Independent partitions and indiscernibility

Akito Tsuboi

University of Tsukuba

Kyoto RIMS, 2010 November 29

Outline

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Simplicity and Independent Partitions,

- 1 Definitions
- 2 Examples
- 2 Ranks
 - 1 $D(\Sigma, \varphi, k)$
 - $\begin{array}{c} \mathbf{2} \quad D(\Sigma,\varphi) \\ \end{array}$
 - $3 D_{inp}$
- 3 Main Result

▲□▶▲□▶▲□▶▲□▶ ■ のへで

T is a complete theory formulated in L.

ション 小田 マイビット ビー シックション

T is a complete theory formulated in *L*. We work in a very saturated *M* ⊨ *T*.

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- **I**, J are sequences of tuples in \mathcal{M} .

ション 小田 マイビット ビー シックション

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- **I**, J are sequences of tuples in \mathcal{M} .
- $\blacksquare M, N, \dots \prec \mathcal{M}.$

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- **I**, J are sequences of tuples in \mathcal{M} .
- $\blacksquare M, N, \dots \prec \mathcal{M}.$
- Formulas are denoted by φ, ψ, \dots

- **T** is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- **a**, b, ... are (finite) tuples in \mathcal{M} .
- A, B, \dots are small sets in \mathcal{M} .
- **I**, J are sequences of tuples in \mathcal{M} .
- $\blacksquare M, N, \dots \prec \mathcal{M}.$
- Formulas are denoted by φ, ψ, \dots
- \blacksquare *m*, *n*, *k*, ... are natural numbers.

A simple theory is characterized as a theory in which the length of dividing sequence of types is bounded (< ∞).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Low Theory

A low theory is characterized by the following property: For each formula $\varphi(x, y)$ there is a number $n_{\varphi} \in \omega$ such that whenever $\{\varphi(x, a_i) : i < m\}$ satisfies

1 { $\varphi(x, a_i)$: i < m} is consistent, and

2 $\varphi(x, a_i)$ divides over $A_i = \{a_j : j < i\} (i < m)$, then $m \le n_{\varphi}$.

ション 小田 マイビット ビー シックション

Independent partitions and indiscernibility

Non-Low Simple Theory

Casanovas constructed a simple nonlow theory $T_1 = Th(M, P, P_1, P_2, ..., Q, R)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

1 M is the disjoint union of P and Q.

M is the disjoint union of *P* and *Q*. *P*₁, *P*₂, ... are disjoint copies of ω.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- **1** M is the disjoint union of P and Q.
- **2** P_1 , P_2 , ... are disjoint copies of ω .
- **3** $P = \bigcup_{i \in \omega} P_i \cup G$, where *G* is a random graph.

- **1** M is the disjoint union of P and Q.
- **2** P_1 , P_2 , ... are disjoint copies of ω .
- **3** $P = \bigcup_{i \in \omega} P_i \cup G$, where G is a random graph.
- 4 Q is the set of all sequences $(A_1, A_2, ..., A_{\omega})$, where A_n is an *n*-elment subset of P_n and for some $a \in G$, $A_{\omega} \subset G$ is the set of all $g \in G$ directly connected to a.

- **1** M is the disjoint union of P and Q.
- **2** P_1 , P_2 , ... are disjoint copies of ω .
- **3** $P = \bigcup_{i \in \omega} P_i \cup G$, where G is a random graph.
- 4 *Q* is the set of all sequences $(A_1, A_2, ..., A_ω)$, where A_n is an *n*-elment subset of P_n and for some *a* ∈ *G*, $A_ω ⊂ G$ is the set of all *g* ∈ *G* directly connected to *a*.
- $\mathbf{S} \ \mathbf{R} \subset \mathbf{P} \times \mathbf{Q}.$
- **6** $R(a, (A_1, A_2, ..., A_{\omega}))$ if (i) $a \in P_n$ and $a \in A_n$ $(\exists n \in \omega)$ or (ii) $a \notin \bigcup_n P_n$ and $a \in A_{\omega}$.

This theory T_1 is not supersimple. R(x, y) defines infinitely many mutually independent partitions in the following sense: If we enumerate P_n as $P_n = \{a_{nm} : m \in \omega\}$, then

This theory T_1 is not supersimple. R(x, y) defines infinitely many mutually independent partitions in the following sense: If we enumerate P_n as $P_n = \{a_{nm} : m \in \omega\}$, then

- for each $\eta \in \omega^{\omega}$, { $R(a_{n\eta(n)}, y) : n = 1, 2, ...$ } is consistent, and
- for each $n = 1, 2, ..., \{R(a_{nm}, y) : m \in \omega\}$ is (n + 1)-inconsistent.

Non-Low Supersimple Theory

By modifying T_1 , Casanovas and Kim showed the existence of a supersimple nonlow theory T_2 . This T_2 does not have infinitely many mutually independent partitions.

Non-Low Supersimple Theory

By modifying T_1 , Casanovas and Kim showed the existence of a supersimple nonlow theory T_2 . This T_2 does not have infinitely many mutually independent partitions.

However, for each $k \in \omega$, we can find a formula $\varphi(x, y)$ and parameter sets $A_i = \{a_{ij} : j \in \omega\}$ (i < k) defining k independent partitions. Independent partitions and indiscernibility

 $D_{\rm inp}(*, *)$

Definition

 $D_{inp}(\Sigma(x), \varphi(x, y))$ is the first cardinal κ such that there are no κ -many independent partitions $\{\varphi(x, a_{ij}) : j \in \omega\} \ (i < \kappa) \text{ of } \Sigma.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Remark

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

So it is natural to ask whether there is a simple nonlow theory T such that

$$D_{inp}(x = x, \varphi(x, y)) < \omega,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for any φ .

First we recall definitions of basic ranks. Let $\Sigma(x)$ be a set of formulas and $\varphi(x, y)$ a formula. Let $k \in \omega$.

Definition

$D(\Sigma(x),\varphi(x,y),\mathbf{k})$

D(Σ(x), φ(x, y), k) ≥ 0 if Σ(x) is consistent.
 D(Σ(x), φ(x, y), k) ≥ n + 1 if there is an indiscernible sequence {b_i : i ∈ ω} over dom(Σ) such that D(Σ(x) ∪ {φ(x, b_i)}, φ(x, y), k) ≥ n for all i ∈ ω, and {φ(x, b_i) : i ∈ ω} is k-inconsistent.

Definition

2

D($\Sigma(x), \varphi(x, y)$) ≥ 0 if $\Sigma(x)$ is consistent.

- For a limit ordinal δ , $D(\Sigma(x), \varphi(x, y)) \ge \delta$ if $D(\Sigma(x), \varphi(x, y)) \ge \alpha$ for all $\alpha < \delta$.
- $D(\Sigma(x), \varphi(x, y)) \ge \alpha + 1$ if there is an indiscernible sequence $\{b_i : i \in \omega\}$ over $dom(\Sigma)$ such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi(x, y)) \ge \alpha$ ($i \in \omega$), and $\{\varphi(x, b_i) : i \in \omega\}$ is inconsistent.

Fact

1 $D(\Sigma(x), \varphi(x, y), k) \ge n$ if there is a tree $A = \{a_v : v \in \omega^{\le n}\}$ such that (1) $\Sigma(x) \cup \{\varphi(x, a_{\eta|i}) : 1 \le i \le n\}$ is consistent $(\forall \eta \in \omega^n)$, and (2) $\{\varphi(x, a_{v \frown i}) : i \in \omega\}$ is *k*-inconsistent $(\forall v \in \omega^{\le n})$.

・ロト・日本・日本・日本・日本・日本

Fact

2 $D(\Sigma(x), \varphi(x, y)) \ge n$ if there is a tree $A = \{a_{\nu} : \nu \in \omega^{\le n}\}$ and numbers $k_0, ..., k_{n-1}$ such that $(1) \Sigma(x) \cup \{\varphi(x, a_{\eta|i}) : 1 \le i \le n\}$ is consistent $(\forall \eta \in \omega^n)$, and (2) $\{\varphi(x, a_{\nu} \widehat{}_i) : i \in \omega\}$ is $k_{\mathrm{lh}(\nu)}$ -inconsistent $(\forall \nu \in \omega^{\le n})$.

・ロト・西ト・ヨト・ヨー シック

Main Result

Theorem

Suppose that the size of independent partitions is bounded in T. Then the following are equivalent:

- **1** T is simple.
- **2** T is low.

Proposition

Suppose
$$D_{inp}(x = x, \varphi(x, y)) = k - 1 < \omega$$
 and $D(x = x, \varphi(x, y)) \ge \omega$. Then *T* is not simple.

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Proof.

Fix $m \in \omega$.

By $D(x = x, \varphi(x, y)) \ge \omega$, there is a set $A = \{a_v : v \in \omega^{\le m}\}$ witnessing $D(x = x, \varphi(x, y)) \ge m$.

Proof.

Fix $m \in \omega$.

By $D(x = x, \varphi(x, y)) \ge \omega$, there is a set $A = \{a_v : v \in \omega^{\le m}\}$ witnessing $D(x = x, \varphi(x, y)) \ge m$.

We have

 {φ(x, a_{η|i}) : 1 ≤ i ≤ m} is consistent (∀η ∈ ω^m),
 {φ(x, a_ν-_i) : i ∈ ω} is k_{lh(ν)}-inconsistent (∀ν ∈ ω^{<m}).

Independent partitions and indiscernibility

We can assume that A is an indiscernible tree.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Independent partitions and indiscernibility

We can assume that A is an indiscernible tree.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

For v ∈ ω^m, let v* be the sequence v(0), 0^k, v(1), 0^k, ..., v(lh(v) − 1), 0^k. For v = v₀ m, let

$$a_{\nu}^{+} = a_{\nu_{0}} a_$$

- Let $\varphi^*(x, y_1, ..., y_k)$ be the formula $\varphi(x, y_1) \land \ldots \land \varphi(x, y_k)$.
- Claim A { $\varphi^*(x, a^*_{v_0 \frown m})$: $m \in \omega$ } is *k*-inconsistent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Let $\varphi^*(x, y_1, ..., y_k)$ be the formula $\varphi(x, y_1) \land \ldots \land \varphi(x, y_k)$.
- Claim A { $\varphi^*(x, a^*_{v_0 \frown m})$: $m \in \omega$ } is *k*-inconsistent.

Suppose this is not the case. Then there is $F = \{i_1, ..., i_k\} \subset \omega$ such that

$$\{\varphi^*(x, a^*_{v_0 \widehat{i_1}}), ..., \varphi^*(x, a^*_{v_0 \widehat{i_k}})\}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

is consistent.

By the definition of φ^{*}, in particular, the following set is consistent.

$$\{\varphi(x, a_{v_0^* \frown i_1 \frown 0}), ..., \varphi(x, a_{v_0^* \frown i_k \frown 0^k})\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

By the definition of φ^{*}, in particular, the following set is consistent.

$$\{\varphi(x, a_{v_0^* \frown i_1} \frown 0), ..., \varphi(x, a_{v_0^* \frown i_k} \frown 0^k)\}$$

For each v of length k, let Γ_v be the set:

$$\{\varphi(x, a_{v_0^*} \hat{a}_1 \hat{v}_{(1)}), ..., \varphi(x, a_{v_0^*} \hat{a}_k \hat{v}_{(0^{k-1}} \hat{v}_{(k)})\}.$$

Then each Γ_{ν} is consistent, by the indiscernibility of *A*.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

- Then each Γ_{ν} is consistent, by the indiscernibility of *A*.
- On the other hand, by our choice of the tree A, for each l = 0, ..., k 1, the set

$$\{\varphi(x, a^*_{v_0 \frown i_2 \frown 0^l} \frown i) : i \in \omega\}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

is inconsistent ($k_{lh(\nu_0)+(1+l)}$ -inconsistent).

- Then each Γ_{ν} is consistent, by the indiscernibility of *A*.
- On the other hand, by our choice of the tree A, for each l = 0, ..., k 1, the set

$$\{\varphi(x, a^*_{v_0 \frown i_2 \frown 0^l \frown i}) : i \in \omega\}$$

is inconsistent ($k_{lh(v_0)+(1+l)}$ -inconsistent).

This yields $D_{inp}(x = x, \varphi(x, z)) \ge k$, a contradiction. (End of Proof of Claim)

By Claim A, the set $\{\varphi^*(x, a^*_{\nu}) : \nu \in \omega^m\}$ witnesses $D(x = x, \varphi^*, k) \ge m$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- By Claim A, the set $\{\varphi^*(x, a^*_{\nu}) : \nu \in \omega^m\}$ witnesses $D(x = x, \varphi^*, k) \ge m$.
- Since *m* is arbitrary, we conclude $D(x = x, \varphi^*, k) = \infty$, which means that *T* is not simple.