NORMALIZED QUANDLE TWISTED ALEXANDER
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ABSTRACT. We introduce a quandle version of the normalized (twisted) Alexan-
der polynomial, which is an invariant of a pair of an oriented link and a quan-
dle representation. The invariant can be constructed by fixing each Alexander
pair, and we find various invariants in our framework, which include the quan-
dle cocycle invariant and the normalized (twisted) Alexander polynomial of
a knot. In this paper, we develop the theory of normalization with row and
column relations of matrices. The theory works for several row and column
relations, although the twisted Alexander polynomial is defined with one col-
umn relation. We give a formula of our invariant for the mirror image of an
oriented link, which explains why the Alexander polynomial fails to detect the
chirality of knots and why the quandle cocycle invariant effectively detects it
from a unified point of view. We also show that cohomologous Alexander pairs
yield the same invariant.

1. INTRODUCTION

Invariants derived from a (twisted) Alexander matrix, which include the Alexan-
der ideal [7], the Alexander polynomial [1], and the twisted Alexander polyno-
mial [16, 20], have been studied to reveal topological properties of knots and links
(e.g. [4, 14, 18]). We call such invariants Alexander type invariants. The normal-
ized twisted Alexander polynomial was introduced by Kitayama [15] for oriented
knots as a twisted version of the Alexander—-Conway polynomial [5]. In this paper,
we introduce a quandle version of the normalized twisted Alexander polynomial,
where a quandle [13, 17] is a generalization of a group whose axioms correspond
to the Reidemeister moves for oriented links. The invariant can be constructed
by fixing each Alexander pair, and we find various invariants in our framework,
where an Alexander pair is a pair of maps corresponding to a linear extension of
a quandle [2]. In our framework, the normalized twisted Alexander polynomial is
not only recoverable (Proposition 7.4), but also extended to arbitrary links (Defini-
tion 7.3). In other words, we succeed in defining the normalized twisted Alexander
polynomial for any oriented links. Taniguchi [19] showed that a quandle version
of an Alexander type invariant is an essential generalization of a usual Alexander
type invariant by proving that the invariant with a suitable Alexander pair can be
described with a quandle cocycle invariant [3] for knots. Further, we show that the
quandle cocycle invariant is recoverable in our framework (Proposition 5.1).

An Alexander matrix is obtained from a group presentation by using the Fox
derivative. Two Alexander matrices Ay, Ay are equivalent (A; ~ As) if they are ob-
tained from isomorphic link groups. We then have the invariance of Alexander poly-
nomial as A(A;) = A(As), where the symbol = indicates equality up to a unit fac-
tor. The twisted Alexander polynomial is defined with a twisted Alexander matrix
and one linear relation among the column vectors of the twisted Alexander matrix.
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In [11], we reformulated the process of defining the twisted Alexander polynomial by
introducing an equivalence relation for pairs (A4, C) of matrices and their column re-
lation matrices. We defined a quandle version of the twisted Alexander polynomial
A(A,C) and showed that (A;,Cy) ~ (Az2,C2) implies A(A;1, C1) = A(A2,C2). In
this paper, we introduce an equivalence relation for triples (B, A, C') of matrices and
their row and column relation matrices and show that (B, A1, C1) ~ (Ba, Ag, Ca)
implies A(By, A1,C1) = A(Ba, A2, Cs) (Theorem 2.12). Applying A to the triple
obtained from a link diagram with a quandle representation, we can define a quandle
version of the normalized twisted Alexander polynomial (Theorem 4.7).

We give a formula of our invariant for the mirror image of an oriented link (Propo-
sition 6.2). From the formula, we see that whether Alexander type invariants detect
the chirality of links is greatly affected by the parity of k(r + m), where k is the
dimension of matrices used in a quandle representation, r is the number of the com-
ponents of a link, and m is the number of row relations. We then understand why
the Alexander polynomial fails to detect the chirality of knots and why the quandle
cocycle invariant effectively detects it from a unified point of view. Furthermore,
by using the formula, we demonstrate that the granny knot is chiral, which implies
that the knot is not equivalent to the square knot (Example 6.3). We also show
that cohomologous Alexander pairs yield the same invariant (Proposition 8.3). In
particular, we see that the invariant with the Alexander pair corresponding to the
linear extension obtained from a G-family of quandles [9] coincides with the twisted
Alexander polynomial (Example 8.4).

This paper is organized as follows. In Section 2, we introduce an equivalence
relation on triples of matrices and their row and column relation matrices, and show
that A(B, A, C) is an invariant of the equivalence class. In Section 3, we recall the
definitions of a quandle, an Alexander pair and relation maps with some examples.
In Section 4, we introduce the quandle version of the normalized twisted Alexander
polynomial. In Section 5, we show that the quandle cocycle invariant is recoverable
in our framework. In Section 6, we evaluate our invariant for the trivial knot and
the mirror image of a link. In Section 7, we show that the Alexander—Conway
polynomial and the normalized twisted Alexander polynomial are recoverable in
our framework. In Section 8, we show that cohomologous Alexander pairs yield the
same invariant. In Section 9, we show the invariance of our invariant.

2. THE ALEXANDER INVARIANT OF TRIPLE MATRICES

In this section, we introduce an equivalence relation on triples of matrices and
their row and column relation matrices, and show that A(B, A, C) is an invariant
of the equivalence class.

Let R be a unital ring. We denote by E,, the n x n identity matrix. We denote
by e; the unit column vector whose components are all 0, except the ith component
that equals 1. We then have E,, = (ey,...,e,). We denote by M (m,n; R) the set
of m xn matrices over R and denote by GL(n; R) the set of n xn invertible matrices
over R. For matrices A, B over R, we define

A O
ro (3 9)

For A = (a;;) € M(m,n; R), © = (i1,...,is) and § = (j1,...,j+), we define
Airgy Qiggo 7 Qiggy

Qiygy Qiggs 7 Qigg,y

Aiﬂ' =

aisjl a’ist e aisjt
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For example,

a a
A@G2),0,0 = ( o 34)

a1 Q24
for A = (a;;) € M(4,4; R). We further note that
Aiyj = (eil gy eiS)TA(Ejl, ey Ejt),

where we denote by BT the transpose of a matrix B.
Let S, be the symmetric group on {1,...,n}. We denote by sgno the sign of
o €S, Putm:=(1,...,n). For o € S, we set

O.(ila s 7iS) = (U(il)v s 70(7:3))7
(i1, . oyis) +h:=(1+ k,...is + k).
For o0 € S,, and 7 € S, we define 0 & 7 € Sy, 4n, by

(c®T)(i) = {

o(1) if 1 <i<m,
Ti—m)+m ifm+1<i<m+n.

For o € S,,, we define P, := (e,(1),-..,€q(n)) € GL(n; R), which is the permutation
matrix associated with o. Then, P, P, = Py, P;l = Pg and P, = P, ® P;.

Let A € M(d+ m,d+ n; R), where d,m,n > 0. We call B € M(m,d+m;R) a
row relation matriz of A if BA = O. A row relation matrix B € M (m,d + m; R)
is regular if By ,(m) is invertible for some o € Sy We call C € M(d +n,n; R)
a column relation matriz of A if AC = O. A column relation matrix C' € M (d +
n,n; R) is regular if Cr(m) 5 is invertible for some 7 € Sqyp.

Definition 2.1. Let R be a commutative ring. Let A € M (d+m,d+n; R). Let B €
M(m,d + m; R) be a regular row relation matrix of A, and let C € M(d + n,n; R)
be a regular column relation matrix of A. We choose 0 € Sy1m, and 7 € Sgq, SO
that B o(m) and Cr(z) 7 are invertible. We then define

sgnosgnTdet A, G -G

det Bﬁp-(m) det C-,-(ﬁ) kD)

A(B, A, C) =

We allow m or n to be zero; when m = 0 (resp. n = 0), we set M (m,d+m; R) =
{0} (resp. M(d + n,n; R) = {0}), where we call () an empty matriz and regard it
as a regular relation matrix of A. We then define

sgn 7 det AE,T@JFH) sgn o det Ao—(8+m),8

A(D,A,C) =

A(B,A,0) :=
det CT (m), 7 ( B 0) det Bmﬁ-(m)

A(D, A,0) := det A.

The following proposition implies that A(B, A, C) is independent of the choices
of o and 7.

Proposition 2.2. Let R be a commutative ring. Let A € M(d + m,d + n; R).
Let B € M(m,d + m; R) be a regular row relation matriz of A. Let 0,6’ € Sqym
such that B ,(m) and By o/ (7 are invertible. Let C € M(d+n,n; R) be a regular
column relation matriz of A. Let 7,7 € Sqypn such that Crmy 7 and Crimy 5 are
invertible. Then we have

sgn o sgn 7 det Aa(ﬁ+m),7(8+n) _sgn o’ sgn 1’ det AU,(g+m)77,(g+n)

det B o (m) det Cr ) m det By o () det Crr(my
Proof. We choose 01,0, € Sy, 02,05 € Sq, 11,71 € Sy, and 2, 75 € Sy so that
Bﬁ,a(der)PUl@Uz = (Bl By Bs B4) ,

Bﬁ,g’(m)Pai$oé = (Bl B3 B2 B4) s
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A A Az Ay
A A A A
-1 _ 21 22 23 24
Poiwor Ao(@rm),r@mPrion = As1 Asg Ass Asa |’
Ap Ags Ays A
A Az A Ay
A A A A
o T Lo ST ’ ;= 31 33 32 34
Pai@aé Ag—'(d+’m)"r/(d+n)P7'1€97'2 Agl A23 Ao A24
A41 A43 A42 A44
and
& Cy
_ C. B C
1 o 2 1 L _ 3
Prl@‘l'zcr(m)7ﬁ - 03 ) PT{GDT;;CT'(d-‘rn),ﬁ = 02
Cy Cy

for some B; € M(m,m;;R), A;j € M(m;,n;;R) and C; € M(n;,n; R), where
Mo = M3, Ny = N3, M1 + Mg =m, N1 +ne =n and mz +my = nzg + nyg = d. By

the equalities

,=BP,, A

m,o(d+m o(d+m),r(d+n) —

we have B1A1j + -4 B4A4j =0 and A;1Cq + -

PlAP,,

P1c,

T

Cr@mmm =

-+ 4+ A;4Cy = O. We then have

E,, O o||Ci O (oh O
O  Aszz Asa||Cs O | =]A33C3 Asy
O Ay Au||O E,, Ay3Cs Ay
1 0]
= |—A31C1 — A0y — A34Cy Aszy
—ApnCr — ApCy — AysCy Ay
o O
= |—A32Cy Az
—ApCy Ay
C1 0]
= (—1)"2 |A320s Az
ApCy Ay
E,, O O||lc; O
=(-1)"| O Az Axn||Cy; O],
O Ap Au||O E,,
which implies
Aszz Aszq| |Ch — (—1)m Aszz Asq| |Ch
Asz A |Cs Ago Ay |Co|”
In a similar manner, we have
A32 A34 A22 A24
B B — _ ma B B .
v Bl |y g = OB Bl
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Hence we have

A33 A34

sgnosgndet A, Gy r(@in) SBLOSEUTSELO2SENT2 | 40 Ay
det By, o (m) det Cr(m) sgnoy |[B1  Ba|sgnm C’1 ‘
2
A A
sgn o’ sgn 7’ sgn ol sgn 75 A22 A24
42 Agg
= c

sgnof |B1  Bs|sgnT] C

sgno’sgnt’ det A g, v (@)

det Bm,o’ (™) detC T/ (M),

where we remark that
sgno’ sgnoysgnoh = (—1)"™* sgn o sgn oy sgn o,
sgn 7’ sgn ) sgn s = (—1)" sgn 7sgn 71 sgn 7.
]

Let R be a unital ring. We denote by R* the group of units of R. We define
P;;, E;j(r),Ei(u) € GL(n; R) by

Pij = (el,...,ei,l,ej,e“rl,...,ej,l,ei,ejJrl,...,en),
Eij(r) =(e1,....ej1,€; +rei,ej11,...,en) (i # ),
Ei(u) = (e1,...,€i-1,U€;,€i11,...,€y)

for r € R and u € R*. We note that P;' = P, Ejj(r)™' = E;(—r) and
Ei(u)_l = Ei(u_l).

Definition 2.3. For matrices A and A’ over a unital ring R and their relation
matrices B, B’,C and C’, we write (B, A,C) ~ (B', A’, ") if they are related by a
finite sequence of the following transformations:
* (B,A,C) < (BEy;(r)™!, Eij(r)A,C) (r € R),
e (B,A,C) «+ (B, AEZJ( T), E ;(r)71C) (r € R),
o (B,A,C) ¢ (BEi(u), Ei(u) ' AE;(u), Ej(u)~'C) (u € RX),
) <

(i 0.(3 ).4))

When B = ) (resp. C' = ), we replace the first (resp. third) matrices in the above
transformations with (.

Remark 2.4. When (B, A,C) ~ (B',A",C"), B (resp. C) is a row (resp. col-
umn) relation matrix of A if and only if B’ (resp. C”) is a row (resp. column)
relation matrix of A’. When R is a field, B (resp. C) is regular if and only if

B’ (resp. C") is regular. We remark that <<1 0) L 8)) is regular, while

0 1 0

00 1o is not regular as matrices over M(2,2;Q).
0 1 0 0
We may regard a matrix in M (m,n; M (k,k; R)) as a matrix in M (km, kn; R).

We call such a matrix a flat matriz. We denote by A the flat matrix of a matrix A.
Remark 2.5. Suppose that R is a Euclidean domain. For S € M(k,k; R) and

U € GL(k; R), the flat matrices Fy(S) and FE4(U) can be represented as products
of E;;(r)’s and E;(u)’s, where r € R and u € R*. Therefore,

(B,A,C)~ (B',A",C")
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implies
(B,A,C)~ (B,A",C").
Proposition 2.6. (1) Foru e R*, we have
(B.A,C) ~ (BE:(u) ™ E; (u), E, (u)""Ei(u)A,C)
~ (B, AB; () E; ()™, E;(u) Ey(u)~'C).
(2) For a € R and uy,us € R™, we have
C

((B 0 0),40 (a)® (urup), (g)) N((B 0),A®(u1au2)7(g>)
~ ((B 0),A® (ugaus), (g))
Proof. (1) We have

(B,A,C) ~ (BE;(u)™", Ei(u)AE; (u) !, Ej(u)C)
~ (BE;(u)" Ej(u), Ej(u) " Ei(u) A, ).

In the same way, we have
(B’A7C) ~ (37AEi(u)Ej(u)_l7Ej(u)Ei(u)_lc)'

(2) We have the equivalences, since the left-hand side is equivalent to

C C
(B’, A® (urauz) @ (1), (0)) and (B’,A @ (ugauy) @ (1), (O)) ,
0

0
where B’ = (B 0 0).
O

It is easy to see that the third transformation of Definition 2.3 can be replaced
with the pair of the following transformations:

e (B,A,C) + (BE;(u)"'Ej(u), E;(u) 'E;(u)A,C) (u € R®),
e (B,A,C)+ (B,AE;(v)E;j(u)~!, Ej(u)E;(u)~'C) (u € RX).

Proposition 2.7. We have the following.

(1) (BaA’C) (BP E( )EJ( ) iJ ’C>
(2) (B,A,C) ~ (B, AP; E;(-1), E;(-1)P;C).
(3) (B,A,C)~ (B meAsz,PmC)

Proof. (1) We have
(B,A,C) ~ (BE;;(1)"', E;;(1)A, C)
~ (BE;(1) T Eji(=1)7" Eji(~1)Ey(1)A, C)
~ (BE;(1) ™ Eji(=1) " Ey(1) ™, By (1) Eji(=1) Ei; (1) A, O)
= (BP;E;j(-1), E;(=1)P; A, C).

(2) In the same way as (1), we have the equivalence.
(3) From (1) and (2), we have

(B, A,C) ~ (BP;E;(=1), Ej(-1)P;;A,C)

(
~ (BP;;E;(-1),E;(—1)P;; APy Ei(—1), E;(—1) Py C)
~ (B zJaPZJAPklaPle)
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By i € (n1,...,ns), we mean i € {ny,...,ns}. Let R be a commutative ring.
Let A€ M(d+ m,d+n;R). Let B € M(m,d+ m;R) be a row relation matrix of
A, and let C' € M(d+ n,n; R) be a column relation matrix of A. We then have the
following lemmas:

Lemma 2.8. Suppose that R is a field. For regular relation matrices B and C' of
A, we have
A(B, A, O) = A(BEZJ (T)il, Eij (’I‘)147 C)

Proof. We choose 7 € Sqyn so that Crm) 5 is invertible. We denote by b; the ith
column vector of B and by a; the ith row vector of A. It is sufficient show

det AU(E+m),‘r(E+n) _ det(Eij (T)A)J(E+m),7(3+n)
det By o (m) det(BEi;(r) ™" )m,o(m)

(1)

for some o € Sgim.
When b; = b; = 0, we can choose 0 € Sg4m so that
B o) € GL(m; R) and B odim) = (bi b; Bs)
for some By € M(m,d — 2; R). We then have
Brno(m) = (BEij (1) ™ ) o (m)

a; a; + ra;
A_~ -v=1a; (Eii(r)A) 4 = a;
o(d+m),7(d+n) J ’ (] o(d+m),7(d+n) J
Ag A2
for some Ay € M(d — 2,d; R). The equality (1) follows from det A, g, ~@in) =

det(EU (T)A)U(E+m),7(a+n) .
When b; = 0 and b; # 0, we can choose 0 € Sy, so that

Bmyg(m) = (bj Bl) S GL(m;R) and Bﬁ,a(ﬁ-ﬁ—m) = (bl B2)
for some By € M(m,m — 1; R) and By € M(m,d — 1; R). We then have
(BEj ()™ m,o(m) = (b =i B1) = B ()

and
{a g = (Y
A () (@an) = (Al) ’ B (") Ao @) = (Al) ,
a; __[(a;+Traj
Ao@im) @) = <A2) o B @ = ( Az j)

for some A; € M(m —1,d;R) and A2 € M(d —1,d; R). From
bjaj + BlAl + biai + B2A2 = BA = O,
we have

(bj Bl> <aj) = —biai - BQAQ = —BQAQ.

Since (b]- Bl) is invertible, we have

(jﬁ) = — (b, Bl)_leA%

which implies that a; is a linear combination of row vectors of A;. We then have
det A, Gy r(@rn) = 4€6(Eij(1)A) ;@i r(@4n)> Which implies the equality (1).
When b; # 0 and rank(b;, b;) = 1, we can choose 0 € Sg4., so that

Bﬁ,o’(ﬁ) = (bz Bl) S GL(m,R) and Bﬁ,a(ﬁ—i—m) = (bj Bg)

m
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for some By € M(m,m — 1; R) and By € M(m,d — 1; R). We then have
(BEi‘(T)_l)m,a(m) = Bm,a(m)7
(Eij (T)A)U(E—i-m)ﬂ—(a—&-n) = Ao(&—&-m)g—(ﬁ—‘—n)’

which imply the equality (1).
When rank(b;, b;) = 2, we can choose o € Sy, so that

B o = (bi  b; Bi) € GL(m; R)
for some By € M(m,m — 2; R). We then have
(BEij(r) Vmoam = (b bj —rbi By),
(Eij (T)A)U(aer),T(EJrn) = AO’(E+TI’L),T(E+’H,)'

The equality (1) follows from det By o(m) = det(BEij(r)_l)m’g(m). This completes
the proof. 0O

Lemma 2.9. Suppose that R is a field. For regular relation matrices B and C of
A, we have

A(B, A, C) = A(B, AE” (7’), Eij (7")710).

Proof. This lemma is proved in the same manner as the previous lemma. (|

Lemma 2.10. For regular relation matrices B and C of A, we have
A(B, A, C) = A(BE;(u), Ei(u) "' AE;(u), Ej(u)~C)
forue R*.

Proof. We choose 0 € Sqi,m and 7 € Sqiy 80 that By ;) and Cr () » are invert-
ible. We then have

det(E;(u) " AE; (W) 5 @ m) o @sn)
det(BEi(u))m,a(ﬁ) det(E; (u)_lc)r(ﬁ),ﬁ
udGi€o(d+m)+(jer(d+n)) ot A

— o(d+m),r(d+n) _ det AU(E+m),T(E+n)
w¥(i€ (M) det By o(myu=°US™ M) det Crmym  det B o(m) det Crmym’

1 if S
where §(z € S) := hre 7 Hence we have the desired equality. O
0 otherwise.

Lemma 2.11. For regular relation matrices B and C' of A, we have

A(B,A,C)=A((B 0), (g‘ ‘1)) , (g)).

Proof. We choose 0 € Sqym and 7 € Syipn so that By o) and Crm) 5 are in-

vertible. We define ¢/ := 0 @ 1g, € Sgym+1 and 7/ := 7D 1g, € Sg4nt1- Then,

(B 0)_ s (g) are invertible, since they coincide with By ,(m) and
’ ‘(m).a

Cr(m),m, respectively. We also have

(A 0) _ (Aa(d—i-m)n—(d-‘rn) 0>.
0 1 o’/ (d+1+m), 7' (d+1+n) 0 1
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We then have
sgnosgnrdet A, G Gy

det Bﬁ7g(m) det CT (ﬁ) kD

sgn o’ sgn 7’ det (A 0

A(B, A, C) =

0 1) 0/(m+m),7/(m+n)

det (B 0)_ () det (g) o

—aie 0. (5 9)(5)

where we note that sgno’ = sgno and sgn7’ = sgn. O
From the above lemmas, we have the following theorem.

Theorem 2.12. Suppose that R is a field. Let A be a matriz over R. Let B
and C be a regular row relation matrixz and a reqular column relation matriz of A,
respectively. Then A(B, A, C) is an invariant of the equivalence class of (B, A,C).
That is, if (B,A,C) ~ (B',A",C"), then A(B,A,C) =A(B',A",C").

From Remark 2.5, we also have the following theorem.

Theorem 2.13. Suppose that R = M (k,k; F'), where F is a field. Let A be a
matriz over R. Let B and C be a row relation matriz and a column relation matriz
of A, respectively. Suppose that B and C are reqular. Then A(B,A,C) is an
invariant of the equivalence class of (B, A,C). That is, if (B, A,C) ~ (B, A’,C"),
then A(B,A,C) = A(B’, A’,C").

From the definition of A(@, A, D), we have the following proposition.

Proposition 2.14. Suppose that R is a commutative ring. Let A be a matriz over
R. Then A(D, A,0) is an invariant of the equivalence class of (0, A,0). That is, if
(0, A4,0) ~ (0, A',0), then A(W, A,0) = A(D, A',0).

From Remark 2.5, we also have the following proposition.

Proposition 2.15. Suppose that R = M (k,k; Z), where Z is a Euclidean domain.
Let A be a matriz over R. Then A(D, A, 0) is an invariant of the equivalence class

of (0, 4,0). That is, if (0, A,0) ~ (0, A',0), then A(D, 4, 0) = A(D, 47, 0).
3. ALEXANDER PAIRS AND RELATION MAPS

In this section, we recall the definitions of a quandle and a quandle coloring,
which is regarded as a quandle homomorphism from the fundamental quandle to
a quandle. We also recall the definitions of an Alexander pair and relation maps
with some examples.

A quandle [13, 17] is a non-empty set @ equipped with a binary operation < :
Q X Q — @Q satisfying the following axioms:

e Foranya € Q, a<a = a.

e For any a € @, the map <a : Q@ — @ defined by <a(z) = x <a is bijective.

e For any a,b,c € Q, (a<b)<c=(a<c)<(b«c).
We denote (<a)” : Q@ = Q by <"a for n € Z. Let (Q1,<1) and (Q2,<2) be quandles.
A quandle homomorphism from @ to Qs is defined to be a map f : Q1 — Q2
satisfying f(a <1 b) = f(a) <2 f(b) for any a,b € Q. For a quandle (Q,<), a Q-set
is a non-empty set Y equipped with a map <: Y x Q — Y satisfying the following
axioms:

e For any a € ), the map <a : Y — Y defined by <a(y) = y < a is bijective.
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e For any y € Y and a,b € Q, we have (y<a)<b= (y<b) <(ab).

Here, we note that we use the same symbol < as the binary operation of @) for the
map of a Q-set. We denote (<a)™ : Y — Y by <"a for n € Z. Let (Y1,<1) and
(Ya,<2) be Q-sets. A Q-set homomorphism from Y7 to Ya is defined to be a map
f Y1 = Y, satisfying f(y<1a) = f(y)<a for any y € Y and a € Q. The associated
group As @ of a quandle @ is a group defined by the presentation:

(v (xeQ)|zay=y oy (x,y € Q).
Then As@ is a @Q-set with y <a = ya. We note that a Q-set homomorphism
f:As@Q — Y is determined by the image f(1) of the identity element 1 € As@.

Throughout this paper, for a positive integer n, we denote the cyclic group Z/nZ
of order n as Z,,. We define a binary operation < on Z,, by a <b = 2b — a. Then,
(Zn,<) is a quandle. We call it the dihedral quandle of order n and denote it by
R,.

Let G be a group and n an integer. We define a binary operation < on G by
a<b =b""ab™. Then, (G,<) is a quandle. We call it the n-fold conjugation quandle
of G and denote it by Conj,, G. The 1-fold conjugation quandle of G is called the
conjugation quandle of G and denoted by Conj G.

Let G be a group. We define a binary operation < on G by a<b = ba~'b. Then,
(G, <) is a quandle. We call it the core quandle of G and denote it by Core G.

Let L be an oriented link. Let N (L) be the regular neighborhood of L, and E(L)
the exterior of L. Fix a point p in E(L). The set of homotopy classes of paths from
the boundary ON(L) of N(L) to the point p forms a quandle structure with the
binary operation < defined by

[a] «[B] = [a- 71 - mg - B,
where 371 represents the reverse path of 8 and mg is the meridian loop on ON (L)
based at the initial point of 8 with the orientation such that the linking number of
L and mg is +1. We then denote the quandle by Q(L) and call it the fundamental
quandle of L.

Let D be a diagram of an oriented link L. A normal orientation is often used
to represent an orientation of a link on its diagram. The normal orientation is
obtained by rotating the usual orientation counterclockwise by 7/2 on the diagram.
We denote by C(D) and A(D) the sets of crossings and arcs of D, respectively. It is
known that the fundamental quandle Q(L) is represented by the arcs and crossings
as follows. For a crossing ¢, we denote the relation u. <v. = w, by r., where v, is
the over-arc of ¢ and u., w. are the under-arcs of ¢ such that the normal orientation
of v, points from u, to w,. (see the left picture of Figure 1). Then, the fundamental
quandle Q(L) is generated by the arcs x (x € A(D)) and has the relations 7,
(c € C(D)); that is, a presentation of Q(L) is given by

(2) (z (z € A(D))|re (c € C(D))).

This is called the Wirtinger presentation of Q(L) with respect to D. We remark
that we obtain a presentation of the fundamental group G(L) := m(E(L),p) by
replacing u. <v. = w,. by v, lu.v.w ! in (2), which is the Wirtinger presentation
of G(L) with respect to D. A quandle representation of Q(L) to Q is a quandle
homomorphism from Q(L) to Q. For a group representation p : G(L) — G, we call
the quandle homomorphism po ¢ : Q(L) — Conj G the induced quandle represen-
tation, where ¢ : Q(L) — G(L) is the map which sends [a] to [a~! - m, - a]. For
further details, we refer the reader to [6, 13].

Let @ be a quandle. A Q-coloring of D is a map C : A(D) — Q satisfying the
condition

C(ue) 4C(ve) = C(we)
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for each crossing ¢ € C(D), where uc, v, and w, are the arcs forming the crossing
¢ as shown in the left picture of Figure 1. A constant map is a type of @Q-coloring
called a trivial Q-coloring. We denote by Colg (D) the set of Q-colorings of D. From
the presentation (2), a Q-coloring of D can be regarded as a quandle representation
of Q(L) to Q. Let D’ be a diagram of L obtained by applying a single Reidemeister
move to D. Then, each Q-coloring C' of D has a unique @Q-coloring C’ of D’ that
coincides with C' except in the disk in which the move is applied. This gives a one-
to-one correspondence between Colg(D) and Colg(D’). Since the two Q-colorings
C and C'’ represent the same quandle representation p, we often use p instead of C
or C'.

We denote by SA(D) the set of semi-arcs of D, where a semi-arc is a piece of
a curve such that the end points of the piece are crossings. We denote by R(D)
the set of complementary regions of D. We denote by r(a) and r’'(«) the regions
facing a semi-arc a such that the normal orientation of a points from r(a) to r’(«)
(see the right picture of Figure 1). Let Y be a @-set. A Qy -coloring py of D is an
extension of a Q-coloring p of D that assigns an element of Y to each region of D
satisfying the condition

py (r(a)) < p(e) = py (r'(a))
for each semi-arc a € A(D), where the color p(a) of a semi-arc « is defined by the
color of the arc from which the semi-arc originates. We remark that the colors of
the regions are determined by those of the arcs and one region. We denote by gyt
the outermost region of a link diagram. We denote by p the (s g-coloring that is
the extension of p satisfying p(rous) = 1. The Alezander numbering na : R(D) — Z
is a map satisfying na(rout) = 0 and n4(r'(a)) = na(r(a)) + 1 for any semi-arc «.
Let @ be a quandle, and let Y := Z be the @Q-set with y <a := y + 1. Then the
Alexander numbering gives a QJy-coloring.
Let (Q,<) be a quandle. Let R be a unital ring. The pair (f1, f2) of maps

f1, f2 : @ xQ — Ris an Alexander pair if f1 and fy satisfy the following conditions:

e For any a € Q, fi(a,a) + f2(a,a) = 1.

e For any a,b € Q, fi(a,b) is invertible.

e For any a,b,c € Q,

fila<b,c)fi(a,b) = fi(a<c,bac)fi(a,c),
fila<b,c)fa(a,b) = fala<c,b<ac)fi(b,c), and
fala<b,c) = fila<c,bac)fa(a,c) + fala<e,bac)fa(b, c).

Definition 3.1 ([11]). Let (f1, f2) be an Alexander pair. A column relation map
feol 1 @ = R is a map satisfying

fcol(a < b) = fl(aa b)fcol(a) + f2(a7 b)fcol(b)
for any a,b € Q.

Proposition 3.2 ([11]). For each ¢ € Q, the map feol : Q — R defined by feoi(a) =
fola<=te ) is a column relation map.
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Definition 3.3 ([10]). Let (f1, f2) be an Alexander pair. Let Y be a Q-set. A row
relation map fiow : Y X Q — R is a map satisfying

fr0W<y’a) = frow(yﬂbaGQb)fl(a>b)a and

frow(y<a,b) = frow(y,b) + frow(y <b,a<1b)fa(a,b)
for any a,be Q and y € Y.

Proposition 3.4 ([10]). LetY be the Q-set Qx R* with (y, z)<a := (y<a, f1(y,a)z).

The map frow : Y X Q — R defined by frow((y,2),a) = 271 f1(y,a) L f2(y,a) is a
row relation map.

Let Y,Y’ be a Q-set, and let ¢ : Y/ — Y be a Q-set homomorphism. Let
frow : Y X Q@ — R be a row relation map. Then the map f/ ., : Y’ x Q@ — R defined
by flow(¥,a) = frow(p(y),a) is a row relation map. In particular, for z € Y, the
map flow : AsQ X Q@ — R defined by fl . (y,a) = frow(¥2(y),a) is a row relation
map, where ¢, : As@Q — Y is the Q-set homomorphism satisfying ¢, (1) = z. We
give some examples of Alexander pairs and relation maps.

Example 3.5. Let @ be a quandle and R a unital ring. Let f: Q@ — Conj R* be
a quandle homomorphism. Let Y be the Q-set R* with y<a := f(a) 1.

(1) The maps fi, f2 : Q X Q@ — R defined by fi(a,b) = f(b)~! and fa(a,b) =
1 — f(b)~! form an Alexander pair. The map f. : @ — R defined by
feol(a) = 1 is a column relation map, and the map fiow : ¥ X Q@ — R
defined by frow(y,a) =y~ 1(f(a) — 1) is a row relation map.

(2) The maps fi, f2 : Q x Q@ — R defined by fi(a,b) = f(b)~! and fo(a,b) =
f(b)~tf(a)—f(b)~! form an Alexander pair. The map feo : @ — R defined
by feor(a) = f(a)—1 is a column relation map, and the map fiow : ¥ xQ —
R defined by fiow(y,a) = y~! is a row relation map.

By setting f(z) = 2", we have the following corollary:

Example 3.6. Let G be a group, and let @ := Conj,, G. Let R[G] be the group
ring of G over a commutative ring R. Let Y be the Q-set R[G]* with y<a := a™"y.
(1) The maps f1, f2 : @ X @ — R[G] defined by fi(a,b) = b~ and fa(a,b) =
1 —b"" form an Alexander pair. The map f.o : @ — R[G] defined by
feol(@) = 1 is a column relation map, and the map frow : ¥ X Q@ — RG]
defined by frow(y,a) = y~1(a™ — 1) is a row relation map.
(2) The maps f1, fo : @ x @ — R[G] defined by fi(a,b) = b~ and fa(a,b) =
b~ "a™ — b~ " form an Alexander pair. The map feo : Q@ — R[G] defined by
feol(@) = a™—1is a column relation map, and the map frow : ¥ X Q — R[G]
defined by frow(y,a) = y~! is a row relation map.

Example 3.7. Let G be a group, and let @) := Core G. Let R[G] be the group ring
of G over a commutative ring R. Let Y be the @Q-set Q x R[G]* with (y,z)<a :=
(ay~ta,—ay='z). The maps fi,f2 : Q@ x Q@ — R[G] defined by fi(a,b) = —ba~!
and fa(a,b) = ba~! + 1 form an Alexander pair. The map feor. : @ — R[G]
defined by feorc(a) = ac+ 1 is a column relation map for ¢ € @, and the map
Jrow 1 Y x Q — R[G] defined by frow((y,2),a) = —z71(ya™t + 1) is a row relation
map.

Example 3.8. Let Q := R,,. Let Z be a commutative ring, and let R := Z[t]/(P),
where P is a factor of t” — 1 in Z[t]. Let Y be the Q-set @ x R* with (y,2) <a :=
(2a — y, —t*"Y2). The maps fi, f> : @ x Q — R defined by fi(a,b) = —t*~¢ and
f2(a,b) = t*=% + 1 form an Alexander pair. The map feol. : @ — R defined by
feore(a) = t*T¢+1 is a column relation map for ¢ € @, and the map frow : ¥ X Q —
R defined by frow((y,2),a) = —271(t¥=% 4+ 1) is a row relation map.
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4. THE NORMALIZED QUANDLE TWISTED ALEXANDER INVARIANT

Hereafter, we assume that link diagrams satisfy the condition that every compo-
nent has at least one undercrossing, and we label the arc starting from a crossing c;
as x; (see the left picture of Figure 2). It is easy to see that two diagrams satisfying
this condition represent the same link if and only if they are related by a finite
sequence of Reidemeister moves on link diagrams that satisfy the condition.

Let L be an oriented link, and let D be a diagram of L with n crossings cy, ..., c,.
We note again that z; denotes the arc starting from a crossing ¢; for each i. Then,
C(D) = {c1,...,en}t and A(D) = {x1,...,2,}. We denote by w;, w; and v; the
under-arcs and over-arc, respectively, of a crossing c¢; such that the normal orien-
tation of v; points from wu; to w; (see the right picture of Figure 2). We denote by
sgn(c) the sign of a crossing c. We define wr(D) := 3~ . (p) sgn(c).

Let @ be a quandle and R a unital ring. Let (f1, f2) be an Alexander pair of
maps f1, fo: Q@ x Q@ — R, and let p: Q(L) — @ be a quandle representation. The
(f1, f2)-twisted Alexander matriz A(D, p; f1, f2) of (D, p) is the n x n matrix whose
(i, j)-entry is

6(wi, 5) fi(ai, by) + 6(vi, ) f2(ai, bi) — 0(ws, z;),
where a; = p(u;), b; = p(v;), and

1 ifz=y,
5(z,y) :={ Y

0 otherwise.

The (f1, f2)-twisted Alexander matrix of the diagram depicted in Figure 3 is

-1 f2(p(zs), p(x2))  fi(p(zs), p(x2))
fi(p(z1), p(z3)) —1 f2(p(z1), p(73))
fa(p(z2), p(z1))  fi(p(x2), p(21)) -1

Remark 4.1. Let (z1,...,z,|7r1,...,7,) be the Wirtinger presentation of Q(L)
with respect to D, where r; is the relation u; <v; = w;. In [12], for an Alexander
pair f = (f1,f2), we introduced the notion of an f-derivative 88—. Then the

1
,

(f1, f2)-twisted Alexander matrix A(D, p; f1, f2) coincides with (8%’?2(”)), where

J

f
0.
fop®=(fio(pxp), fao(pxp)).

Let L = K1 U---UK, be an oriented r-component link, and let D be a diagram
of L. Let D(K;) be the diagram of K; that is obtained by removing the other
components from D. We denote by A(D; K;) the set of arcs of D that originate from
K;, and denote by C(D; K;) the set of crossings of D whose under arcs originate
from K;. We define wr(D; K;) := > .co(p.k,) sgn(c). We then have wr(D; K;) =
wr(D(K;)) + Ik(K;, L — K;) and wr(D) = Y_i_, wr(D; K;). We denote by Cy(D)
and C_ (D) the sets of positive and negative crossings of D, respectively. We denote
by #S the number of elements of a set S.

Definition 4.2. Let (f1, f2) be an Alexander pair of maps fi, fo : Q x Q@ — R,
and let p : Q(L) — @ be a quandle representation. We fix wyq,...,w, € R* so
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that w; = fi(p(a), p(a)) for some a € A(D; K;). We define the correction value
Cor(Dap; f17f2) of (Dap) by

#C (D) r rot(D(Ki)>+;/r(D(Ki)>+1
Cor(Dvp; fl’fQ) B (71) ’ Hwi H fl(p(uc)ap(vc))a
i=1

ceC_(D)
where rot(D(Kj;)) is the rotation number of D(Kj;).

We remark that cor(D, p; f1, f2) € R* because rot(D(K;)) + wr(D(K;)) + 1 is
always even. For the diagram depicted in Figure 3, we have

—24341

Cor(D7P§ f1?f2) = (71)3(‘)1 2 = —wi,

as #C4 (D) =3, C_(D) =0, rot(D) = —2 and wr(D) = 3.
We define

__— _ (AD.p; fr, f) 0
A(D, p; f1, fo) .—( 0 o cor(D,P§f1,f2)1>.

We call E(D,p; f1, f2) the normalized (f1, f2)-twisted Alexander matriz of (D, p).
For column relation maps feo1,1,- - -, feol,m : @ = R, we define

feor1(p(z1)) -~ feolim(p(21))

RCOI(D,p; fcol,l,'“afcol,m) =

fcol,l(ﬂ(zn)) ce fcol,m(/’(xn))

We denote Reoi(D, p; feol,15 - - -5 feolim) DY Reol(D; p; feol) for short.

Proposition 4.3 ([11, Proposition 5.1]). For column relation maps feol1s- - - feol,m :
Q — R, the matriz Reo(D, p; feol) is a column relation matriz of A(D, p; f1, f2).
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We define r; := r(a(w;; ¢;)), where a(w;;¢;) is the semi-arc that originates from
the arc w; and is incident to the crossing ¢; (see Figure 4). For row relation maps
frow,1s-+» frowm : As@Q x Q — R, we define

Rrow(D7 12 frow,lv cees frow,m)
Sgn(cl)frow,l(ﬁ(rl)vp(wl)) e Sgn(cn)frow,l(ﬁ(rn)ap(wn))

Sgn(cl)frowm(ﬁ(rl)vp(wl)) Sgn(cn)frow,m(ﬁ(rn)vP(wn))
We denote Riow(D, p; frow,1; - - frow,m) bY Rrow(D, p; frow) for short.

Proposition 4.4 ([10, Theorem 6.1]). The matriz Riow (D, p; frow) i a row rela-
tion matriz of A(D, p; f1, f2).

We set
Rrow(Dap§ frow) = (Rrow(D7p§ frow) 0) ;
D Rco D7 s Jco
Rcol(Dvp; fcol) = ( 1( Op f l)> .

Remark 4.5. The matrix E;O;(D, 0 Frow) (xesp. Reol(D, p; feol)) is regular if and
only if Riow (D, p; frow) (resp. Reol(D, p; feol)) is regular.

Remark 4.6. By Propositions 2.6 and 2.7 (5), the equivalence class of the triple
(RrOW(D P; Frow), (D p; f1, f2), col(D p; feol))

does not depend on the choice of the order of crossings and that of wy,...,w, € R*,
since we have

fl(p(wc)ap('wc)) = fl(p(uc) d p(vc)7p(u6) 4 p<vc))
= filp(uc), p(ve)) firlp(ue), p(uc)) f1(p(uc), p(ve))

Theorem 4.7. Let Q be a quandle and R a unital ring. Let (f1, f2) be an Alezander
pair of maps fi,fo : Q@ x Q@ = R. Let frow1,---, frowm : AsQ X Q — R be row
relation maps, and let feor1,-- ., feolm : @ — R be column relation maps. Let
D1, Dy be diagrams of an oriented link L, and let p : Q(L) — @ be a quandle
representation. Then we have

(Rrow(Dl»p frow) (Dlapv f17f2) col(tha fcol))
~ (Rrow(D%pv frow) (Dva f17f2) col(DQapv fcol))

This theorem is proven by verifying the invariance of the triple under each Rei-
demeister move. We postpone the proof to Section 9.
When R is a field, we define

A(LaPQ f17f2§frow§fcol) = (Rrow(D P frow) (D P; f17f2) col(D P; .fcol))
When R is a matrix ring over a field, we define
A(L, p; f1, fo; frow; feol) 5:A(Rrow(D P; Frow), (D p; f1, f2), col(D P5 fcol))

When R is a commutative ring, we define
A(L, ps fr, f2:0:0) = A, A(D, ps f1. f2),0).
When R is a matrix ring over a Euclidean domain, we define
A(L,p3 1, f2:050) i= A (0,A(D, s 1, 12),0) -

From Theorems 2.12, 2.13, 4.7 and Propositions 2.14, 2.15, these are invariants
of (L,p). We remark that the invariants A(L, p; f1, f2; frow; feol) for R = Z and
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R = M(1,1; Z) coincide. Hereafter, we regard M(1,1;Z) as the ring Z. When
we regard M(1,1;7Z) as Z, we identify a matrix A € M(m,n; M(1,1; 7)) with
A€ M(m,n;Z). For xz € Z, det x stands for z.

We end this section with the following proposition, which is useful in the calcu-

lation of A(L,p; fl, f2; Srow; fcol)'

Proposition 4.8. Let D be a diagram of L with n crossings. Let F be a field.
Setting d :=n —m and R = M(k,k; F), we have

A(La P; flv f2; frow? fcol)
sgn o sgn 7 det ma(ﬁ+km),r(ﬁ+km) det cor(D, p; f1, f2)71
det Reow (D, p5 Frow )i ooy 4et Reol(D; 3 Feol) 7oy om

for any o, € Sk, such that Ryow (D, p; fmw)m’g(%) and Reo(D, p; fcol)r(ﬁ),%
are invertible.

Proof. Setting 0 :=0 & 1g, and 7 := 7 & 1g,, we have
A(va; flan;frow;fcol)

sgnosgn7det A(D, p; f1, f2)6(m+km),?(m+km)

det Ryow (D, p; frow)%’g(%) det Reo1 (D, p; fcol);(%)’m
_ Sgnosgnt det A(D, p; f1, f2)g(m+km),f(m+km) det cor(D, p; f1, f2) "
det Ryow (D, p; .frow)mﬂ(m) det Reoi (D, p; fcol)T(m),m

where we remark that sgno = sgno and sgn7 = sgnr. O

)

We note that the equality in Proposition 4.8 implies

A(La P; flv f2; frow§ fcol)
Sgn o sgn T det A(D’ P fl’ fz)a(a—l-m,),f(a—&-m) COI‘(D, Ps f17 f2)_1
det Rrow (D, p; frow)ﬁ,a(ﬁ) det Reoi (D, p; fcol)r(ﬁ),ﬁ

when k = 1.

5. THE QUANDLE COCYCLE INVARIANT

We recall the definition of a quandle cocycle invariant introduced in [3]: Let
L =K, U---UK, be an oriented r-component link and D a diagram of L. Let @
be a quandle and A an abelian group. A quandle 2-cocycle ¢ : Q@ x Q — A is a map
satisfying ¢(a,a) = 0 and ¢(a<b, c) + ¢(a,b) = ¢p(a<c,b<c)+ ¢(a,c) for a,b,c € Q.
The quandle cocycle invariant ®(L; ¢) of L is the multiset

D(L; ¢) = {®(L, p; ¢) | p € Colg(D)},
where
O(L,p;0) == Y sen(e)d(p(ue), p(ve)),
ceC (D)

which we call the quandle cocycle invariant of (L, p). Here, we recall that u,., v. are
the arcs around c (see Figure 1). We define

O((L Ki),pid) = Y sgn(e)d(p(uc), p(ve))-

ceC(D;K;)
We then have
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Proposition 5.1. Let (Q,<) be a quandle, and let ¢ : Q x Q@ — A be a quandle
2-cocycle, where A =7 or Z,. Let L = K1 U---U K, be an oriented r-component

link, and let p : Q(L) — Q be a quandle representation. Let @ =Q x{1,...,r} be
the quandle with (a,i) < (b,j) = (a<b,i). Set

R ZIEEL, .t ifA=17,
SOz, -, 1) if A= 17,

We define the Alexander pair of maps fi1, fa : @ X é — R by
filla,i), (b,9)) = 77, fa((a,1), (b.9)) = 0.

Then we have
A(L.ps fu, f2:0:0) = [[ (1 = 755009,
i=1
In particular, for a knot K, we have
A(K, p; fi, f230,0) = 1 — 70079

Proof. Let D be a diagram of L. Set n; := #C(D;K;), which coincides with
the number of the arcs of K;. We define [i] := ny + --- + n; and [0] := 0. Let
Cli—1]+1, - - - » €[] be the crossings of C(D; K;) for i = 1,...,r7. We assume that the

terminal point of x; is ¢;41 if @ & {[1],[2],...,[r]}, and cp_qj4q if ¢ = [E]. Put
Ci j 7= Clim1]4j> Uirj = U[i—1]4js Vij = V[i—1]+j, and &; j :=sgn(c; ;) fori=1,...,r
and j =1,...,n;. We define A((D; K;), p; f1, f2) to be

Gi1(—€i1) Pi1(gin)

bi2(ci2)  Pi2(—ci2)
bis(ei3)  ¢iz(—eis)

(bi,ni (Ei,ni) ¢i7ni (_Eiﬂli)

where
b (€)= t?(p(ui,j)vp(vi,j)) ife =1,
AR (. | if e =—1.
The determinant of A((D; K;), p; f1, f2) is
-1 Bia (17
i2(1)%2 -1
¢iz(1)7e 1 [  (—ttetuereto
. ceC_(D;K;)
¢i,ni(1)6i'ni -1
which is

S((L,K:),p: n; )sp(ve
(1— ! (( )P ¢))(71) H (7t?(p(u ),p(v )))’
ceC_(D:Ky)

where C_(D; K;) = C(D; K;) N C_(D). We define

cor((D; K3, pi f1, f2) = (71)#C+(D§Ki) H tf(p(uc)vp(vc)),
ceC_(D;K;)

where C4(D; K;) = C(D; K;) N C4(D). We then have
det A((D; K:), p; fu, fo) cor((D; K, p; fu, fo) 74 = 1 — 7 (BRD00),
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Since
A(D7P§f1»f2) = A((D7K1>7pa f17f2) oD A((D7K’r‘)7pa f17f2)7
COI'(D,p; f17f2) = HCOI"((D,KZ),p, flaf?)v
=1
we have

r

A(L, p; fr, 2:0;0) = [J (1 — 7B F29)),

i=1

6. PROPERTIES

In this section, we determine our invariant for the trivial knot and the mirror
image of an oriented link.
For o € S,,, we define & € Sy, by

7((a— 1)k +b) = (o(a) — Dk +b

fora=1,...,nand b= 1,...,k, where we note that sgn & = (sgn o)*. For example,
when ¢ = (; % g) € S3 and k = 2, we have

_ 1 2 3 4 5 6 _
a—<3 41 2 5 6)65’6 and sgno = 1.

Proposition 6.1. Let Q be a quandle and let R := M (k, k; F'), where F is a field.
Let (f1, f2) be an Alexander pair of maps f1, fa : @ XQ — R. Let frow : ASQXQ —
R and feo1 : Q@ = R be row and column relation maps, respectively. Let O be the
trivial knot, and let p : Q(O) — Q be a quandle representation. Let a € Imp. If
frow(1,a), feol(a) € R™, then we have

) . ) B (—1)* det f1(a,a)~!
A(Oﬁ), flaf?afrowafcol) - dot frow(]-aa) dot fcol(a).

Proof. Let D be the diagram of O depicted in Figure 5. We have

A(D, p; i, f2) = ( oo f1<a,a>+1f2<a,a>) _ (—11 | ) |

—14241

cor(D,p;fth):(—1)2-f1(a,a) 2 :fl(a’a)v
Rrow(Dap; frow) = (frow(]- a) frow(]-aa)) 5

Reat(D, pi feo) = (;gﬁg%) .
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Since frow(1,a), feor(a) € R*, the matrices Ryow (D, p; frow) and Reo1(D, p; feo1) are
regular. Setting 0 = 1g,, we have & = 1g,, . It follows that

A(O7 P; f17 f2; frow; fcol)
sgnEsgnEdetmﬁ(ﬁﬂc)ﬂa_m det cor(D, p; f1, f2) !
A R P e ey

det (11 11) det fi(a,a)~?
T (kH1,..,28),(k+1,..,2k)

fco (a)
det (frow(1,0)  frow(La) 1 . ) 908 (fcoi(a)> (L), (1 )

B (=1)Fdet f1(a,a)™?
—det frow(1,a)det feor(a)’

O

Let L be an oriented link and D a diagram of L. Let Q be a quandle and A a
multiplicative abelian group. For p € Colg (D), we define

(L, o) = [ w(o(uc), p(ve)) @,
ceC (D)
where ¢ : @ x Q — A is a quandle 2-cocycle, which satisfies ¥(a,a) = 1 and
Y(a<b,c)Y(a,b) =Y(a<de,b<c)v(a,c) for a,b,c € Q. We then define the multiset
U(L;p) == {¥(L, p;¢) | p € Colg(D)},

which is the multiplicative version of the quandle cocycle invariant introduced in
the previous section. For a map f : Q x Q — A satisfying

fla<b,c)f(a,b) = fla<c,bac)f(a,c),
we define the quandle 2-cocycle ¥ (f) : Q x @ — A by

’l/)(.f)(a’ b) = f(aﬂa)ilf(a? b)a

where we note that f(a<c,a<c) = f(a,a).

Proposition 6.2. Let R := M(k,k; F), where F is a field. Let (f1,f2) be an
Alexander pair of maps fi,fo: Q@ x Q = R. Let frow1,--, frowm 1 AsQ X Q —
R be row relation maps, and let foor1,..., feolm @ @ — R be column relation
maps. Let L = K1 U---U K, be an oriented r-component link, and let —L* be the
mirror image of L with the orientation reversed. Let p : Q(L) — Q be a quandle
representation, and let p* : Q(—L*) — Q be the quandle representation induced
from p with the reflection. Let D be a diagram of L. We fiz wy,...,w, € R* so
that w; = f1(p(@), p(a)) for some a € A(D; K;). Then we have

A(*L*,p*; flan;frow,la <. -afrow,m;fcol,la .. -afcol,m)

— (_1)k(r+m)A(La P; f17 f2; frow,la RN} frow7m; fc01717 ceey fcol,m)
det (T @~ )W (L, pr o (det o f1)

2

where 1k(K,0) =0 for a knot K.

)

Proof. Let x1,...,z, be the arcs of D such that @,,+...4n;, 41, Tny+-tn, are
the arcs of K;. We set
U= (1 2 .- nl) (n1—|—1 ni+2 .- n1—|—n2)

..(n1+...+nr_1+1 n4--+n._1+2 - n)ESn



20 ATSUSHI ISHII AND KANAKO OSHIRO

x; Ti_1 Zj Ti—1 Ti—1 Lj
D 8 &
D —-D* D —D*
FIGURE 6
and assume that the terminal point of z; is ¢, ;) for i =1,...,n. Let ¢ : R? — R?

be the involution defined by ¢(z,y) = (—z,y). We then denote by —D* the diagram
(D) with the orientation reversed, which is a diagram of —L*. For an arc z; of

D, we label the arc ¢(x;) of —D* as x; (see Figure 6). Since ¢; is the crossing from

which the arc @; starts, we have ¢(c¢;) = ¢,—1(;) for i = 1,...,n. From p* = pop™1,

we have p*(z;) = p(z;). Set d :== n — m. Because

A(=D", p*; f1, f2) = A(D, p; f1, f2)v(m),ms
Rrow(_D*v P*§ frow) = _Rrow(D7 P; frow)m,v(ﬁ)a
Rcol(_D*; P*; .fcol) = Rcol(Da 12 fcol)a

we have

A(_D*, P*Q flv f2)0(3+m)}7—(g+m) = A(D7 P5 fla f2)o”(5+m),7’(3+7ﬂ)’
Rrow(_D*a P*Q frow)m,a(m) - _Rrow(Da P frow)m,o’(m)v
Rcol(_D*a 2 fcol)'r(m),m = Rcol(Da P53 fcol)‘r(m),ﬁv

sgnosgnT = (—1)" " sgno’ sgn,
where ¢/ = voo. Since
$CL(-D*) = n— #C, (D), rot(~D* (K;)) = rot(D(K),
wi(-D*(Kp) = —wr(D(K),  C_(~D") = (D),

we have

det cor(—D*, p*; f1, f2)
T mt(D(Ki))—Qwr(D(qu))Jrl

= (_1)k(n—#C+(D)) Hdet w, H det f1(p(ue), p(ve)),

i=1 ceCy (D)

= (=1)kn Hdet w; wr(D(K3)) H det f1(p(ue), pue))™™
i=1 ceC(D)

H (det fl(p(uc)vp(uc))—l det fl(p(uc)7p(vc)))sgn(c)
ceC(D)

k0, (D) r rot(D(K;))+wr(D(K;))+1
(=)D T detw, 2 I  det fip(ue), p(ve))
i=1

ceC_(D)

= (- [ detw* " FOU(L, psp(det o f1)) det cor(D, ps fi, f),

=1
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To Is To Te
C1 C6 C1 C6
/—;3% /—;34\
c3 C4 C3 Cs
M T4
C2 Cs5 C2 Cq
1 D Te xT1 D Is5
1 2

FIGURE 7. The granny knot and square knot

where the last equality follows from wr(D; K;) = wr(D(K;)) + Ik(K;, L — K3).
Consequently, we have

A(=L", p"; f1, f2; frows feol)
sgn sgn det A(—D*, p*; f1, f2)g(hd km) 7(ods km) det cO(=D*, p; f1, fo) 7!
N det Rrow (—D*, p*; frow )%,?(%) det Reol(—D*, p*; fCOl)?(m),ﬁ
(—1)k(r+m)
 det([T, &l T w (L prldetofy))

7

sgno’ sgn7 det A(D, p; f1, f2) 7 (k) 7 (s km) det cOr(D, p; fi, f2) 71
det Rrow(D7 P; frow)m7?(%) det Rcol(D7 P fcol);(m) Jm

_ (_l)k(r+m)A(Lap; flva?frow?fcol)
det([Tiy w; F ) U(L, py(det o fr))

(2

Example 6.3. Let Q := R3 and R := Q[t]/(t* +t + 1), where we note that t3 =1
in R. Let Y be the @-set Q x R* with (y,z)<a := (2a —y, —t*"Yz). Let (f1, f2) be
the Alexander pair in Example 3.8, that is, fi(a,b) = —t*~% and fy(a,b) = t*"¢ +1.
Let frow and feolc (¢ € Q) be the row and column relation maps in Example 3.8,
that is, frow((y,2),a) = —271(#¥7% + 1) and feo1c(a) = t47¢ + 1. For ¢ € Q, we
define the row relation map frow,.c : ASQ X Q = R by frow.c(¥,a) = frow(¥c(y), a),
where ¢, : As@Q — Y is the QQ-set homomorphism satisfying ¢.(1) = (¢, 1). Let K;
and K5 be the granny knot and square knot, respectively, that is, K1 = 31#3; and
Ky = 31#37. Let D1 and Dy be respectively the oriented diagrams of K; and Kj
depicted in Figure 7. We note that K; and K5 are invertible.

Let p: Q(K1) — @ be a quandle representation defined by

p(z1) = a, p(x2) = b, p(x3) = 2a + 2b,
p(x4) = 2a + 2b, p(rs) = ¢, p(r6) = a+b+ 2,
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where a,b,c € R3. We then have

A(Dlvpa f17f2)

—pat2b —1 tat2b 41 0 0 0
ta+2b +1 _ta+2b 0 -1 0 0
-1 ta+2b + 1 7ta+2b 0 0 0
= 0 O O _t2a+2b+2c -1 t2a+2b+2c + 1 9
0 0 0 t2a+2b+2c + 1 _t2a+2b+26 -1
0 0 -1 0 t2a+2b+2c + 1 _t2a+2b+20

Rrow(Dh P frow,07 frow,l)

t2b +1 taer +1 t2a + 1 t2¢: 4 1 t2a+2b+c +1 taer +1
= - t2b+l+1 ta+b+1_|_1 2€2a—i-1 +1 t2c+1_|_1 t2a+2b+c+1 +1 ta+b+1_|_1 B}

t* +1 tetl 41
th 41 thtl 41
t2a+2b + 1 t2a+2b+1 +1
Reol(D1, ps feol 05 feol,1) = a2 |1 g2a42+1 4 q [

te+1 tett 41
ta+b+20 + 1 ta+b+2c+1 + 1

—3-6+41 a a c
COI“(Dl,p; f17f2) _ (_1)0 A (_1) 3 A (—t +2b)3(—t2 +2b+2 )3 1.

When a # b, by setting o = 1g,, we obtain

A(Kla Ps f17 f2; frow,Oa frow,l; fcol,Oa fcol,l)
_ sgnosgnodet A(Dy, p; f1, f2)o(32).0(12) €08 (D1, 03 f1, f2) 7
det Rrow(Dla P; frow,Oa frow,l)ﬁ,g(i) det Rcol(Dla P; fcol,O; fcol,l)g(ﬁ)j

_ta+2b 0 0 0
det 0 _t2a+2b+20 -1 t2a+2b+26 + 1 1
0 t2a+2b+20 +1 7t2a+2b+2c -1
-1 O t2a+2b+2c 4 1 _t2a+2b+2c

det 20 41 et 41 det te+1 ¢otl 41
e O S A | t+1 41

_—gotEb(gRetbize pgatbte L) [ (¢ 4+1)/3 if {a,b,c} = {0,1,2},
N —9gtat2b+1 ~]o ifc=a#borc=b+#a.
. 1 2 3 4 5 6 .
When a = b # ¢, by setting o = <1 5 9 3 4 6>’ we obtain

A(Klv P; f17 .f2; frow,O» frow,l; fcol,Oa fcol,l)
~ sgnosgnodet A(Dy, p; fi, f2),@42),0(12) €08(D1, p3 f1, f2) 7!
det Rrow (Dh P frow,07 frow,1)§7g(§) det Rcol(Dla P fcol,07 fcol,l)g(§)7§

— ot 0 -1 0
ta+2b +1 _ta+2b 0 0
det 0 0 _j2042b42c 2042420 4 | -1
0 -1 0 _t2a+2b+26
- det 120 +1 t2a+2b+c 41 det * 4+ 1 ta+l +1
t2b+1 +1 t2a+2b+c+1 41 tc+1 tc+1 +1
3t2b+c
=—(t+1)/3.

~ gp2btctl
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Thus, we have

{A(Kly Ps f1, f2; frow,Oa frow,l; fcol,Oa fcol,l) | pis nontrivial}
= {0 (12 times), —(t 4+ 1)/3 (12 times)}.

From Proposition 6.2, we have

{A(_Kfa P; f17 f2; frOW,Oa frow,l; fcol,O, f‘30171) ‘ P is nontrivial}
= {0 (12 times), (¢t +1)/3 (12 times)},

which implies K1 2 —K§ = K7. Since Ko = K3, we can conclude K; 2 Ks, which
also follows from

{A(K2, p; f1, f25 frow,0, frow,15 feol,05 feo1,1) | p is nontrivial }
= {0 (12 times), (¢t +1)/3 (6 times), —(t + 1)/3 (6 times)}.

7. THE NORMALIZED (TWISTED) ALEXANDER POLYNOMIAL

In this section, we demonstrate how the Alexander—-Conway polynomial and
the normalized twisted Alexander polynomial introduced by Kitayama [15] can be
obtained in our framework.

Let L = K7 U---UK, be an oriented r-component link, and let D be a diagram
of L. Let @ be a quandle and let R := M (k, k; F'), where F is a field. Let (f1, f2)
be an Alexander pair of maps fi,fa : @ x Q@ — R, and let p : Q(L) — @ be a
quandle representation. We fix wy,...,w, € R* so that w; = fi(p(«), p(c)) for
some o € A(D; K;). Suppose that (detw;)z, ..., (detw,)? € F*. We define

V(L,p; f17f2§ frow? fcol)

T
1-1k(K;,L—K;)

i= A(L, p; f1, f23 Frow Jeor) [ J(detws) — 2,

i=1
where we note that det w; does not depend on the choice of w; € R*. We then have
V (L, p; f1, f2; Frow; feol)
_ sgnosgnTdet mg(mMm),T(m%m) detcory (D, p; f1, f2)~"
det Rrow (D, p; frow )i o (m) det Reot (D, p; feol) (o) o

)

where

detCOTV(D7P§ fla f2)

T

= ()P T (detwi) [T det filp(ue). plve))-

i=1 ceC_(D)

rot(D(K;))+wr(D;K;)
2

The Alexander—Conway polynomial V,(z) of an oriented link L is characterized
by the following:
e For the trivial knot O, we have Vo (z) = 1.
e Let Dy, D_ and Dy be diagrams that are identical outside a disk where
they are the tangles depicted in Figure 8. We call (D4, D_, Dy) a skein
triple. Then the skein relation

Vb, (2) =Vp_(2) = 2V, (2)

holds, where Vp(z) is the Alexander—-Conway polynomial V,(z) of an ori-
ented link L represented by D.

The Alexander—Conway polynomial V(z) is a normalized Alexander polynomial.
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T Tn—-1 Tn Tn—-1 Tn Tn—-1
Cn+1 Cn+1
In+1 mn—‘—l
D, D_ Do
FIGURE 8

Proposition 7.1. Let Q be a quandle and F a field. Let (f1, f2) be an Alexander
pair of maps f1, fo: QX Q — F. Let frow : AsQ X Q — F and feo1 : Q — F be row
and column relation maps, respectively. Let L be an oriented link. Let p: Q(L) — @
be a trivial quandle representation, whose image is {a}. Sett := fi(a,a)~t. Suppose
that fmw(l,a),fml(a),tl/2 € F*. Then we have

VL(t1/2 — t_1/2) _ V(L,P, fla f2; frow; fcol)
Vo(t1/2 —til/z) V(O,p; flny;frow;fcol)’

where Vo (t1/? —t=1/2) =1 and

—t1/2
V(O, p; f1, f2; frows = 7 1 Nf N
(O F1 I Frows Jeol) = 320 0 )
Proof. Let (D4, D_, Dy) be a skein triple with n common crossings ¢y, ..., ¢, and

the crossing c¢,+1 of Dy and D_ depicted in Figure 8, and let L, L_ and Lg be
the oriented links represented by D, D_ and Dy, respectively. We use the same
symbol p for the trivial quandle representations of Q(Ly),Q(L-) and Q(Lg) to Q
that send every element to a. We then have

ATL— an_ +bn an bn—
A(D-‘r:p;flva): < 02 ].—11571 t71 _11>a

A,_2 ap_1 a,-+b,_ b
A<D,p7f17f2):< %2 ﬁll ?715111 tnl)7

A(Dy, p; f1, f2) = (An—2 Gn-1+bp_1 an+by).
The Laplace expansions for det(A(D4, p; f1, f2)m+1,7+1) along the last rows yield
det(A(D+, p; f1, f2)m+1,m+1) + det(A(D—, p; f1, fo)mt1,m+1)
= (t~" = 1) det(A(Do, p; f1, f2)m=117=141)-
We have
detcory (D, p; f1, fa) = —t~*/* detcory (Do, p; f1, f2),
detcory (D, p; f1, f2) = t~'/* detcory (Do, p; f1, f2),
since

detcory (D, p; f1, f2) = (_1)#C+(D)t—wt—#c,(m

_ (—1)#C+(D)t_ rot(D)t#C(D) '

Since p is trivial, we have

fcol(a)
RCOI(D-‘rap; fcol) = RCOI(D—7p; fcol) = > RCOI(D07P; fcol) = :
fcol(a) fCOl(a’)

fcol(a)
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and
Rrow(DJra P; frow)
= (sgn(c1) frow(1 <™ a,a) -+ sgn(cn) frow(1 <™ a,a)  frow(1 <"+ a,a)),
Rrow(D—7p; frow)
= (Sgn(cl)fmw(l < a,a) - sgn(cp)frow(l < a, a) —frow(1 i a, a)) )
Rrow(D(),p; frow)
= (sgn(cl)fmw(l dtaya) - sgn(en) frow (1< a, a))

for some i1,...,in,in41,%,41 € Z. The equality fiow(y,a) = frow(y < a,a)fi(a,a)

implies frow (1< a,a) € F*. Put d := sgn(cy) frow (1< a, a) feol(a) € FX. Tt follows
that

V (L, p; f1, f23 frows feot) = V(L= p; f1, f25 frows feol)
= —t'/% detcory (Do, p; f1, f2) " det(A(Dy, p; fr, fa)msrmyn)d !
— t'/2 detcory (Do, p; f1, f2) ' det(A(D_, p; f1, fo)m1mp1)d "
= (t1/2 — t_l/Q)detcorv(Do,p; f1, f2) "t det(A(Dy, p; fl,fg)mﬂﬁm_i_l)d_l
= ("2 — 7)Y (Lo, 5 f1. Fi frows fea)-

V(L,p; flva;frow; fcol)

V(O7 P; fla f2; frow; fcol)
Conway polynomial Vp (/2 —¢t=1/2), they coincide. Since Vo (t'/? —t=1/2) = 1,
we have the equality

VL(t1/2 — t_l/Q) _ V(LHO; f17f2; frow; fcol)
Vo(t1/2—t_1/2) V(Oap;fl,fQ;frow;fcol).

From Proposition 6.1, we have

Since satisfies the conditions characterizing the Alexander—

4172
V(O,P; flanerow;fcol) = til/QA(Oap; f13f2;frow;fcol) = m

O

Kitayama [15] gave a normalized twisted Alexander polynomial A K,p(t) for an
oriented knot K and a group representation p : G(K) — GL(k; F), where F' is
a field. Fix an element p € G(K) represented by a meridian in E(K). Let
a : G(K) — (t) be the group representation that sends p to t. We define the
group representation p @ a : G(K) — GL(k; F(t)) by (p ® a)(z) = a(z)p(z)
for z € G(K). Set @ := ConjGL(k; F(t)). Let (fi,f2) be the Alexander pair
of maps fi1,f2 : @ X Q@ — M(k,k; F(t)) in Example 3.6 (2) with n = 1, that
is, fi(a,b) = b=! and fa(a,b) = b~la —b~!. Let D be a diagram of K. Let
(x|s) = {(x1,...,2n|51,...,8,) be the Wirtinger presentation of G(K) with re-
spect to D, where s; is the relation vi_luiviwi_l. A presentation that is ob-
tained by removing one relation from (x|s) also represents G(K). Set (x|s’) :=
(1,...,%n|S2,...,8n). Then, the normalized twisted Alexander polynomial of
(K, p) is determined by

5((z|s'))* det A(D, p ® a3 f1, fo) 3=y 4k K= 44
(tk det p(p)) @@= det(tp(p) — 1) ’

where §((x|s’)) € {£1} and d((z|s')) € {n/2|n € Z} are independent of k and
p. For details, we refer the reader to [15].

(3)  Ax,lt) =
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Lemma 7.2. We have
5@ 8)) = (—1)F P san(er), d((w] 8')) = na(m) - LD THFOD),

2

Furthermore, we have
k
R (t) = ((=1)#C+ D+ 5on(¢y)) .det A(D,p® a; fi, f2)m+k,m+k
T (1 det pp)atry) - RS det(tp() — 1)

Proof. Let p be the trivial group representation p : G(K) — GL(1; F), which is
the constant map with constant value 1. Then we may identify p ® a with a. By
Lemma 4.6 in [15], we have

VK(tl/Q _ t—1/2) _ (tl/Q _ t—l/?)ng(t).
We use the same symbol « : Q(K) — @ for the induced quandle representation.
Let Y be the Q-set F(t)* defined by y<a := a™'y. Let fiow : Y X Q — F(t) and
feol : @ — F(t) be, respectively, the row and column relation maps in Example 3.6
(2) with n = 1, that is, feoi(a) = a — 1 and fiow(y,a) = y~1. We define the

row relation map frow1 : AsQ X Q@ — F(t) by frow.1(¥;a) = frow(¥(y),a), where
¢ : As@Q — Y is the @-set homomorphism satisfying ¢(1) = 1. By Proposition 7.1,
we have

VK(tl/2 - til/z) = (til/z - t1/2)V(K, & fla f2; frow,l; fcol)a

since
—t1/2 1

V(O,a;flaf%frow,l;fcol): 1 = t71/2—t1/2'

We then have

(4) Agp(t) = =V (K, 0; f1, f25 frow,15 feol)-
We have
Riow(D, a; frow,1) = (sgn(ci)a(r) ™ sgn(cn)a(r,) ")
= (Sgn(cl)t”A(7'1) sgn(cn)t”A(T'”)) ,
t—1
Reol(D, @; feol) = :
t—1

Setting o =7 = 1g,, we have
V(K, p; f1, f2; frow15 feol)
~sgnosgntdet A(D, p; f1, f2) o =141, (=T 41) detcore (D, o fi, f2) 7
B det Rrow (D, @ frow,1)1,0(1) det Reot (D, @ feol) 1)1

_det A(D, ; fi1, fa)u=i417=141 detcory (D, a; fi, f2) 7"
B sgn(cy)tralr)(t — 1) '

(5)

From (3), we have

~ Sl det A(D, @i fi. it
(6) Ak o) = ~iaron p— .
The equalities (4)—(6) imply

o((x|r') _  detcory(D,q; fi, f2) "

td(<w D Sgn(cl>tnA (r1)

9

since
det A(Da Qa; flv f2)ﬁ+17m+1
t—1

0,
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which follows from det A(D,«; f1, fa)y—7117—111lt=1 = £1 # 0. Therefore, we
have

S((z]s) _ —sgn(e)(=1)FP) (—)#FC P ggn(e)
(@) fra(r) =2 D) 40 () - ya(ry)— 2 DIE#CTD)

)

which implies that

(] ) = ()P O sgu(er), (] ) = nafry) - HPIEHOD),
O

Definition 7.3. Set @ := Conj GL(k; F(t)), where F is a field. Let Y be the Q-set
GL(k; F(t)) defined by y<a := a~'y. Let (f1, f2) be the Alexander pair of maps
fi,fa: Q@xQ — M(k,k; F(t)) in Example 3.6 (2) with n = 1, that is, fi(a,b) = b~}
and fa(a,b) = b~ta —b7!. Let fiow : Y X Q — M(k,k;F(t)) and feoo1 : Q —
M (k,k; F(t)) be, respectively, the row and column relation maps in Example 3.6
(2) with n = 1, that is, feo1(a) = a — 1 and frow(y,a) = y~1. We define the row
relation map frow,1 @ AsQ X Q — M(k,k; F(t)) by frow,1(¥,a) = = frow((y), a),
where ¢ : As@Q — Y is the @Q-set homomorphism satisfying ¢(1) = 1. Let L be
an oriented link, and let p : G(L) — GL(k; F) be a group representation. We
use the same symbol p ® a : Q(L) — @ for the induced quandle representation of
p®a:G(L)— GL(k; F(t)). We then define

V(Lup) = V(Lup® e f17f2; frow,l? fcol)~

Proposition 7.4. Let K be an oriented knot, and let p : G(K) — GL(k; F) be a
group representation. Then we have

Ascplt) = V(I p).
Proof. Let D be a diagram of K with n crossings. Putting
A:=A(D,p®@a; f1, f2), B := Rrow(D, p ® &; frow.1),
C = Reol(D, p @ ; feol),

we have
B = (— sgn(cy)t"a ()=t o — Sgn(cn)tn"(m)ﬁ(%)_l) )
tp(z1) —1
o=
tp(zy) — 1
Setting o =7 = 1g,, we have
V(K,p)

sgn o sgn 7 det Zo(k(n71)+k),'r(k(n71)+k) detcory (D, p @ o f1, fo) !
det BE,O’(E) det CT(E),E

detcory (D, p @ a; f1, fo) ! detzk(n—l)-}-k,k(n—l)-ﬁ-k

~ det(—sgn(e)tamp(r) 1) det(tp(ay) — 1)
((—1)k(#c+(D)+1)(det(tflp(m)*l))w)*l . detzmﬂc,k-(n—l)ﬂc
sgn(cy)ktkna(r) det p(z,)ma(r) det(tp(xy) — 1)
_ ((—1)#C+(D)+1 sgn(cl))k . detzmﬂmmﬂc
(tk det p(a ))nalr)—=2EEEE det(tp(z1) — 1)
= EKW(t)’

where the last equality follows from Lemma 7.2. O
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8. COHOMOLOGOUS ALEXANDER PAIRS AND RELATION MAPS

Let (f1, f2) and (g1, g2) be Alexander pairs of maps f1, f2,91,92 : @ X @ — R.
Let frow : As@Q X Q@ — R and grow : As@Q X Q@ — R be row relation maps with
respect to (f1, f2) and (g1, g2), respectively. Let feo : @ — R and geol : @ — R
be column relation maps with respect to (f1, f2) and (g1, g2), respectively. Two
tuples (f1, fa; frow; feol) and (g1, 92; grow; geol) are cohomologous if there exists a
map h: Q — R* satisfying the following conditions:

e For any a,b € Q, h(a<b)fi(a,b) = g1(a,b)h(a).

e For any a,b € Q, h(a<b)fa(a,b) = ga(a,b)h(b).

e For any a € Q, h(a)feol(a) = geol(a).

e For any a € Q and y € AsQ, frow(¥,a) = Grow(y,a)h(a).
We then write (f1, f2; frow; feol) ~n (91, 92; Grow; geol) to specify h. Fori=1,...,m,
let frow, @ As@Q x @ — R and grow,; @ As@Q X Q — R be row relation maps
with respect to (f1, f2) and (g1, g2), respectively. For ¢ = 1,...,m, let feo; :
@ — R and geo,; © @ — R be column relation maps with respect to (fi, fa)
and (g1, g2), respectively. When (f1, fa; frow.i; feol.i) ~n (915 92; Grow,i; Geoli) for any
1 S {17 oo 7m}a we write (fla f2; frow; fcol) ~h (91392;gr0w;gcol)~

Example 8.1. For an Alexander pair (f1, f2) and a € Q, we define f;<a and fo<a
by
(fl Qa)(x,y) = fl(a:<1a,y<a), (f2 <‘a)($>y) = fg(xqa,yda).

For a column relation map f.o; and a € Q, we define f., <a by

(fcol < a)(a:) = fl(xa a)fcol(x)~

For a row relation map fiow and a € @, we define f,ow < a by

(frow N a)(ywr) = frow(ya x)fl(‘rva)_l'
Putting h(z) := fi(x,a), we have

(f17 f2;frow; fcol) ~h (fl <1aaf2 <a; frow <a; fcol <]a),

Example 8.2. Let (f1, f2), frow and feo1 be the Alexander pair and row and column
relation maps in Example 3.5 (1). Let (g1,92), grow and gecol be the Alexander
pair and row and column relation maps in Example 3.5 (2). We define the row
relation maps frow,1 : AsQ X Q = R and grow,1 : ASQ X Q@ = R by frow1(y,a) =
frow(©(y),a) and grow,1(¥,a) = grow(p(y),a), where ¢ : As@Q — Y is the @Q-set
homomorphism satisfying ¢(1) = 1. We define a map h : @ — R by h(z) =
f(z) — 1. Suppose that h(a) is invertible for any a € Q. Then (f1, f2; frow; feol) ~h
(915 925 Grows Geol)-

Proposition 8.3. Let L = K U---UK,. be an oriented r-component link, and let p :
Q(L) — Q be a quandle representation. Let D be a diagram of L with n crossings.
Set R .= M(k,k; F), where F is a field. Let (f1,f2) and (g1,92) be Alexander

pairs Of maps flanaglng : Q X Q — R. Let frow,la"'afrow,m : ASQ X Q - R
and Grow,1;-- - Grow.m © @ — R be row relation maps with respect to (f1, f2) and

(91792)7 respectively. Let fCOl,la .. -:fcol,m : Q — R and Gcol,15-++yGcol,m * Q —
R be column relation maps with respect to (f1,f2) and (g1,92), respectively. If

(fl,fQ;frow;fcol) ~h (91792§gr0w§gc01)7 then we have
(Rrowe (D, 5 Frow), A(D, p; f1, f2), Reot(D; p; Feor))

— ~ —

~ (Rrow(D7 P; grow)7 A(Du P91, 92)7 Rcol(Da P; gcol))~

Furthermore, we have

A(L, p; f1, f2i frow; feol) = A(L, p; g1, 92; Grow' Geol)-
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Proof. Put
A(f) = A(D,p; f1, f2), A(g) = A(D, p; g1, 92),
Rrow(f) := Rrow(D, p; frow); Rrow(9) := Rrow (D, p; grow),
Real(f) == (D p; feol), Reoi(9) = Reol(D, p; geol),
cor(f) = (D p; f1, f2), cor(g) := cor(D, p; g1, g2).

By the proof of Theorem 9.3 in [12], we have

hp(w))A(f) = Alg)h(p()),
where h(p(a)) is the diagonal matrix in M (n,n; R) whose (i,i)-entry is h(p(a;)).
From frow,i(ya p(wj)) = grow,i(ya p(w]))h(p(wj))v we have

(7) Rrow(f) = Rrow(g)h(p(w))'
From h(p(w)) feol s (p(2:)) = geor (p(1)), we have

(8) h(p(x))Reot(f) = Reor(9)-
From

rot (D (K;))+wr(D(K;))+1

1)#C+<D>Hwi B IT  Mewe) fi(p(uc), plve))

ceC_(D)

rot(DU,)) (DU +1

e Hw [T oxotu ptao) (o)),

ceC_
we have

cor(f) J[ P(p(we)) = cor(g) H h (we)) [ Plp(we))

ceC (D) ceC_ ceCy (D)

in the abelianization of R*, since x. = w, for a positive crossing ¢ and z. = u.
for a negative crossing c. Setting h'(p(w)) := [];_; h(p(w;)) and A'(p(x)) :=
I, h(p(z:)), we have

(Rrow(D P frow) (D P»f17f2)7}/{:;1(Du0§ fcol))

(it 0. (%) 8-)-("47)

DA i ot r) (F57))
-

( ( Jir o
~ <(Rrow(g) O) ’ (A(g)hép(w)) cor g) 1h(1)_1 P(w) ) ’ (Rco(l)(f))>
( <A8g o ) (h p(x)) Rcol f)))

= (RrOW(D7p§grOW)7A(D P5 91792) (D P; Geol))-

O

Example 8.4. Let G := GL(k; F) and @ := ConjG, where F is a field. Let
R := M(k,k;F(t)). Let Y be the Q-set GL(k; F(t)) defined by y<a := a~'y. Let
(f1, f2), frow and fco1 be the Alexander pair and row and column relation maps in
Example 3.6 (1), that is, fi(a,b) = b1, fa(a,b) =1 — b1 fiow(y,a) = y~(a —
1) and feoi(a) = 1. Let (g1,92), grow and geol be the Alexander pair and row
and column relation maps in Example 3.6 (2), that is, g1(a,b) = b=1, ga(a,b) =



30 ATSUSHI ISHII AND KANAKO OSHIRO

T T T
R1 R1
Cn+1 ~ — Cn+1
Tn41 Tn41
Dy Do D3
FIGURE 9

b~ la—b~1, Grow (Y, a) = y~! and geol(a) = a — 1. We define the row relation maps

frow,l : ASQ X Q — R and Grow,1 * ASQ X Q — R by fr0w71(y7a) = frow(sp(y)ya)
and grow,1(Y, @) = grow(¢(y), a), where ¢ : As@Q — Y is the Q-set homomorphism
satisfying ¢(1) = 1. Let L be an oriented link, and let p : Q(L) — @ be a quandle
representation. Let o : G(L) — (t) be the group representation that sends a
meridian to t. We define the group representation p ® o : G(L) — GL(k; F'(t)) by
(p®a)(x) = alx)p(z) for © € G(L). Setting h(x) = z — 1 in Example 8.2, we have
(f1, f25 frow,13 feol) ~n (91,92} Grow,15 geol). We then have

A(L, p ® o f1, f2; frow,15 feol) = A(L, p ® 0 g1, 925 Grow,15 eol )5

where we remark that the right invariant corresponds to the twisted Alexander
polynomial.

9. PROOF OF THEOREM 4.7

In this section, we give a proof of Theorem 4.7. For short, we set

A(D) := A(D, p; f1, f2), cor(D) := cor(D, p; f1, f2),
Rrow(D) = Rrow(Dam .frow)7 Rcol(D) = Rcol(Dap; fcol)7

frow,l(zva)
.fcol(a) = (fcol,l(a') to fcol,m(a')) 3 frow(zva) = :

frow,rr;(za a)

9.1. Reidemeister move I. Let D, Dy and D3 be diagrams of an oriented link
L that differ by a single Reidemeister move I as shown in Figure 9. Let ¢q,...,¢,
be n crossings of D1, Dy and D3 that stay outside the disk in which the move is
applied, and let ¢,,+1 be the other crossing of D; and D3 that stays within the disk.
We remark again that, for each i, we denote by x; the arc starting from a crossing
¢i. Put a:= p(x,) = p(zpy1) and z := p(rp41). We then have

_ (A @ a, _
A(Dy) = ( 0 fl(a,a) fala,a) — 1) ) A(Ds) = (An—l a'n) )

A a, a’
A(DB): < 0 ! fg(a,a)—l fl a7a))7

where a/, + a!! = a,, since the arc x,, in Dy is separated into the two arcs z,, and
ZTp41 in Dp and D3. We also have

Rr0w<D1) = (Bn frow(zaa)) 5 Rrow(DQ) = an
Rrow(DS) - (Bn 7frow(zaa)) )
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Ty Tn—1 Tp Tn—1 Tn42 Tn—1 LTn—1
Cn+1\ Cn+2A\
> Tn41 g > Tn41 g
Crt2 or Cnt1
Y 4
Tn+2 T T
D, Dy Dy Do
FIGURE 10
and
Cnfl C L Cnfl
Rcol(Dl) = fcol(a) ) RCOI(D2) = (,f n](CL)) ) RCOI(D3) = fcol(a)
fcol(a) o fcol(a)
In the abelianization of R*, we have
cor(D1) = —f1(a, a) cor(Dy), cor(D3) = fi(a,a) cor(Ds).

We have Bpa! — frow(2,a)f1(a,a) = 0, since Ryoy(D1) is a row relation matrix of
A(Dy). Tt follows that

(Reow (D1, p; frow)s A(D1, p; f1, £2), Reot(D1, p; feol))

A, a’ a’ 0 Cn-1
= (Bn .frow(zva) 0), 0 fl(a’a) —f1(a,a) 0 fcol(a)
0 0 0 o feor(a)
0
An—l a,, a’/r; 0 fC’nzl)
~ | B feowlza) 0). [ 0 0 —p@a) o], |l
0 0 0 @
0
Ap—1 an 0 0 fcnzl)
~|(B. 0 0),[ 0 0 —fi(a,a) 0 7 coéa
0 0 0 cor(Dy)~! 0
Cn—l
An—l an 0
- 0>,( 0 0 —fl(a,a)cor(D1)1>’ fc0(1)(a)
Canl
An—l a’n 0
~ | (B 0)’< 0 0 cor(Dz)_l)’ fco(l)(a)

= (E;J;(D%p; fl‘OW)V’Z{(DQap; f1,f2),1§:;1(D2,p; fcol))a

where o = cor(D;)~!. In a similar manner, we have

(Rrow(DB» P; frow)a ;‘I(D;g, P fla f2)7 -E(\:;(D& P fcol))
~ (Rrow(D27 P; .frow)v E(DZ, P; flv f2)7 EZI(D% P .fcol))~
9.2. Reidemeister move II. Let D, and D, be diagrams of an oriented link L

that differ by a single Reidemeister move II as shown in Figure 10. Let cq,...,c,
be n crossings of Dy and D5 that stay outside the disk in which the move is applied,
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and let ¢,4+1 and ¢, 42 be the other crossings of D; that stay within the disk. Put
a:=p(xy), b:=p(rp_1) and z := p(ry41) = p(rne2). We then have

Ap_o G a, 0 ay
A(Dl): 0 f2(a’vb) fl(a'vb) -1 0 3
0 fg(a, b) 0 7]. f1 (a, b)

A(DQ) - (An72 Qp_1 an) 5

where a/, + 0 + a!! = a,, since the arc x,, in Dy is separated into the three arcs
Ty, Tpt1 and x40 in Dp. We also have

Rrow(Dl) = (Bn frow(zaa<]b) 7frow(zaa<]b)) P Rrow(DQ) = an
and
Cn72
fcol(b) Cn,Q
Rcol(Dl) = fcol(a) s Rcol(D2) = fcol(b)
fcol(a < b) fcol(a)
Jeor(a)

In the abelianization of R*, we have

cor(Dq) = —fi(a,b) cor(Ds3).

We put

Ao a1 an 0 a;;

A= [ 0 folab) fi(ad) -1 0 | @ (cor(Dy)Y),
0 faa,b) fi(a,d) —1  fi(a,b)
An72 Qp—1 (£ 7% 0 a’;;

A2 .- | o 0 0 -1 0 @ (cor(D1)™),
0 0 0 -1 fi(ab)
An72 Ap—1 Qp, 0 a;‘i

A= 0 0 0 -1 0 |@co(D)Y),
0 0 0 0 fl(avb)
An—? Ap_1 an 0 0

A= 0 0 0 -1 0 |@/cor(D)),

A?2 = (An,Q Qnp_—1 an) 5] (7f1(a7b) Cor(Dl)il)a

and
Cn72 Cn72
fcol(b) fcol(b)
R2 . fcol(a) R2 ._ fcol(a)
Rcol,l T fcol(a q b) ’ Rcol,2 T Cni1
0 0
0 0

where ¢,41 = feor(a<b) — f1(a,d) feor(a) — fa(a,b) feor(b) = 0. We have B,a. —
Sfrow(z,a < b)fi(a,b) = 0, since Ryow(D1) is a row relation matrix of A(Dq). It
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Tn—-1 Tp Tn—1 Tp Tn—1 Tn42 Tn—1
/Cn+1 R2 Cnt32 R2
Tn41 < < Tn+1 <
\'Cn+2 or Cn+1
Tn+2 Tn Tn
Dy D, D D,
FIGURE 11

follows that

(Rrow(Dlap;frow) (D1,,0,f1,f2) col(DhP,fcol))
~((Ba frow(2,09b)  —frow(z,a9b) 0),Af* RI},)
~ ((Bn  frow(z,a<b) —frow(z,a<b) 0),AF* RI:,)
((Bn 0 —frow(z,a<b) 0), AR? Rc012)
(( 0 b2 ) AEQ’Rcom)
(
~ (R

~

2

~ Rrow(D%P;frow) As ,RCO1(D2,p; fcol))
row(D27p7frow) (D27P7f1,f2) col(D2;pafcol))

where b, 1o = — frow(2,a<b) + Bpa! fi(a,b)~! =

We next consider the situation depicted in Figure 11. Let Dy and D5 be diagrams
of an oriented link L that differ by a single Reidemeister move II as shown in
Figure 11. Let cq,...,c, be n crossings of D1 and D5 that stay outside the disk in
which the move is applied, and let ¢, 41 and ¢,,+2 be the other crossings of D; that
stay within the disk. Put a := p(z,41), b := p(xn—1) and z := p(rp41) = p(Tny2)-
We then have

Ap—2  an_1 al, 0 ay
A(Dl) = 0 f2<a’ab) -1 fl(avb) 0],

0 fafa,b) O fi(a,b) -1
A(DQ):(An_Q ap_1 an)7

where a), + 0 + a,, = a,, since the arc x, in D, is separated into the three arcs
Ty, Tnt1 and Tp4o in Di. We also have

Rrow(Dl) = (Bn *frow(zva<1b) frow(zaa<]b)) ’ Rrow(D2) = an
and
Cn—2
fcol(b) Cn—2
Rcol(Dl) = fcol(a < b) P RCOI(D2) = fcol(b)
fcol(a) fcol(a < b)
fcol(a N b)

In the abelianization of R*, we have
cor(Dy) = —f1(a,b) cor(Ds2).
In a similar manner as the previous situation, we have
(Rrow(Dl,P,fmw) (th’fl,fz) col(DhP,fcol))
~ (Ruow (D2, p; frow)s A(D2, p; f1, f2), Reot(D2, p; feo))-
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Tp—5 Tn—4 Tpn—3 Tp—5 Tn—4 Tpn—3

FIGURE 12

9.3. Reidemeister move III. Let D; and Dy be diagrams of an oriented link L
that differ by a single Reidemeister move I1II as shown in Figure 12. Let ¢1,...,¢p—3
be n — 3 crossings of D; and Dy that stay outside the disk in which the move is
applied, and let ¢,,_o, ¢,—1 and ¢, be the other crossings of D; and Ds as shown in

Figure 12. Put a := p(x,_5), b := p(xn_4), ¢ := p(x,_3) and z := (p(r, )<~ tc)<Lb.
We then have

A(Dy
An—6 QAp_5 Qp—yg an_3 0 an—-1 Qapn
. 0 f1 (a7 b) fz(a, b) 0 —1 0 0
o 0 0 f1 (b, C) fg(b, C) 0 -1 0 ’
0 0 0 fala<b,e)  fi(a<bye) 0 -1
A(Ds)
Anfﬁ Qp—5 Qp—4 Q3 0 Qn—1 an
_| 0 Alee 0 fiac) -1 0 0
o 0 0 f1 (b, C) f2 (b, C) 0 -1 0
0 0 0 0 fila<e,bac) fala<ebac) —1
and
Rrow(Dl)

= (Bu—s  frow(29b,a<4b)  frow(2<4¢,b<¢)  frow((z<b)<c, (a<b)<c)),
Rrow(D2)

:(Bn,g frow(z<c,a<¢)  frow((z<a)<e,b<c) frow((zdb)qc,(adb)dc)).

We also have

Cn—6 Cn—6
fcol (a) fCOl ((l)
fcol (b) fCO] (b)
Rcol(Dl) = fcol(c) s Rcol(DQ) = .fcol(c) 5
Seor(a<b) Sfear(a<c)
.fcol(b < C) fcol(b < C)
Sfeor((a<b)<c) Sfeor((a<b)<c)

and

Cor(th;fl,fQ) = Cor(DQap;flaf2)'
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We put
An76 Qn—5 Qp—4 Qn 3 0 anp-1 Qanp
R3 0 fl (CL, b) f2 (CL, b) 0 -1 0 0 1
Ao 0 filbe) b 0 -1 o | @B,
0 Up n—5 Up n—4 Up n—3 0 0 -1
An—G Qp_5 Qp—yg Qp_3 0 ap—1 Qpn
R3 0 0 0 0 -1 0 0 .
AT= 0 filbe) folbe) 0 -1 o | D)),
0 Upn—5 Onn—4 Up n—3 0 0 -1
An—6 Ap_5 Ap—4 ap_3 0 ap—1 Qp
R3 0 fi(a,c) 0 fala,e) —1 0 0 1
AT=1 o 0 A fabe 0 -1 o | @@,
0 An n—>5 An n—4 An n—3 0 0 -1
where

An,n—5 = fl(a<]b7c)f1(aab) = fl(aqcach)fl(aﬂC%

ann—a = f1(a<b,c)fa(a,b) = fa(a<c,b<c)fi(b,c),

apn—3 = fa(a<b,c) = fila<c,bac)fala, c) + fa(a<c,bac)fa(b,c).
We put

RS .— (Bn-s bu—z  frow(2<9¢,b<¢)  frow((z4b) e, (a<b)<c) 0),

where b,,—2 = frow(2<4b,a<b) — frow((2<b)<c, (a<b)<c)fi(a<b,c) = 0. We also
put

On—ﬁ
fcol(a)
fcol(b)
RR3 L fCOI(c)

col *— Cp_o ’

fcol(b < C)

Sfea((aab)<c)
0

where ¢,—2 = feo1(a <b) — f1(a,b) feor(a) — fa(a,b) feor(b) = 0. It follows that
(Rrow(tha f!‘ow) (Dlapa f17f2) col(Dlapv fcol))

(RE)%V,A /Zl(Dlap fcol))>
~ (RS, A3 RES)

TOW

~ (B, AR, Re(D2, p; feon) )

( row(D27Pa frow) (D2yp flafZ) col(DZ P; fcol))

where the third equivalence follows from

Cpn—2 = 0= fcol(a < C) - fl(aa C).fcol(a) - f2(aa C)fcol(c)

and the last equivalence follows from

bn2=0= frow(2<c,a<¢) — frow((2<4b)<c,(a<b)<c)fi(a<ec,bc),
Sfrow(z<¢,b<c)

= frow((z<a)<c,b<ac) — frow((z<4b) <c, (a<b)<c)fala<e,bac).
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