly superstable generic structure?
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Theorem 1

.

Theorem 1 (I., 2010)

.

.

.

. ..

. .

There is a strictly superstable generic structure.

We explain the outline of the proof of this theorem.
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Construction

1) The edge relation is binary, and α = 1.
(I.e., δ(A) = |A| − |R(∗, ∗)A|.)

2) For example, for η = (01101), Eη is defined as follows.
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Construction

1) The edge relation is binary, and α = 1.
(I.e., δ(A) = |A| − |R(∗, ∗)A|.)

2) For example, for η = (01101), Eη is defined as follows.
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Construction

3) Fix a 1-1 onto map f : 2<ω → {3, 4, 5, · · ·}.

4) For example, take η ∈ 2<ω with f (η) = 6.

5) Then Dη is defined as follows.
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Construction

3) Fix a 1-1 onto map f : 2<ω → {3, 4, 5, · · ·}.
4) For example, take η ∈ 2<ω with f (η) = 6.

5) Then Dη is defined as follows.
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Construction

6) Let K be a class generated by Dη’s. (K is closed under
substructures and amalgamation.)

7) Let M be the K -generic. Then the picture is as follows.
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Construction

6) Let K be a class generated by Dη’s. (K is closed under
substructures and amalgamation.)

7) Let M be the K -generic. Then the picture is as follows.
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Construction

8) Moreover, a big model is as follows.
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Lemma

.

Lemma 1

.

.

.

. ..

.

.

Th(M) is not small.

Clear.

.

Lemma 2

.

.

.

. ..

.

.

Th(M) is superstable.

Not clear.
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Richness

.

Definition

.

.

.

. ..

.

.

Let D ≤ M. Then D is said to be rich, if for any finite A ≤ D and
B ∈ K with A ≤ B there is B′ �A B with B′ ≤ M.

.

Remark

.

.

.

. ..

.

.

A generic structure is rich.
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Poorness

.

Definition

.

.

.

. ..

.

.

Let D ≤ M. D is said to be poor, if for any finite A ≤ D there is
B ∈ K with A ≤ B such that there is no B′ �A B with B′ ≤ M.

.

Remark

.

.

.

. ..

.

.

A poor set is not rich.
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Poorness

The below structure is divided into the following two areas.
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Ultrahomogeneous

.

Definition

.

.

.

. ..

.

.

A generic structureM is said to be ultrahomogeneous, if
whenever A, B ≤ M and A � B, then tp( A) = tp(B).

WhenM is ultrahomogeneous, it is easy to count the number of
types.

.

Remark

.

.

.

. ..

.

.

A saturated generic structure is ultrahomogeneous. (Hrushovski’s
examples are saturated.)
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Ultrahomogeneous

.

Remark

.

.

.

. ..

.

.

The below structure is not ultrahomogeneous.
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Almost ultrahomogeneous

.

Definition

.

.

.

. ..

.

.

A generic structure M is said to be almost ultrahomogeneous, if
whenever A, B ≤ M, A � B and tp( Ap) = tp(Bp), then
tp( A) = tp(B).
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Almost ultrahomogeneous

.

Remark

.

.

.

. ..

.

.

The below structure is almost ultrahomogeneous.
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Lemma

WhenM is almost ultrahomogeneous, it is also easy to count the
number of types. Then we have

.

Lemma 2

.

.

.

. ..

.

.

Th(M) is superstable.

Hence M is strictly superstable.
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Triviality

.

Definition

.

.

.

. ..

.

.

A theory T is said to be trivial, if every pairwise independent set is
independent.

.

.

.

1 Hrushovski’s strongly minimal structure
⇒ The edge relation is ternary, and α = 1

.

.

.

2 Hrushovski’s pseudoplane
⇒ The edge relation is binary, and α < 1

.

.

.

3 The structure of Theorem 1
⇒ The edge relation is binary, and α = 1
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Ternary, and α = 1
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Binary, and α = 1/2
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Characterization of Indepencence

.

Fact

.

.

.

. ..

.

.

Let B,C be closed and A = B ∩ C be algebraically closed. Then
the following are equivalent:

.

.

.

1 B and C are independent over A;

.

.

.

2 B and C are free over A, and BC is closed.
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Binary, and α = 1
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Triviality

.

Definition

.

.

.

. ..

.

.

A theory T is said to be trivial, if every pairwise independent set is
independent.

.

.

.

1 Hrushovski’s strongly minimal structure
⇒ The edge relation is ternary, and α = 1⇒ nontrivial

.

.

.

2 Hrushovski’s pseudoplane
⇒ The edge relation is binary, and α < 1⇒ nontrivial

.

.

.

3 The structure of Theorem 1
⇒ The edge relation is binary, and α = 1⇒ trivial
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Question

.

Question

.

.

.

. ..

. .

Is there a strictly superstable generic structure whose theory is
nontrivial?
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Answer

.

Theorem 2(I. and Kikyo)

.

.

.

. ..

.

.

There is a strictly superstable generic structure whose theory is
nontrivial.

.

Remark

.

.

.

. ..

.

.

The proof is similar to that of Theorem 1. We can construct the
following two types of generic structures:

The edge relation is terary and α = 1;

The edge relation is binary and α = 2/3.
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Ternary, and α = 1
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Binary, and α = 2/3
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