Unsaturated Generic Structures II

Hirotaka Kikyo

Graduate School of System Informatics, Kobe University

December 1, 2010 Model Theory Meeting at RIMS

This work is in progress with Koichiro Ikeda.

For a hyper-graph structure A, let

$$\delta(\mathbf{A}) = \delta_{\alpha}(\mathbf{A}) = |\mathbf{A}| - \alpha \mathbf{e}(\mathbf{A}).$$

Here,

 α is an real number such that $0 < \alpha \le 1$, e(A) = the number of hyperedges in *A*. $\delta_{\alpha}(A)$ is called a predimension function. For a hyper-graph structure A, let

$$\delta(\mathbf{A}) = \delta_{\alpha}(\mathbf{A}) = |\mathbf{A}| - \alpha \mathbf{e}(\mathbf{A}).$$

Here,

 α is an real number such that $0 < \alpha \le 1$, e(A) = the number of hyperedges in *A*. $\delta_{\alpha}(A)$ is called a predimension function.

Suppose $A \subseteq_{\text{fin}} B$ (substructure = induced subgraph). $A \le B$ (A is B a strong substructure) if

$$A \subseteq X \subseteq_{\operatorname{fin}} B \Rightarrow \delta(A) \leq \delta(X).$$

For a hyper-graph structure A, let

$$\delta(\mathbf{A}) = \delta_{\alpha}(\mathbf{A}) = |\mathbf{A}| - \alpha \mathbf{e}(\mathbf{A}).$$

Here,

 α is an real number such that $0 < \alpha \le 1$, e(A) = the number of hyperedges in *A*. $\delta_{\alpha}(A)$ is called a predimension function.

Suppose $A \subseteq_{\text{fin}} B$ (substructure = induced subgraph). $A \le B$ (A is B a strong substructure) if

$$A \subseteq X \subseteq_{\operatorname{fin}} B \Rightarrow \delta(A) \leq \delta(X).$$

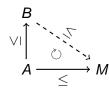
With this notation,

$$\mathbf{K}_{\alpha} = \{ \mathbf{A} : \text{finite} \, | \, \mathbf{A} \ge \emptyset \}.$$

Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$.

A countable hypergraph M is a generic structure of **K** if

- $A \subseteq_{\text{fin}} M \Rightarrow$ there exists *B* such that $A \subseteq B \subseteq_{\text{fin}} M$ and $B \leq M$;
- $A \subset_{\text{fin}} M \Rightarrow A \in \mathbf{K};$
- for any *A*, *B* ∈ **K**,

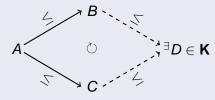


Fact

Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$. If $\emptyset \in \mathbf{K}$, $A \subset B \in \mathbf{K} \Rightarrow A \in \mathbf{K}$

and K has the AP, defined below, K has a generic structure.

For any $A, B, C \in \mathbf{K}$,



Question 1

Is there any *ab initio* generic structure which is not saturated? Is there any *ab initio* generic structure which is superstable but not ω -stable?

Question 1

Is there any *ab initio* generic structure which is not saturated? Is there any *ab initio* generic structure which is superstable but not ω -stable?

Theorem (Koichiro Ikeda)

For the predimension function with $\alpha = 1$, there is an unsaturated generic structure which is superstable but not ω -stable.

Question 1

Is there any *ab initio* generic structure which is not saturated? Is there any *ab initio* generic structure which is superstable but not ω -stable?

Theorem (Koichiro Ikeda)

For the predimension function with $\alpha = 1$, there is an unsaturated generic structure which is superstable but not ω -stable.

Question 2

For the predimension functions with α such that $0 < \alpha < 1$, Is there any *ab initio* generic structure which is not saturated? Is there any *ab initio* generic structure which is superstable but not ω -stable?

Definition (special s-component)

Suppose $1 \le s < 2$. A triple (E, a, b) with $a, b \in E$ is a special s-component if

for any substructure X of E such that 1 < |X| < |E|,

- 2 $\delta(X) > s$ if $a, b \in X$, and
- $(\mathbf{E}) = \mathbf{s}.$

Definition (special s-component)

Suppose $1 \le s < 2$. A triple (E, a, b) with $a, b \in E$ is a special *s*-component if for any substructure X of E such that 1 < |X| < |E|, $\delta(X) > 1$ if $a \notin X$ or $b \notin X$, $\delta(X) > s$ if $a, b \in X$, and $\delta(E) = s$.

When $\delta(X) = |X| - e(X)$, • • is a 1-component, and • is a

0-component.

Definition (special s-component)

Suppose $1 \le s < 2$. A triple (E, a, b) with $a, b \in E$ is a special *s*-component if

for any substructure X of E such that 1 < |X| < |E|,

2
$$\delta(X) > s$$
 if $a, b \in X$, and

Proposition (K.)

If $\delta(X) = |X| - \alpha e(X)$ with a rational number α satisfying $0 < \alpha < 1$ then there is a special 1-component in \mathbf{K}_{α} . If *A* is a special 1-component then there is another special 1-component *B* such that |B| > |A|. Note that *A* cannot be embedded in *B* and *B* cannot be ebedded in *A*.

D-Cycles

Let *D* be a finite set of finite hypergraphs. Suppose that there are hypergraphs $A_1, A_2, ..., A_n$ and points $a_{i-1}, a_i \in A_i$ such that (A_i, a_{i-1}, a_i) is isomorphic to some element of *D* for each *i*, and

$$X = A_1 \oplus_{a_1} A_2 \oplus_{a_2} \cdots \oplus_{a_{n-1}} A_n.$$

With such X, if we can write

$$C = X/(a_0 = a_n)$$

then we call C a D-cycle. n is called the length of the D-cycle.

Suppose $0 < \alpha < 1$. Choose minimal 1-components (A, a, b), (B, c, d) such that they cannot be embedded mutually. Let **K**₀ be the class of $\{(A, a, b), (B, c, d)\}$ -cycles with length greater than e(A) and e(B). Let **K**₁ := $\{A | A \subset {}^{\exists}B \in K_0\}$ and **K**₂ be the

smallest class with the *thrifty* amalgamation property containing K_1 .

Thrifty Amalgamation

A class **K** has the thrifty amalgamation property if $A, B, C \in \mathbf{K}, A \leq B, A \leq C, B$ is minimal over $A \Rightarrow B$ is strongly embedded in *C* over *A*, or

 $B \oplus_A C \in \mathbf{K}.$

Theorem (Ikeda, K.)

The generic structure of \mathbf{K}_2 is unsaturated, superstable, but not ω -stable.

Remark

In the case $\alpha = 1$, lkeda constructed ab initio generic structure with a strictly superstable theory. In this case, a minimal 1-component is unique.

We can replace each edge of Ikeda's "Jelly fishes" by a 1-component for $\alpha < 1$, but this approach does not work well.