A transverse condition of definable C^rG maps

Tomohiro Kawakami

Wakayama University

November 29, 2010

Tomohiro Kawakami $(Wakayama University) {\sf A}$ transverse condition of definable $m{C^rG}$ ma

Ordered fields

 A field (R, +, ·, <) with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.

Ordered fields

A field (R, +, ·, <) with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.
(1) For any x, y, z ∈ R, if x < y, then x + z < y + z.
(2) For any x, y, z ∈ R, if x < y and z > 0, then xz < yz.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies one of the following two equivalent conditions.

Real closed fields

An ordered field (R, +, ·, <) is a *real field* if it satisfies one of the following two equivalent conditions.
(1) There do not exist x₁,..., x_n ∈ R such that x₁² + ··· + x_n² = -1.
(2) For any y₁,..., y_m ∈ R, y₁² + ··· + y_m² = 0 ⇒ y₁ = ··· = y_m = 0.

3 / 29

Real closed fields

An ordered field (R, +, ·, <) is a real field if it satisfies one of the following two equivalent conditions.
(1) There do not exist x₁,..., x_n ∈ R such that x₁² + ··· + x_n² = -1.
(2) For any y₁,..., y_m ∈ R, y₁² + ··· + y_m² = 0 ⇒ y₁ = ··· = y_m = 0. A real field (R, +, ·, <) is a real closed field if it satisfies one of the following two equivalent conditions.

Real closed fields

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies one of the following two equivalent conditions.

(1) There do not exist $x_1, \ldots, x_n \in R$ such that $x_1^2 + \cdots + x_n^2 = -1$. (2) For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0$. A real field $(R, +, \cdot, <)$ is a *real closed field* if it satisfies one of the following two equivalent conditions. (1) [Intermediate value property] For every $f(x) \in R[x]$, if a < band $f(a) \neq f(b)$, then $f([a, b]_R)$ contains $[f(a), f(b)]_R$ if

$$f(a) < f(b)$$
 or $[f(b), f(a)]_R$ if $f(b) < f(a)$, where
 $[a,b]_R = \{x \in R | a \le x \le b\}.$
(2) The ring $R[i] = R[x]/(x^2 + 1)$ is an algebraically closed field.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 (1) The field R of real numbers.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

(5) $\mathbf{R}_{an,exp} := (\mathbb{R},+,\cdot,<,(f),exp)$, where (f) and exp denote as above.

• An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means $(a, b), -\infty \le a < b \le \infty$.

- An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
 If (R, +, ·, <) is a real closed field, then it is o-minimal and the
 - collection of definable sets coincides that of semialgebraic sets.

An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.

- An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
 If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.
 - In this presentation, everything is considered in an o-minimal expansion $\mathcal{N} = (\mathbf{R}, +, \cdot, <, \dots,)$ of a real closed field $(\mathbf{R}, +, \cdot, <)$ unless otherwise stated.

• The development of o-minimality has been influenced by real analytic geometry and it is based on the following four things.

• The development of o-minimality has been influenced by real analytic geometry and it is based on the following four things.

(1) Adaptation of methods of real analytic geometry and Nash setting to the o-minimal setting.

(2) Construction of new interesting examples of o-minimal structures.(3) New insights originated from model-theoretic methods into the real analytic setting and Nash setting.

(4) O-minimal structures give a generalization, a uniform treatment and new tools.

• The field $\mathbb{R}[X]^{\wedge}$ of Puiseux series with real coefficients, namely the set of expressions $\sum_{i=k}^{\infty} a_i X^{\frac{i}{q}}, k \in \mathbb{Z}, q \in \mathbb{N}, a_i \in \mathbb{R}$. $\mathbb{R}[X]^{\wedge}$ is non-Archimedean.

7 / 29

Theorem

(1) The characteristic of every real closed field is 0.

(2) For any cardinality $\kappa \geq \aleph_0$, there exist 2^{κ} many non-isomorphic real closed fields with cardinality κ .

(3) There exists uncountably many o-minimal expansions of the field \mathbb{R} of real numbers.

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (\mathbf{R}, +, \cdot, <, \dots)$ of a real closed field \mathbf{R} .

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, ...)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0,1)_R \to X$, there exists the limit $\lim_{x \to 1-0} f(x)$ exists in X, where $[0,1)_R = \{x \in R | 0 \le x < 1\}$.

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, ...)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0,1)_R \to X$, there exists the limit $\lim_{x\to 1-0} f(x)$ exists in X, where $[0,1)_R = \{x \in R | 0 \le x < 1\}$. A definable subset X of R^n is definably connected if there do not exist two non-empty definable open subsets Y, Z of X such that $X = Y \cup Z$ and $Y \cap Z = \emptyset$. • In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, \dots)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0, 1)_R \to X$, there exists the limit $\lim_{x \to 1-0} f(x)$ exists in X, where $[0, 1)_R = \{x \in R | 0 \le x < 1\}$. A definable subset X of R^n is definably connected if there do not exist two non-empty definable open subsets Y, Z of X such that $X = Y \cup Z$ and $Y \cap Z = \emptyset$.

A compact definable set is definably compact, but a definably compact set is not necessarily compact. A connected definable set is definable connected, but a definably connected set is not necessarily connected. For example if

$$R = \mathbb{R}_{alg} := \{x \in \mathbb{R} | x \text{ is algebraic over } \mathbb{Q}\}$$
, then
 $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \le x \le 1\}$ is definably compact and definably connected but neither compact nor connected.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Definition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \ (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Definition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \ (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

Proposition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets and $f : X \to Y$ a definable map. If X is definably compact (resp. definably connected), then f(X) is definably compact (resp. definably connected).

Theorem (Intermediate value property)

For every definable function f(x) defined on [a, b] with $f(a) \neq f(b)$, $f([a, b]_R)$ contains $[f(a), f(b)]_R$ if f(a) < f(b) or $[f(b), f(a)]_R$ if f(b) < f(a).

Definition

(1) A definable subset G of \mathbb{R}^n is a definable group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable. (2) A definable group G is a definably compact definable group if G is definably compact.

Definition

(1) A definable subset G of \mathbb{R}^n is a definable group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable. (2) A definable group G is a definably compact definable group if G is definably compact.

Definition

Let G be a definably compact definable group. A group homomorphism from G to some $O_n(R)$ is a representation if it is definable, where $O_n(R)$ means the *n*th orthogonal group of R. A representation space of G is R^n with the orthogonal action induced from a representation of G. A definable G set means a G invariant definable subset of some representation space of G. • Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable sets and $f: X \to Z$ a definable map. We say that f is a definable homeomorphism if there exists a definable map $h: Z \to X$ such that $f \circ h = id_Z$ and $h \circ f = id_X$. We call f definably proper if for every definably compact subset C of Z, $f^{-1}(C)$ is definably compact.

• Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable sets and $f: X \to Z$ a definable map. We say that f is a definable homeomorphism if there exists a definable map $h: Z \to X$ such that $f \circ h = id_Z$ and $h \circ f = id_X$. We call f definably proper if for every definably compact subset C of Z, $f^{-1}(C)$ is definably compact. Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable open sets and $f: X \to Z$ a definable map. We say that f is a definable C^r map if f is of class C^r .

A definable C^r map is a definable C^r diffeomorphism if f is a C^r diffeomorphism.

Definition

(1) Let r be a non-negative integer or ∞ . A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_\lambda\}_{\lambda\in\Lambda}$ of X, finite open sets $\{V_\lambda\}_{\lambda\in\Lambda}$ of R^n , and finite homeomorphisms $\{\phi_\lambda: U_\lambda \to V_\lambda\}_{\lambda\in\Lambda}$ such that for any λ, ν with $U_\lambda \cap U_\nu \neq \emptyset$, $\phi_\lambda(U_\lambda \cap U_\nu)$ is definable and $\phi_\nu \circ \phi_\lambda^{-1}: \phi_\lambda(U_\lambda \cap U_\nu) \to \phi_\nu(U_\lambda \cap U_\nu)$ is a definable C^r diffeomorphism.

• This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^{r} coordinate system.

In the rest of this presentation, r means a positive integer unless otherwise stated.

Definition

A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

Definition

A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

Theorem

(1) Let G be a definable group. For any positive integer r, G admits a unique definable C^r group structure up to definable C^r group isomorphism.

(2) If \mathcal{N} is an o-minimal expansion of the standard structure of \mathbb{R} and it admits the C^{∞} cell decomposition, then we can take $r = \infty$ in (1).

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is a definably compact definable infinite group, then $\chi(G) = 0$.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is a definably compact definable infinite group, then $\chi(G) = 0$.

In the above theorem, the infinite condition is necessary. If G is a finite group of order k, then $\chi(G) = k$.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is a definably compact definable infinite group, then $\chi(G) = 0$.

In the above theorem, the infinite condition is necessary. If G is a finite group of order k, then $\chi(G) = k$.

Corollary

If $R = \mathbb{R}$ and G is a compact Lie group of positive dimension, then $\chi(G) = 0$.

Theorem

(1) (Definable triangulation). Let $S \subset \mathbb{R}^n$ be a definable set and S_1, \ldots, S_k definable subsets of S. Then there exist a finite simplicial complex K in \mathbb{R}^n and a definable map $\phi: S \to \mathbb{R}^n$ such that ϕ maps S and each S_i definably homeomorphically onto a union of open simplexes of K. If S is definably compact, then we can take $K = \phi(S)$. (2) (Piecewise definable trivialization). Let X and Z be definable sets and $f: X \to Z$ a definable map. Then there exist a finite partition $\{T_i\}_{i=1}^k$ of Z into definable sets and definable homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(z_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$. $(1 \leq i \leq k)$, where $z_i \in T_i$ and $p_i : T_i \times f^{-1}(z_i) \to T_i$ denotes the projection.

(3) (Existence of definable quotient). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/G exists as a definable set and the orbit map $\pi : X \to X/G$ is surjective, definable and definably proper.

Theorem

(Zeros of definable maps). Let A be a definable closed subset of \mathbb{R}^n . Then there exists a definable C^r function $f: \mathbb{R}^n \to \mathbb{R}$ such that $A = f^{-1}(0)$.

Definition

Let G be a definable C^r group. A pair (X, ϕ) consisting a definable C^r manifold and a group action ϕ is a definable C^rG manifold if $\phi: G \times X \to X$ is a definable C^r map.

• We simply write X instead of (X, ϕ) .

Tangent bundles

Definition

A definable $C^r G$ submanifold of a representation space Ω of a definable C^r group G is a G invariant definable C^r submanifold of Ω .

Tangent bundles

Definition

A definable $C^r G$ submanifold of a representation space Ω of a definable C^r group G is a G invariant definable C^r submanifold of Ω .

• Let Y be a definable $C^r G$ submanifold of an l-dimensional representation space Ω of G. For any $y \in Y$, let $T_y(Y)$ denote the tangent space of Y at y. We define the tangent bundle $T(Y) \subset R^{2l}$ as the union $\cup_{y \in Y} \{y\} \times T_y(Y)$.

Normal bundles

• Let Y be a definable C^rG submanifold of an l-dimensional representation space Ω of G. For any $y \in Y$, let $N_y(Y)$ be the orthogonal complement of the tangent space $T_y(Y)$ of Y at y with respect to the usual inner product on Ω .

Definition

We define the normal bundle $N(Y) \subset R^{2l}$ as the union $\cup_{y \in Y} \{y\} \times N_y(Y)$.

Normal bundles

• Let Y be a definable C^rG submanifold of an l-dimensional representation space Ω of G. For any $y \in Y$, let $N_y(Y)$ be the orthogonal complement of the tangent space $T_y(Y)$ of Y at y with respect to the usual inner product on Ω .

Definition

We define the normal bundle $N(Y) \subset R^{2l}$ as the union $\cup_{y \in Y} \{y\} \times N_y(Y)$.

As in kawakubo's book, the above R^{2l} is a representation space Ξ of G such that $\Omega \times \{0\}$ is G invariant and T(Y) and N(Y) are definable $C^{r-1}G$ submanifolds of Ξ .

Theorem

Let Y be a definably compact definable C^rG submanifold of a representation space Ω of G without boundary. Then there exist a G invariant definable open neighborhood V of X in Ω and a definable $C^{r-1}G$ submersion $\theta: V \to X$ such that $\theta|_X = id_X$. • A definable C^r map $f: X \to Y$ is a submersive definable C^r map if for any $x \in X$, the differential $(df)_x$ of f at x is surjective. • A definable C^r map $f: X \to Y$ is a submersive definable C^r map if for any $x \in X$, the differential $(df)_x$ of f at x is surjective.

Proposition

Let X (resp. Y) be a definable C^rG submanifold of a representation space Ω (resp. Ξ) such that Y is definably compact and without boundary, and $f: X \to Y$ a definable C^rG map. Let D be the open unit disk of Ξ . Then there exists a definable $C^{r-1}G$ map $F: X \times D \to Y$ such that F(x, 0) = f(x) and for fixed $x \in X$ the map $F_x: D \to Y$ defined by $F_x(d) = F(x, d)$ is a submersive definable $C^{r-1}G$ map. Let f: X → Y be a definable C^r map. A point x ∈ X is a critical point of f if all first derivatives of f at x are 0. If x is a critical point of f, then f(x) is a critical value of f.

Let f: X → Y be a definable C^r map. A point x ∈ X is a critical point of f if all first derivatives of f at x are 0. If x is a critical point of f, then f(x) is a critical value of f.

Theorem (Berarducci and Otero 2001)

Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ be definable C^1 manifolds and $f : X \to Y$ a definable C^1 map. Then the set of critical values of f has dimension of less than dim Y.

Let X, Y be definable C^r submanifolds of Rⁿ and Z a definable C^r submanifold of Y. A definable C^r map f : X → Y is transverse to Z if for each x ∈ X with f(x) ∈ Z, (df)_x(T_xX) + T_{f(x)}Z = T_{f(x)}Y. A definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some representation space of G.

Theorem (2010)

Let G be a definably compact definable C^r group. Let X, Y, D be affine definable C^rG manifolds such that Y and D are without boundary, and $F: X \times D \to Y$ a definable C^rG map. Suppose that Z is a definable C^rG submanifold of Y without boundary. If F and $F|\partial(X \times D)$ are transverse to Z, then for all $d \in D$ outside of a G invariant definable set of dimension $< \dim D$, f_d and $f_d|\partial X$ are transverse to Z, where $f_d: X \to Y$ is the map defined by $f_d(x) = F(x, d)$.

• Let G be a definably compact definable C^r group, X, Y definable C^rG manifolds and and $f, h: X \to Y$ definable C^rG maps. We say that f is definably C^rG homotopic to h if there exists a definable C^rG map $F: X \times [0,1]_R \to Y$ such that f(x) = F(x,0) and h(x) = F(x,1) for all $x \in X$, where the G action on $[0,1]_R = \{t \in R | 0 \le t \le 1\}$ is trivial.

• Let G be a definably compact definable C^r group, X, Y definable C^rG manifolds and and $f, h: X \to Y$ definable C^rG maps. We say that f is definably C^rG homotopic to h if there exists a definable C^rG map $F: X \times [0,1]_R \to Y$ such that f(x) = F(x,0) and h(x) = F(x,1) for all $x \in X$, where the G action on $[0,1]_R = \{t \in R | 0 \le t \le 1\}$ is trivial.

Theorem (2010)

Let G be a definably compact definable C^r group and X, Y affine definable C^rG manifolds such that Y is definably compact and without boundary. Then for every definable C^rG map $f: X \to Y$ and for every definable C^rG submanifold Z of Y, there exists a definable $C^{r-1}G$ map $h: X \to Y$ such that h is definably $C^{r-1}G$ homotopic to f and h and $h|\partial X$ are transverse to Z.

Theorem (2010)

Let $R = \mathbb{R}$ and G a compact definable C^r group. Let X, Y be affine definable C^rG manifolds such that Y is compact and without boundary. Let $f : X \to Y$ be a definable C^rG map and Z a definable C^rG submanifold of Y without boundary. If $f | \partial X$ is transverse to Y and ∂X is compact, then there exists a definable $C^{r-1}G$ map $h : X \to Y$ such that h is definably $C^{r-1}G$ homotopic to f, f = h on ∂X and h is transverse to Z.

Thank you very much.