Independent partitions and indiscernibility

Akito Tsuboi

University of Tsukuba

Kyoto RIMS, 2010
November 29

Outline

1 Simplicity and Independent Partitions,

1 Definitions
2 Examples
2 Ranks
$1 D(\Sigma, \varphi, k)$
$2 D(\Sigma, \varphi)$
$3 D_{\text {inp }}$
3 Main Result

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.
$■$ We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

- We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in \boldsymbol{M}.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

- We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in \boldsymbol{M}.
$\square \boldsymbol{A}, \boldsymbol{B}, \ldots$ are small sets in \boldsymbol{M}.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

- We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in \boldsymbol{M}.
■ $\boldsymbol{A}, \boldsymbol{B}, \ldots$ are small sets in \boldsymbol{M}.
$■ \boldsymbol{I}, \boldsymbol{J}$ are sequences of tuples in $\boldsymbol{\mathcal { M }}$.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

- We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in \boldsymbol{M}.
$\square \boldsymbol{A}, \boldsymbol{B}, \ldots$ are small sets in \boldsymbol{M}.
$■ \boldsymbol{I}, \boldsymbol{J}$ are sequences of tuples in $\boldsymbol{\mathcal { M }}$.
$\square M, N, \ldots<M$.

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.
\square We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in \boldsymbol{M}.
$\square \boldsymbol{A}, \boldsymbol{B}, \ldots$ are small sets in \boldsymbol{M}.
$■ \boldsymbol{I}, \boldsymbol{J}$ are sequences of tuples in $\boldsymbol{\mathcal { M }}$.
■ $M, N, \ldots<M$.
■ Formulas are denoted by φ, ψ, \ldots

Settings

$\square \boldsymbol{T}$ is a complete theory formulated in \boldsymbol{L}.

- We work in a very saturated $\boldsymbol{\mathcal { M }} \vDash \boldsymbol{T}$.
$\square \boldsymbol{a}, \boldsymbol{b}, \ldots$ are (finite) tuples in $\boldsymbol{\mathcal { M }}$.
$■ \boldsymbol{A}, \boldsymbol{B}, \ldots$ are small sets in \boldsymbol{M}.
$■ \boldsymbol{I}, \boldsymbol{J}$ are sequences of tuples in $\boldsymbol{\mathcal { M }}$.
■ $M, N, \ldots<M$.
■ Formulas are denoted by φ, ψ, \ldots
$\square m, n, k, \ldots$ are natural numbers.

Simple Theory

A simple theory is characterized as a theory in which the length of dividing sequence of types is bounded $(<\infty)$.

Low Theory

A low theory is characterized by the following property: For each formula $\varphi(x, y)$ there is a number $n_{\varphi} \in \omega$ such that whenever $\left\{\varphi\left(x, a_{i}\right): i<m\right\}$ satisfies
$1\left\{\varphi\left(x, a_{i}\right): i<m\right\}$ is consistent, and
2 $\varphi\left(x, a_{i}\right)$ divides over $A_{i}=\left\{a_{j}: j<i\right\}(i<m)$, then $\boldsymbol{m} \leq \boldsymbol{n}_{\boldsymbol{\varphi}}$.

Non-Low Simple Theory

Casanovas constructed a simple nonlow theory $T_{1}=\boldsymbol{T h}\left(M, P, P_{1}, P_{2}, \ldots, Q, R\right)$.

II \boldsymbol{M} is the disjoint union of \boldsymbol{P} and \boldsymbol{Q}.

$1 \boldsymbol{M}$ is the disjoint union of \boldsymbol{P} and \boldsymbol{Q}.

${ }_{2} \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ are disjoint copies of ω.

$1 \boldsymbol{M}$ is the disjoint union of \boldsymbol{P} and \boldsymbol{Q}.

${ }_{2} \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ are disjoint copies of ω.
${ }_{\boldsymbol{3}} \boldsymbol{P}=\bigcup_{i \in \omega} \boldsymbol{P}_{i} \cup \boldsymbol{G}$, where \boldsymbol{G} is a random graph.
$1 \boldsymbol{M}$ is the disjoint union of \boldsymbol{P} and \boldsymbol{Q}.
${ }_{2} \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ are disjoint copies of ω.
${ }_{3} \boldsymbol{P}=\bigcup_{i \in \omega} \boldsymbol{P}_{i} \cup \boldsymbol{G}$, where \boldsymbol{G} is a random graph.
$4 Q$ is the set of all sequences $\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{\omega}\right)$, where $\boldsymbol{A}_{\boldsymbol{n}}$ is an \boldsymbol{n}-elment subset of $\boldsymbol{P}_{\boldsymbol{n}}$ and for some $\boldsymbol{a} \in \boldsymbol{G}, \boldsymbol{A}_{\omega} \subset \boldsymbol{G}$ is the set of all $\boldsymbol{g} \in \boldsymbol{G}$ directly connected to \boldsymbol{a}.
$1 \boldsymbol{M}$ is the disjoint union of \boldsymbol{P} and \boldsymbol{Q}.
$\square \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ are disjoint copies of ω.
${ }_{3} \boldsymbol{P}=\bigcup_{i \in \omega} \boldsymbol{P}_{i} \cup \boldsymbol{G}$, where \boldsymbol{G} is a random graph.
${ }_{4} Q$ is the set of all sequences $\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{\omega}\right)$, where $\boldsymbol{A}_{\boldsymbol{n}}$ is an \boldsymbol{n}-elment subset of $\boldsymbol{P}_{\boldsymbol{n}}$ and for some $\boldsymbol{a} \in \boldsymbol{G}, \boldsymbol{A}_{\omega} \subset \boldsymbol{G}$ is the set of all $\boldsymbol{g} \in \boldsymbol{G}$ directly connected to \boldsymbol{a}.
5 $R \subset P \times Q$.
6 $R\left(a,\left(A_{1}, A_{2}, \ldots, A_{\omega}\right)\right)$ if (i) $a \in P_{n}$ and $a \in A_{n}$ ($\exists \boldsymbol{n} \in \omega$) or (ii) $\boldsymbol{a} \notin \bigcup_{n} P_{n}$ and $\boldsymbol{a} \in \boldsymbol{A}_{\omega}$.

This theory $\boldsymbol{T}_{\mathbf{1}}$ is not supersimple. $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$ defines infinitely many mutually independent partitions in the following sense: If we enumerate $\boldsymbol{P}_{\boldsymbol{n}}$ as
$P_{n}=\left\{a_{n m}: m \in \omega\right\}$, then

This theory $\boldsymbol{T}_{\mathbf{1}}$ is not supersimple. $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$ defines infinitely many mutually independent partitions in the following sense: If we enumerate $\boldsymbol{P}_{\boldsymbol{n}}$ as
$P_{n}=\left\{a_{n m}: m \in \omega\right\}$, then
\square for each $\eta \in \omega^{\omega},\left\{R\left(a_{n \eta(n)}, y\right): n=1,2, \ldots\right\}$ is consistent, and
\square for each $n=1,2, \ldots,\left\{R\left(a_{n m}, y\right): m \in \omega\right\}$ is $(n+1)$-inconsistent.

Non-Low Supersimple Theory

By modifying $\boldsymbol{T}_{\mathbf{1}}$, Casanovas and Kim showed the existence of a supersimple nonlow theory \boldsymbol{T}_{2}. This \boldsymbol{T}_{2} does not have infinitely many mutually independent partitions.

Non-Low Supersimple Theory

By modifying $\boldsymbol{T}_{\mathbf{1}}$, Casanovas and Kim showed the existence of a supersimple nonlow theory \boldsymbol{T}_{2}. This \boldsymbol{T}_{2} does not have infinitely many mutually independent partitions.
However, for each $\boldsymbol{k} \in \omega$, we can find a formula $\varphi(x, y)$ and parameter sets $A_{i}=\left\{a_{i j}: j \in \omega\right\}$
$(i<k)$ defining k independent partitions.

$D_{\mathrm{inp}}(*, *)$

Definition

$D_{\text {inp }}(\Sigma(x), \varphi(x, y))$ is the first cardinal κ such that there are no κ-many independent partitions $\left\{\varphi\left(x, a_{i j}\right): j \in \omega\right\}(i<\kappa)$ of Σ.

Remark

\square For $\boldsymbol{T}_{1}, D_{\text {inp }}(x=x, R(y, x))=\omega_{1}$.
\square For T_{2}, for some $\varphi(x, y)$,

$$
D_{\text {inp }}(x=x, \varphi(x, y))=\omega .
$$

So it is natural to ask whether there is a simple nonlow theory \boldsymbol{T} such that

$$
D_{\text {inp }}(x=x, \varphi(x, y))<\omega
$$

for any φ.

Ranks

First we recall definitions of basic ranks. Let $\Sigma(x)$ be a set of formulas and $\varphi(x, y)$ a formula. Let $\boldsymbol{k} \in \omega$.

Definition

$D(\Sigma(x), \varphi(x, y), k)$
$1 \square D(\Sigma(x), \varphi(x, y), k) \geq 0$ if $\Sigma(x)$ is consistent.
■ $D(\Sigma(x), \varphi(x, y), k) \geq n+1$ if there is an indiscernible sequence $\left\{b_{i}: i \in \omega\right\}$ over $\operatorname{dom}(\Sigma)$ such that $D\left(\Sigma(x) \cup\left\{\varphi\left(x, b_{i}\right)\right\}, \varphi(x, y), k\right) \geq n$ for all $i \in \omega$, and $\left\{\varphi\left(\boldsymbol{x}, \boldsymbol{b}_{\boldsymbol{i}}\right): \boldsymbol{i} \in \omega\right\}$ is \boldsymbol{k}-inconsistent.

Definition

$2 \square D(\Sigma(x), \varphi(x, y)) \geq 0$ if $\Sigma(x)$ is consistent.
■ For a limit ordinal $\delta, D(\Sigma(x), \varphi(x, y)) \geq \delta$ if $D(\Sigma(x), \varphi(x, y)) \geq \alpha$ for all $\alpha<\delta$.
$\square D(\Sigma(x), \varphi(x, y)) \geq \alpha+1$ if there is an indiscernible sequence $\left\{\boldsymbol{b}_{i}: i \in \omega\right\}$ over $\operatorname{dom}(\boldsymbol{\Sigma})$ such that $D\left(\Sigma(x) \cup\left\{\varphi\left(x, b_{i}\right)\right\}, \varphi(x, y)\right) \geq \alpha(i \in \omega)$, and $\left\{\varphi\left(x, b_{i}\right): i \in \omega\right\}$ is inconsistent.

Fact

$1 . D(\Sigma(x), \varphi(x, y), k) \geq n$ if there is a tree $A=\left\{a_{v}: v \in \omega^{\leq n}\right\}$ such that (1) $\Sigma(x) \cup\left\{\varphi\left(x, a_{\eta \mid i}\right): 1 \leq i \leq n\right\}$ is consistent ($\forall \eta \in \omega^{n}$), and (2) $\left\{\varphi\left(x, a_{v} \sim i\right): i \in \omega\right\}$ is k-inconsistent $\left(\forall v \in \omega^{<n}\right)$.

Fact

2. $D(\Sigma(x), \varphi(x, y)) \geq n$ if there is a tree $A=\left\{a_{v}: v \in \omega^{\leq n}\right\}$ and numbers k_{0}, \ldots, k_{n-1} such that (1) $\Sigma(x) \cup\left\{\varphi\left(x, a_{\eta \mid i}\right): \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$ is consistent $\left(\forall \eta \in \omega^{n}\right)$, and (2)
$\left\{\varphi\left(x, a_{v \sim i}\right): i \in \omega\right\}$ is $k_{\operatorname{lh}(v)}$-inconsistent $\left(\forall v \in \omega^{<n}\right)$.

Main Result

Theorem

Suppose that the size of independent partitions is bounded in \boldsymbol{T}. Then the following are equivalent:
$1 T$ is simple.
$2 T$ is low.

Proposition

Suppose $D_{\text {inp }}(x=x, \varphi(x, y))=k-1<\omega$ and $\boldsymbol{D}(\boldsymbol{x}=\boldsymbol{x}, \varphi(x, y)) \geq \omega$. Then \boldsymbol{T} is not simple.

Proof.

Fix $\boldsymbol{m} \in \omega$.
\square By $D(x=x, \varphi(x, y)) \geq \omega$, there is a set

$$
A=\left\{a_{v}: v \in \omega^{\leq m}\right\} \text { witnessing }
$$

$$
D(x=x, \varphi(x, y)) \geq m
$$

Proof.

Fix $\boldsymbol{m} \in \omega$.
\square By $D(x=x, \varphi(x, y)) \geq \omega$, there is a set $A=\left\{a_{v}: v \in \omega^{\leq m}\right\}$ witnessing $D(x=x, \varphi(x, y)) \geq m$.
■ We have
$1\left\{\varphi\left(x, a_{\eta \mid i}\right): 1 \leq i \leq m\right\}$ is consistent $\left(\forall \eta \in \omega^{m}\right)$,
$2\left\{\varphi\left(x, a_{v-i}\right): i \in \omega\right\}$ is $k_{\mathbf{l h}(v)}$-inconsistent $\left(\forall v \in \omega^{<m}\right)$.

\square We can assume that \boldsymbol{A} is an indiscernible tree.

\square We can assume that \boldsymbol{A} is an indiscernible tree.

$■$ For $v \in \omega^{m}$, let v^{*} be the sequence

$$
v(\mathbf{0}), 0^{k}, v(\mathbf{1}), 0^{k}, \ldots, v(\operatorname{lh}(v)-1), 0^{k}
$$

\square For $\boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}{ }^{-} \boldsymbol{m}$, let

$$
a_{v}^{*}=a_{v_{0}^{*}-m^{*}-0}, a_{v_{0}{ }^{*}-m^{-} 0^{2}}, \ldots, a_{v_{0}{ }^{*}-m^{-}-0^{k}}
$$

\square Let $\varphi^{*}\left(x, y_{1}, \ldots, y_{k}\right)$ be the formula $\varphi\left(x, y_{1}\right) \wedge \ldots \wedge \varphi\left(x, y_{k}\right)$.
$■$ Claim $\mathrm{A}\left\{\varphi^{*}\left(x, a_{v_{0}-m}^{*}\right): m \in \omega\right\}$ is \boldsymbol{k}-inconsistent.
\square Let $\varphi^{*}\left(x, y_{1}, \ldots, y_{k}\right)$ be the formula $\varphi\left(x, y_{1}\right) \wedge \ldots \wedge \varphi\left(x, y_{k}\right)$.
$■$ Claim $\mathrm{A}\left\{\varphi^{*}\left(x, a_{v_{0}-m}^{*}\right): m \in \omega\right\}$ is \boldsymbol{k}-inconsistent.
Suppose this is not the case. Then there is $F=\left\{i_{1}, \ldots, i_{k}\right\} \subset \omega$ such that

$$
\left\{\varphi^{*}\left(x, a_{v_{0}-i_{1}}^{*}\right), \ldots, \varphi^{*}\left(x, a_{v_{0}-i_{k}}^{*}\right)\right\}
$$

is consistent.

■ By the definition of φ^{*}, in particular, the following set is consistent.

$$
\left\{\varphi\left(x, a_{\nu_{0}^{*}-i_{1}-0}\right), \ldots, \varphi\left(x, a_{\nu_{0}^{*}-i_{k}-0^{k}}\right)\right\}
$$

■ By the definition of φ^{*}, in particular, the following set is consistent.

$$
\left\{\varphi\left(x, a_{\nu_{0}^{*}-i_{1}-0}\right), \ldots, \varphi\left(x, a_{\nu_{0}^{*}-i_{k}-0^{k}}\right)\right\}
$$

$■$ For each v of length \boldsymbol{k}, let $\boldsymbol{\Gamma}_{\boldsymbol{v}}$ be the set:

$$
\left\{\varphi\left(x, a_{v_{0}^{*}-i_{1}-v(1)}\right), \ldots, \varphi\left(x, a_{v_{0}^{*}-i_{k}-0^{k-1}-v(k)}\right)\right\}
$$

- Then each Γ_{v} is consistent, by the indiscernibility of \boldsymbol{A}.
- Then each Γ_{v} is consistent, by the indiscernibility of \boldsymbol{A}.
\square On the other hand, by our choice of the tree A, for each $l=0, \ldots, k-1$, the set

$$
\left\{\varphi\left(x, a_{v_{0} \neg_{i} \sim 0^{l}-i}^{*}\right): i \in \omega\right\}
$$

is inconsistent $\left(\boldsymbol{k}_{\mathbf{l h}\left(\boldsymbol{v}_{0}\right)+(\mathbf{1}+l)}\right.$-inconsistent).

■ Then each Γ_{ν} is consistent, by the indiscernibility of \boldsymbol{A}.
■ On the other hand, by our choice of the tree \boldsymbol{A}, for each $\boldsymbol{l}=\mathbf{0}, \ldots, \boldsymbol{k}-\mathbf{1}$, the set

$$
\left\{\varphi\left(x, a_{v_{0} \neg_{2}-0^{l}-i}^{*}\right): i \in \omega\right\}
$$

is inconsistent $\left(\boldsymbol{k}_{\operatorname{lh}\left(v_{0}\right)+(1+l)}\right.$-inconsistent).
\square This yields $D_{\text {inp }}(x=x, \varphi(x, z)) \geq k$, a contradiction. (End of Proof of Claim)
\square By Claim A, the set $\left\{\varphi^{*}\left(x, a^{*}{ }_{v}\right): v \in \omega^{m}\right\}$ witnesses $D\left(x=x, \varphi^{*}, k\right) \geq m$.

■ By Claim A, the set $\left\{\varphi^{*}\left(x, a^{*}{ }_{v}\right): v \in \omega^{m}\right\}$ witnesses $D\left(x=x, \varphi^{*}, k\right) \geq m$.
\square Since m is arbitrary, we conclude $D\left(x=x, \varphi^{*}, k\right)=\infty$, which means that T is not simple.

