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Settings

T is a complete theory formulated in L.
We work in a very saturated M [ T.
a, b, ... are (finite) tuples in M.

A, B, ... are small sets in M.

|, J are sequences of tuples in M.

M, N, ... < M.

Formulas are denoted by ¢, ¢,...

m, n, K, ... are natural numbers.
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Simple Theory

A simple theory is characterized as a theory in
which the length of dividing sequence of types is
bounded (< o).
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Low Theory

A low theory is characterized by the following
property: For each formula ¢(X, y) there is a
number n, € w such that whenever
{o(X, &) : i < m} satisfies

{o(X, &) : i < m}is consistent, and

@(X, &) divides over Aj = {a; : j < i} (i < m),
then m < n,.
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Non-Low Simple Theory

Casanovas constructed a simple nonlow theory
T, = Th(M, P, Py, Py, ..., Q, R).
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M is the disjoint union of P and Q.

P1, Py, ... are disjoint copies of w.

P = Uie, Pi VU G, where G is a random graph.

Q is the set of all sequences (A1, Az, ..., Ay),
where A, is an n-elment subset of P, and for
someae G, A, cGisthesetofallge G
directly connected to a.

Rc PxQ.

B R(a (A, Ay ..., Ay)) if () a€e Poand a € A,
(Anew)or(i)a¢ U,Prnand ae A,.
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This theory T, is not supersimple. R(X, y) defines
infinitely many mutually independent partitions in
the following sense: If we enumerate P, as
Pn = {anm . M € w}, then
m for each n € w®, {R(an;mn), y) : N=1,2,...}is
consistent, and
m foreachn=12,.. {R(@my) : me w}is
(n + 1)-inconsistent.
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Non-Low Supersimple Theory

By modifying T, Casanovas and Kim showed the
existence of a supersimple nonlow theory T,. This
T, does not have infinitely many mutually
independent partitions.

However, for each k € w, we can find a formula
¢(X, y) and parameter sets A; = {ajj : ] € w}
(i < k) defining k independent partitions.
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Definition
Dinp (Z(X), (X, ¥)) is the first cardinal « such that
there are no k-many independent partitions

{p(X, &j) : | € w} (i <«)of Z.
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m For T1, Dinp(X = X, R(Y, X)) = w;.
m For T, for some ¢(X, Y),
Dinp(X = X, ‘P(Xa y)) = w.
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So it is natural to ask whether there is a simple
nonlow theory T such that

Dinp(x =X QD(X, y)) < w,

for any ¢.
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First we recall definitions of basic ranks.
Let X(X) be a set of formulas and ¢(X, y) a formula.
Let kK € w.
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D(E(x), ¢(X, y), k)
m D(Z(X), (X, Y), K) > 0if X(X) is consistent.

m D(Z(X), (X, Y), K) = n+ 1if thereis an
indiscernible sequendd; : i € w} overdom(X)
such thatD(X(x) U {e(X, b))}, ¢(X, y), k) = nfor all
I € w, and{e(Xx, by) : | € w} is k-inconsistent.
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Definition

B D(Z(x),¢(X,y)) = 0if X(x) is consistent.
m For a limit ordinald, D(Z(X), ¢(X, y)) = ¢ if
D(Z(x), (X, y)) = a for all @ < 4.
m D(Z(x),¢(X,y)) = a + 1if there is an indiscernible
sequencgb; : i € w} overdom(X) such that
D(E(x) U {o(x, bi)}, o(X, ) 2 @ (i € w), and
{o(X, b) : | € w}isinconsistent.
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D(X(x), ¢(X, y), k) > nif there is a tree
A = {a, : v € ="} such that (1)
X(X) U {p(X, ayi) : 1 < i < n}is consistent
(Vn € w"), and (2) {p(X,a,~i) : | € w}is
k-inconsistent (Yv € w<").
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D(X(x), ¢(X, y)) = nif there is a tree
A = {a, : v € ="} and numbers Ko, ..., Kn-1

such that (1) Z(X) U {e(X, ayi) : 1 < i < n}is
consistent (Yn € w"), and (2)

{o(X, &) : | € w} is kinpy-inconsistent

(Vv € w=<").
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Main Result

Suppose that the size of independent partitions is
bounded in T. Then the following are equivalent:

T is simple.
T is low.
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Suppose Dinp(X = X, (X, Y)) = k-1 < w and
D(X = X,¢(X,Y)) = w. Then T is not simple.
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m By D(X = X, ¢(X,¥)) = w, there is a set
A = {a, : v € ©*™} witnessing
D(X = %, ¢(X,y)) 2 m.
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Fix me w.

m By D(X = X, ¢(X,¥)) = w, there is a set
A = {a, : v € ©*™} witnessing
D(x = X, 0(X,y)) 2 m.
m We have
{o(x,ay) : 1 < i < m}is consistent (Yn € ™),
{o(X, a,~) : | € w}is Kin)-inconsistent
(Vv € <M.
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m Forv € w™, let v* be the sequence
¥(0), 0%, (1), 0, ..., v(Ih(v) — 1), OK.
m Forv =vy m, let

* — — —— — — —_— —
a,, = Qyp* M0y Qyg* 029 seey Bygr~p0ke
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m Let ¢*(X, Y1, ..., Yk) be the formula
‘P(X’ yl) Aot A QD(X, yk)
m Claim A {p*(X, a: Am) ' ME€E w}is
0
k-inconsistent.
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m Let ¢*(X, Y1, ..., Yk) be the formula
‘P(X’ yl) Aot A QD(X, yk)

m Claim A {p*(X, a: Am) ' ME€E w}is
0
k-inconsistent.

Suppose this is not the case. Then there is
F ={i1,..., 1k} C w such that

(@68 )’ (%8 )
0 0 k

11

IS consistent.
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m By the definition of ¢*, in particular, the
following set is consistent.

{‘P(X’ aV;Ai1A0)9 ssey QD(X’ aV;AikAOk)}

m For each v of length k, let I', be the set:

{‘P(X’ av(’;’"il’“v(l)), ) ‘P(X’ avg"ik"ok‘l’“v(k)}-
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m On the other hand, by our choice of the tree
A, foreach | = 0,..., k — 1, the set

{(P(X’ a*VoAizAOIAi) I e (1)}

is inconsistent (Kin(yy)+(1+1)-inconsistent).
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m Then each T, is consistent, by the
indiscernibility of A.

m On the other hand, by our choice of the tree
A, foreach | = 0,..., k — 1, the set
{(P(X’ a*VoAizAOIAi) I e (1)}

is inconsistent (Kin(yy)+(1+1)-inconsistent).
m This yields Dinp(X = X, (X, 2)) > Kk, a
contradiction. (End of Proof of Claim)
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m By Claim A, the set {¢*(X,a*,) : v € ©"}
witnesses D(X = X, ¢*, k) > m.
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m By Claim A, the set {¢*(X,a*,) : v € ©"}
witnesses D(X = X, ¢*, k) > m.

m Since mis arbitrary, we conclude
D(X = X, ¢*, K) = oo, which means that T is
not simple.



