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Abstract. We introduce a quandle version of the normalized (twisted) Alexan-

der polynomial, which is an invariant of a pair of an oriented link and a quan-
dle representation. The invariant can be constructed by fixing each Alexander
pair, and we find various invariants in our framework, which include the quan-

dle cocycle invariant and the normalized (twisted) Alexander polynomial of

a knot. In this paper, we develop the theory of normalization with row and
column relations of matrices. The theory works for several row and column

relations, although the twisted Alexander polynomial is defined with one col-
umn relation. We give a formula of our invariant for the mirror image of an
oriented link, which explains why the Alexander polynomial fails to detect the

chirality of knots and why the quandle cocycle invariant effectively detects it
from a unified point of view. We also show that cohomologous Alexander pairs

yield the same invariant.

1. Introduction

Invariants derived from a (twisted) Alexander matrix, which include the Alexan-
der ideal [7], the Alexander polynomial [1], and the twisted Alexander polyno-
mial [16, 20], have been studied to reveal topological properties of knots and links
(e.g. [4, 14, 18]). We call such invariants Alexander type invariants. The normal-
ized twisted Alexander polynomial was introduced by Kitayama [15] for oriented
knots as a twisted version of the Alexander–Conway polynomial [5]. In this paper,
we introduce a quandle version of the normalized twisted Alexander polynomial,
where a quandle [13, 17] is a generalization of a group whose axioms correspond
to the Reidemeister moves for oriented links. The invariant can be constructed
by fixing each Alexander pair, and we find various invariants in our framework,
where an Alexander pair is a pair of maps corresponding to a linear extension of
a quandle [2]. In our framework, the normalized twisted Alexander polynomial is
not only recoverable (Proposition 7.4), but also extended to arbitrary links (Defini-
tion 7.3). In other words, we succeed in defining the normalized twisted Alexander
polynomial for any oriented links. Taniguchi [19] showed that a quandle version
of an Alexander type invariant is an essential generalization of a usual Alexander
type invariant by proving that the invariant with a suitable Alexander pair can be
described with a quandle cocycle invariant [3] for knots. Further, we show that the
quandle cocycle invariant is recoverable in our framework (Proposition 5.1).

An Alexander matrix is obtained from a group presentation by using the Fox
derivative. Two Alexander matrices A1, A2 are equivalent (A1 ∼ A2) if they are ob-
tained from isomorphic link groups. We then have the invariance of Alexander poly-
nomial as ∆(A1)

.
= ∆(A2), where the symbol

.
= indicates equality up to a unit fac-

tor. The twisted Alexander polynomial is defined with a twisted Alexander matrix
and one linear relation among the column vectors of the twisted Alexander matrix.
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In [11], we reformulated the process of defining the twisted Alexander polynomial by
introducing an equivalence relation for pairs (A,C) of matrices and their column re-
lation matrices. We defined a quandle version of the twisted Alexander polynomial
∆(A,C) and showed that (A1, C1) ∼ (A2, C2) implies ∆(A1, C1)

.
= ∆(A2, C2). In

this paper, we introduce an equivalence relation for triples (B,A,C) of matrices and
their row and column relation matrices and show that (B1, A1, C1) ∼ (B2, A2, C2)
implies ∆(B1, A1, C1) = ∆(B2, A2, C2) (Theorem 2.12). Applying ∆ to the triple
obtained from a link diagram with a quandle representation, we can define a quandle
version of the normalized twisted Alexander polynomial (Theorem 4.7).

We give a formula of our invariant for the mirror image of an oriented link (Propo-
sition 6.2). From the formula, we see that whether Alexander type invariants detect
the chirality of links is greatly affected by the parity of k(r +m), where k is the
dimension of matrices used in a quandle representation, r is the number of the com-
ponents of a link, and m is the number of row relations. We then understand why
the Alexander polynomial fails to detect the chirality of knots and why the quandle
cocycle invariant effectively detects it from a unified point of view. Furthermore,
by using the formula, we demonstrate that the granny knot is chiral, which implies
that the knot is not equivalent to the square knot (Example 6.3). We also show
that cohomologous Alexander pairs yield the same invariant (Proposition 8.3). In
particular, we see that the invariant with the Alexander pair corresponding to the
linear extension obtained from a G-family of quandles [9] coincides with the twisted
Alexander polynomial (Example 8.4).

This paper is organized as follows. In Section 2, we introduce an equivalence
relation on triples of matrices and their row and column relation matrices, and show
that ∆(B,A,C) is an invariant of the equivalence class. In Section 3, we recall the
definitions of a quandle, an Alexander pair and relation maps with some examples.
In Section 4, we introduce the quandle version of the normalized twisted Alexander
polynomial. In Section 5, we show that the quandle cocycle invariant is recoverable
in our framework. In Section 6, we evaluate our invariant for the trivial knot and
the mirror image of a link. In Section 7, we show that the Alexander–Conway
polynomial and the normalized twisted Alexander polynomial are recoverable in
our framework. In Section 8, we show that cohomologous Alexander pairs yield the
same invariant. In Section 9, we show the invariance of our invariant.

2. The Alexander invariant of triple matrices

In this section, we introduce an equivalence relation on triples of matrices and
their row and column relation matrices, and show that ∆(B,A,C) is an invariant
of the equivalence class.

Let R be a unital ring. We denote by En the n× n identity matrix. We denote
by ei the unit column vector whose components are all 0, except the ith component
that equals 1. We then have En = (e1, . . . , en). We denote by M(m,n;R) the set
ofm×n matrices over R and denote by GL(n;R) the set of n×n invertible matrices
over R. For matrices A,B over R, we define

A⊕B :=

(
A O
O B

)
.

For A = (aij) ∈M(m,n;R), i = (i1, . . . , is) and j = (j1, . . . , jt), we define

Ai,j :=


ai1j1 ai1j2 · · · ai1jt
ai2j1 ai2j2 · · · ai2jt
...

...
. . .

...
aisj1 aisj2 · · · aisjt

 .
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For example,

A(3,2),(1,4) =

(
a31 a34
a21 a24

)
for A = (aij) ∈M(4, 4;R). We further note that

Ai,j = (ei1 , . . . , eis)
TA(ej1 , . . . , ejt),

where we denote by BT the transpose of a matrix B.
Let Sn be the symmetric group on {1, . . . , n}. We denote by sgn σ the sign of

σ ∈ Sn. Put n := (1, . . . , n). For σ ∈ Sn, we set

σ(i1, . . . , is) := (σ(i1), . . . , σ(is)),

(i1, . . . , is) + k := (i1 + k, . . . , is + k).

For σ ∈ Sm and τ ∈ Sn, we define σ ⊕ τ ∈ Sm+n by

(σ ⊕ τ)(i) =

{
σ(i) if 1 ≤ i ≤ m,

τ(i−m) +m if m+ 1 ≤ i ≤ m+ n.

For σ ∈ Sn, we define Pσ := (eσ(1), . . . , eσ(n)) ∈ GL(n;R), which is the permutation

matrix associated with σ. Then, PσPτ = Pστ , P
−1
σ = PT

σ and Pσ⊕τ = Pσ ⊕ Pτ .
Let A ∈ M(d+m, d+ n;R), where d,m, n > 0. We call B ∈ M(m, d+m;R) a

row relation matrix of A if BA = O. A row relation matrix B ∈ M(m, d +m;R)
is regular if Bm,σ(m) is invertible for some σ ∈ Sd+m. We call C ∈ M(d+ n, n;R)
a column relation matrix of A if AC = O. A column relation matrix C ∈ M(d +
n, n;R) is regular if Cτ(n),n is invertible for some τ ∈ Sd+n.

Definition 2.1. Let R be a commutative ring. Let A ∈M(d+m, d+n;R). Let B ∈
M(m, d+m;R) be a regular row relation matrix of A, and let C ∈M(d+ n, n;R)
be a regular column relation matrix of A. We choose σ ∈ Sd+m and τ ∈ Sd+n so
that Bm,σ(m) and Cτ(n),n are invertible. We then define

∆(B,A,C) :=
sgnσ sgn τ detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n
.

We allow m or n to be zero; when m = 0 (resp. n = 0), we set M(m, d+m;R) =
{∅} (resp. M(d + n, n;R) = {∅}), where we call ∅ an empty matrix and regard it
as a regular relation matrix of A. We then define

∆(∅, A, C) :=
sgn τ detAd,τ(d+n)

detCτ(n),n
, ∆(B,A, ∅) :=

sgnσ detAσ(d+m),d

detBm,σ(m)
,

∆(∅, A, ∅) := detA.

The following proposition implies that ∆(B,A,C) is independent of the choices
of σ and τ .

Proposition 2.2. Let R be a commutative ring. Let A ∈ M(d + m, d + n;R).
Let B ∈ M(m, d +m;R) be a regular row relation matrix of A. Let σ, σ′ ∈ Sd+m

such that Bm,σ(m) and Bm,σ′(m) are invertible. Let C ∈M(d+n, n;R) be a regular
column relation matrix of A. Let τ, τ ′ ∈ Sd+n such that Cτ(n),n and Cτ ′(n),n are
invertible. Then we have

sgnσ sgn τ detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n
=

sgnσ′ sgn τ ′ detAσ′(d+m),τ ′(d+n)

detBm,σ′(m) detCτ ′(n),n
.

Proof. We choose σ1, σ
′
1 ∈ Sm, σ2, σ

′
2 ∈ Sd, τ1, τ

′
1 ∈ Sn and τ2, τ

′
2 ∈ Sd so that

Bm,σ(d+m)Pσ1⊕σ2
=

(
B1 B2 B3 B4

)
,

Bm,σ′(d+m)Pσ′
1⊕σ′

2
=

(
B1 B3 B2 B4

)
,
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P−1
σ1⊕σ2

Aσ(d+m),τ(d+n)Pτ1⊕τ2 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 ,

P−1
σ′
1⊕σ′

2
Aσ′(d+m),τ ′(d+n)Pτ ′

1⊕τ ′
2
=


A11 A13 A12 A14

A31 A33 A32 A34

A21 A23 A22 A24

A41 A43 A42 A44


and

P−1
τ1⊕τ2Cτ(d+n),n =


C1

C2

C3

C4

 , P−1
τ ′
1⊕τ ′

2
Cτ ′(d+n),n =


C1

C3

C2

C4

 .

for some Bi ∈ M(m,mi;R), Aij ∈ M(mi, nj ;R) and Ci ∈ M(ni, n;R), where
m2 = m3, n2 = n3, m1 +m2 = m, n1 + n2 = n and m3 +m4 = n3 + n4 = d. By
the equalities

Bm,σ(d+m) = BPσ, Aσ(d+m),τ(d+n) = P−1
σ APτ , Cτ(d+n),n = P−1

τ C,

we have B1A1j + · · ·+B4A4j = O and Ai1C1 + · · ·+Ai4C4 = O. We then have

∣∣∣∣∣∣
En1

O O
O A33 A34

O A43 A44

∣∣∣∣∣∣
∣∣∣∣∣∣
C1 O
C3 O
O En4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
C1 O

A33C3 A34

A43C3 A44

∣∣∣∣∣∣
=

∣∣∣∣∣∣
C1 O

−A31C1 −A32C2 −A34C4 A34

−A41C1 −A42C2 −A44C4 A44

∣∣∣∣∣∣
=

∣∣∣∣∣∣
C1 O

−A32C2 A34

−A42C2 A44

∣∣∣∣∣∣
= (−1)n2

∣∣∣∣∣∣
C1 O

A32C2 A34

A42C2 A44

∣∣∣∣∣∣
= (−1)n2

∣∣∣∣∣∣
En1

O O
O A32 A34

O A42 A44

∣∣∣∣∣∣
∣∣∣∣∣∣
C1 O
C2 O
O En4

∣∣∣∣∣∣ ,
which implies ∣∣∣∣A33 A34

A43 A44

∣∣∣∣ ∣∣∣∣C1

C3

∣∣∣∣ = (−1)n2

∣∣∣∣A32 A34

A42 A44

∣∣∣∣ ∣∣∣∣C1

C2

∣∣∣∣ .
In a similar manner, we have

∣∣B1 B3

∣∣ ∣∣∣∣A32 A34

A42 A44

∣∣∣∣ = (−1)m2
∣∣B1 B2

∣∣ ∣∣∣∣A22 A24

A42 A44

∣∣∣∣ .
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Hence we have

sgnσ sgn τ detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n
=

sgnσ sgn τ sgnσ2 sgn τ2

∣∣∣∣A33 A34

A43 A44

∣∣∣∣
sgnσ1

∣∣B1 B2

∣∣ sgn τ1 ∣∣∣∣C1

C2

∣∣∣∣
=

sgnσ′ sgn τ ′ sgnσ′
2 sgn τ

′
2

∣∣∣∣A22 A24

A42 A44

∣∣∣∣
sgnσ′

1

∣∣B1 B3

∣∣ sgn τ ′1 ∣∣∣∣C1

C3

∣∣∣∣
=

sgnσ′ sgn τ ′ detAσ′(d+m),τ ′(d+n)

detBm,σ′(m) detCτ ′(n),n
.

where we remark that

sgnσ′ sgnσ′
1 sgnσ

′
2 = (−1)m2 sgnσ sgnσ1 sgnσ2,

sgn τ ′ sgn τ ′1 sgn τ
′
2 = (−1)n2 sgn τ sgn τ1 sgn τ2.

□
Let R be a unital ring. We denote by R× the group of units of R. We define

Pij , Eij(r), Ei(u) ∈ GL(n;R) by

Pij = (e1, . . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1, . . . , en),

Eij(r) = (e1, . . . , ej−1, ej + rei, ej+1, . . . , en) (i ̸= j),

Ei(u) = (e1, . . . , ei−1, uei, ei+1, . . . , en)

for r ∈ R and u ∈ R×. We note that P−1
ij = Pij , Eij(r)

−1 = Eij(−r) and

Ei(u)
−1 = Ei(u

−1).

Definition 2.3. For matrices A and A′ over a unital ring R and their relation
matrices B,B′, C and C ′, we write (B,A,C) ∼ (B′, A′, C ′) if they are related by a
finite sequence of the following transformations:

• (B,A,C) ↔ (BEij(r)
−1, Eij(r)A,C) (r ∈ R),

• (B,A,C) ↔ (B,AEij(r), Eij(r)
−1C) (r ∈ R),

• (B,A,C) ↔ (BEi(u), Ei(u)
−1AEj(u), Ej(u)

−1C) (u ∈ R×),

• (B,A,C) ↔
((
B 0

)
,

(
A 0
0 1

)
,

(
C
0

))
.

When B = ∅ (resp. C = ∅), we replace the first (resp. third) matrices in the above
transformations with ∅.

Remark 2.4. When (B,A,C) ∼ (B′, A′, C ′), B (resp. C) is a row (resp. col-
umn) relation matrix of A if and only if B′ (resp. C ′) is a row (resp. column)
relation matrix of A′. When R is a field, B (resp. C) is regular if and only if

B′ (resp. C ′) is regular. We remark that

((
1 0
0 1

) (
1 0
0 0

))
is regular, while((

0 0
0 1

) (
1 0
0 0

))
is not regular as matrices over M(2, 2;Q).

We may regard a matrix in M(m,n;M(k, k;R)) as a matrix in M(km, kn;R).
We call such a matrix a flat matrix. We denote by A the flat matrix of a matrix A.

Remark 2.5. Suppose that R is a Euclidean domain. For S ∈ M(k, k;R) and

U ∈ GL(k;R), the flat matrices Est(S) and Es(U) can be represented as products
of Eij(r)’s and Ei(u)’s, where r ∈ R and u ∈ R×. Therefore,

(B,A,C) ∼ (B′, A′, C ′)
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implies

(B,A,C) ∼ (B′, A′, C ′).

Proposition 2.6. (1) For u ∈ R×, we have

(B,A,C) ∼ (BEi(u)
−1Ej(u), Ej(u)

−1Ei(u)A,C)

∼ (B,AEi(u)Ej(u)
−1, Ej(u)Ei(u)

−1C).

(2) For a ∈ R and u1, u2 ∈ R×, we have(
B 0 0

)
, A⊕ (a)⊕ (u1u2),

C0
0

 ∼
((
B 0

)
, A⊕ (u1au2),

(
C
0

))

∼
((
B 0

)
, A⊕ (u2au1),

(
C
0

))
.

Proof. (1) We have

(B,A,C) ∼ (BEi(u)
−1, Ei(u)AEj(u)

−1, Ej(u)C)

∼ (BEi(u)
−1Ej(u), Ej(u)

−1Ei(u)A,C).

In the same way, we have

(B,A,C) ∼ (B,AEi(u)Ej(u)
−1, Ej(u)Ei(u)

−1C).

(2) We have the equivalences, since the left-hand side is equivalent toB′, A⊕ (u1au2)⊕ (1),

C0
0

 and

B′, A⊕ (u2au1)⊕ (1),

C0
0

 ,

where B′ =
(
B 0 0

)
.

□

It is easy to see that the third transformation of Definition 2.3 can be replaced
with the pair of the following transformations:

• (B,A,C) ↔ (BEi(u)
−1Ej(u), Ej(u)

−1Ei(u)A,C) (u ∈ R×),
• (B,A,C) ↔ (B,AEi(u)Ej(u)

−1, Ej(u)Ei(u)
−1C) (u ∈ R×).

Proposition 2.7. We have the following.

(1) (B,A,C) ∼ (BPijEj(−1), Ej(−1)PijA,C).
(2) (B,A,C) ∼ (B,APijEj(−1), Ej(−1)PijC).
(3) (B,A,C) ∼ (BPij , PijAPkl, PklC).

Proof. (1) We have

(B,A,C) ∼ (BEij(1)
−1, Eij(1)A,C)

∼ (BEij(1)
−1Eji(−1)−1, Eji(−1)Eij(1)A,C)

∼ (BEij(1)
−1Eji(−1)−1Eij(1)

−1, Eij(1)Eji(−1)Eij(1)A,C)

= (BPijEj(−1), Ej(−1)PijA,C).

(2) In the same way as (1), we have the equivalence.
(3) From (1) and (2), we have

(B,A,C) ∼ (BPijEj(−1), Ej(−1)PijA,C)

∼ (BPijEj(−1), Ej(−1)PijAPklEl(−1), El(−1)PklC)

∼ (BPij , PijAPkl, PklC).

□
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By i ∈ (n1, . . . , ns), we mean i ∈ {n1, . . . , ns}. Let R be a commutative ring.
Let A ∈M(d+m, d+ n;R). Let B ∈M(m, d+m;R) be a row relation matrix of
A, and let C ∈M(d+n, n;R) be a column relation matrix of A. We then have the
following lemmas:

Lemma 2.8. Suppose that R is a field. For regular relation matrices B and C of
A, we have

∆(B,A,C) = ∆(BEij(r)
−1, Eij(r)A,C).

Proof. We choose τ ∈ Sd+n so that Cτ(n),n is invertible. We denote by bi the ith
column vector of B and by ai the ith row vector of A. It is sufficient show

detAσ(d+m),τ(d+n)

detBm,σ(m)
=

det(Eij(r)A)σ(d+m),τ(d+n)

det(BEij(r)−1)m,σ(m)
(1)

for some σ ∈ Sd+m.
When bi = bj = 0, we can choose σ ∈ Sd+m so that

Bm,σ(m) ∈ GL(m;R) and Bm,σ(d+m) =
(
bi bj B2

)
for some B2 ∈M(m, d− 2;R). We then have

Bm,σ(m) = (BEij(r)
−1)m,σ(m),

Aσ(d+m),τ(d+n) =

ai

aj

A2

 , (Eij(r)A)σ(d+m),τ(d+n) =

ai + raj

aj

A2


for some A2 ∈ M(d − 2, d;R). The equality (1) follows from detAσ(d+m),τ(d+n) =

det(Eij(r)A)σ(d+m),τ(d+n).

When bi = 0 and bj ≠ 0, we can choose σ ∈ Sd+m so that

Bm,σ(m) =
(
bj B1

)
∈ GL(m;R) and Bm,σ(d+m) =

(
bi B2

)
for some B1 ∈M(m,m− 1;R) and B2 ∈M(m, d− 1;R). We then have

(BEij(r)
−1)m,σ(m) =

(
bj − rbi B1

)
= Bm,σ(m)

and

Aσ(m),τ(d+n) =

(
aj

A1

)
, (Eij(r)A)σ(m),τ(d+n) =

(
aj

A1

)
,

Aσ(d+m),τ(d+n) =

(
ai

A2

)
, (Eij(r)A)σ(d+m),τ(d+n) =

(
ai + raj

A2

)
for some A1 ∈M(m− 1, d;R) and A2 ∈M(d− 1, d;R). From

bjaj +B1A1 + biai +B2A2 = BA = O,

we have (
bj B1

)(aj

A1

)
= −biai −B2A2 = −B2A2.

Since
(
bj B1

)
is invertible, we have(

aj

A1

)
= −

(
bj B1

)−1
B2A2,

which implies that aj is a linear combination of row vectors of A2. We then have
detAσ(d+m),τ(d+n) = det(Eij(r)A)σ(d+m),τ(d+n), which implies the equality (1).

When bi ̸= 0 and rank(bi, bj) = 1, we can choose σ ∈ Sd+m so that

Bm,σ(m) =
(
bi B1

)
∈ GL(m;R) and Bm,σ(d+m) =

(
bj B2

)
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for some B1 ∈M(m,m− 1;R) and B2 ∈M(m, d− 1;R). We then have

(BEij(r)
−1)m,σ(m) = Bm,σ(m),

(Eij(r)A)σ(d+m),τ(d+n) = Aσ(d+m),τ(d+n),

which imply the equality (1).
When rank(bi, bj) = 2, we can choose σ ∈ Sd+m so that

Bm,σ(m) =
(
bi bj B1

)
∈ GL(m;R)

for some B1 ∈M(m,m− 2;R). We then have

(BEij(r)
−1)m,σ(m) =

(
bi bj − rbi B1

)
,

(Eij(r)A)σ(d+m),τ(d+n) = Aσ(d+m),τ(d+n).

The equality (1) follows from detBm,σ(m) = det(BEij(r)
−1)m,σ(m). This completes

the proof. □

Lemma 2.9. Suppose that R is a field. For regular relation matrices B and C of
A, we have

∆(B,A,C) = ∆(B,AEij(r), Eij(r)
−1C).

Proof. This lemma is proved in the same manner as the previous lemma. □

Lemma 2.10. For regular relation matrices B and C of A, we have

∆(B,A,C) = ∆(BEi(u), Ei(u)
−1AEj(u), Ej(u)

−1C)

for u ∈ R×.

Proof. We choose σ ∈ Sd+m and τ ∈ Sd+n so that Bm,σ(m) and Cτ(n),n are invert-
ible. We then have

det(Ei(u)
−1AEj(u))σ(d+m),τ(d+n)

det(BEi(u))m,σ(m) det(Ej(u)−1C)τ(n),n

=
u−δ(i∈σ(d+m))+δ(j∈τ(d+n)) detAσ(d+m),τ(d+n)

uδ(i∈σ(m)) detBm,σ(m)u−δ(j∈τ(n)) detCτ(n),n

=
detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n
,

where δ(x ∈ S) :=

{
1 if x ∈ S,

0 otherwise.
Hence we have the desired equality. □

Lemma 2.11. For regular relation matrices B and C of A, we have

∆(B,A,C) = ∆(
(
B 0

)
,

(
A 0
0 1

)
,

(
C
0

)
).

Proof. We choose σ ∈ Sd+m and τ ∈ Sd+n so that Bm,σ(m) and Cτ(n),n are in-
vertible. We define σ′ := σ ⊕ 1S1 ∈ Sd+m+1 and τ ′ := τ ⊕ 1S1 ∈ Sd+n+1. Then,(
B 0

)
m,σ′(m)

and

(
C
0

)
τ ′(n),n

are invertible, since they coincide with Bm,σ(m) and

Cτ(n),n, respectively. We also have(
A 0
0 1

)
σ′(d+1+m),τ ′(d+1+n)

=

(
Aσ(d+m),τ(d+n) 0

0 1

)
.
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We then have

∆(B,A,C) =
sgnσ sgn τ detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n

=

sgnσ′ sgn τ ′ det

(
A 0
0 1

)
σ′(d+1+m),τ ′(d+1+n)

det
(
B 0

)
m,σ′(m)

det

(
C
0

)
τ ′(n),n

= ∆(
(
B 0

)
,

(
A 0
0 1

)
,

(
C
0

)
),

where we note that sgn σ′ = sgnσ and sgn τ ′ = sgn τ . □
From the above lemmas, we have the following theorem.

Theorem 2.12. Suppose that R is a field. Let A be a matrix over R. Let B
and C be a regular row relation matrix and a regular column relation matrix of A,
respectively. Then ∆(B,A,C) is an invariant of the equivalence class of (B,A,C).
That is, if (B,A,C) ∼ (B′, A′, C ′), then ∆(B,A,C) = ∆(B′, A′, C ′).

From Remark 2.5, we also have the following theorem.

Theorem 2.13. Suppose that R = M(k, k;F ), where F is a field. Let A be a
matrix over R. Let B and C be a row relation matrix and a column relation matrix
of A, respectively. Suppose that B and C are regular. Then ∆(B,A,C) is an
invariant of the equivalence class of (B,A,C). That is, if (B,A,C) ∼ (B′, A′, C ′),
then ∆(B,A,C) = ∆(B′, A′, C ′).

From the definition of ∆(∅, A, ∅), we have the following proposition.

Proposition 2.14. Suppose that R is a commutative ring. Let A be a matrix over
R. Then ∆(∅, A, ∅) is an invariant of the equivalence class of (∅, A, ∅). That is, if
(∅, A, ∅) ∼ (∅, A′, ∅), then ∆(∅, A, ∅) = ∆(∅, A′, ∅).

From Remark 2.5, we also have the following proposition.

Proposition 2.15. Suppose that R =M(k, k;Z), where Z is a Euclidean domain.
Let A be a matrix over R. Then ∆(∅, A, ∅) is an invariant of the equivalence class
of (∅, A, ∅). That is, if (∅, A, ∅) ∼ (∅, A′, ∅), then ∆(∅, A, ∅) = ∆(∅, A′, ∅).

3. Alexander pairs and relation maps

In this section, we recall the definitions of a quandle and a quandle coloring,
which is regarded as a quandle homomorphism from the fundamental quandle to
a quandle. We also recall the definitions of an Alexander pair and relation maps
with some examples.

A quandle [13, 17] is a non-empty set Q equipped with a binary operation ◁ :
Q×Q→ Q satisfying the following axioms:

• For any a ∈ Q, a ◁ a = a.
• For any a ∈ Q, the map ◁a : Q→ Q defined by ◁a(x) = x ◁ a is bijective.
• For any a, b, c ∈ Q, (a ◁ b) ◁ c = (a ◁ c) ◁ (b ◁ c).

We denote (◁a)n : Q→ Q by ◁na for n ∈ Z. Let (Q1, ◁1) and (Q2, ◁2) be quandles.
A quandle homomorphism from Q1 to Q2 is defined to be a map f : Q1 → Q2

satisfying f(a ◁1 b) = f(a) ◁2 f(b) for any a, b ∈ Q1. For a quandle (Q, ◁), a Q-set
is a non-empty set Y equipped with a map ◁ : Y ×Q→ Y satisfying the following
axioms:

• For any a ∈ Q, the map ◁a : Y → Y defined by ◁a(y) = y ◁ a is bijective.
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• For any y ∈ Y and a, b ∈ Q, we have (y ◁ a) ◁ b = (y ◁ b) ◁ (a ◁ b).

Here, we note that we use the same symbol ◁ as the binary operation of Q for the
map of a Q-set. We denote (◁a)n : Y → Y by ◁na for n ∈ Z. Let (Y1, ◁1) and
(Y2, ◁2) be Q-sets. A Q-set homomorphism from Y1 to Y2 is defined to be a map
f : Y1 → Y2 satisfying f(y◁1a) = f(y)◁2a for any y ∈ Y and a ∈ Q. The associated
group AsQ of a quandle Q is a group defined by the presentation:

⟨x (x ∈ Q) |x ◁ y = y−1xy (x, y ∈ Q)⟩.
Then AsQ is a Q-set with y ◁ a = ya. We note that a Q-set homomorphism
f : AsQ→ Y is determined by the image f(1) of the identity element 1 ∈ AsQ.

Throughout this paper, for a positive integer n, we denote the cyclic group Z/nZ
of order n as Zn. We define a binary operation ◁ on Zn by a ◁ b = 2b − a. Then,
(Zn, ◁) is a quandle. We call it the dihedral quandle of order n and denote it by
Rn.

Let G be a group and n an integer. We define a binary operation ◁ on G by
a◁b = b−nabn. Then, (G, ◁) is a quandle. We call it the n-fold conjugation quandle
of G and denote it by ConjnG. The 1-fold conjugation quandle of G is called the
conjugation quandle of G and denoted by ConjG.

Let G be a group. We define a binary operation ◁ on G by a ◁ b = ba−1b. Then,
(G, ◁) is a quandle. We call it the core quandle of G and denote it by CoreG.

Let L be an oriented link. Let N(L) be the regular neighborhood of L, and E(L)
the exterior of L. Fix a point p in E(L). The set of homotopy classes of paths from
the boundary ∂N(L) of N(L) to the point p forms a quandle structure with the
binary operation ◁ defined by

[α] ◁ [β] = [α · β−1 ·mβ · β],
where β−1 represents the reverse path of β and mβ is the meridian loop on ∂N(L)
based at the initial point of β with the orientation such that the linking number of
L and mβ is +1. We then denote the quandle by Q(L) and call it the fundamental
quandle of L.

Let D be a diagram of an oriented link L. A normal orientation is often used
to represent an orientation of a link on its diagram. The normal orientation is
obtained by rotating the usual orientation counterclockwise by π/2 on the diagram.
We denote by C(D) and A(D) the sets of crossings and arcs of D, respectively. It is
known that the fundamental quandle Q(L) is represented by the arcs and crossings
as follows. For a crossing c, we denote the relation uc ◁ vc = wc by rc, where vc is
the over-arc of c and uc, wc are the under-arcs of c such that the normal orientation
of vc points from uc to wc (see the left picture of Figure 1). Then, the fundamental
quandle Q(L) is generated by the arcs x (x ∈ A(D)) and has the relations rc
(c ∈ C(D)); that is, a presentation of Q(L) is given by

⟨x (x ∈ A(D)) | rc (c ∈ C(D))⟩.(2)

This is called the Wirtinger presentation of Q(L) with respect to D. We remark
that we obtain a presentation of the fundamental group G(L) := π1(E(L), p) by
replacing uc ◁ vc = wc by v−1

c ucvcw
−1
c in (2), which is the Wirtinger presentation

of G(L) with respect to D. A quandle representation of Q(L) to Q is a quandle
homomorphism from Q(L) to Q. For a group representation ρ : G(L) → G, we call
the quandle homomorphism ρ ◦ φ : Q(L) → ConjG the induced quandle represen-
tation, where φ : Q(L) → G(L) is the map which sends [α] to [α−1 ·mα · α]. For
further details, we refer the reader to [6, 13].

Let Q be a quandle. A Q-coloring of D is a map C : A(D) → Q satisfying the
condition

C(uc) ◁ C(vc) = C(wc)
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for each crossing c ∈ C(D), where uc, vc and wc are the arcs forming the crossing
c as shown in the left picture of Figure 1. A constant map is a type of Q-coloring
called a trivial Q-coloring. We denote by ColQ(D) the set of Q-colorings of D. From
the presentation (2), a Q-coloring of D can be regarded as a quandle representation
of Q(L) to Q. Let D′ be a diagram of L obtained by applying a single Reidemeister
move to D. Then, each Q-coloring C of D has a unique Q-coloring C ′ of D′ that
coincides with C except in the disk in which the move is applied. This gives a one-
to-one correspondence between ColQ(D) and ColQ(D

′). Since the two Q-colorings
C and C ′ represent the same quandle representation ρ, we often use ρ instead of C
or C ′.

We denote by SA(D) the set of semi-arcs of D, where a semi-arc is a piece of
a curve such that the end points of the piece are crossings. We denote by R(D)
the set of complementary regions of D. We denote by r(α) and r′(α) the regions
facing a semi-arc α such that the normal orientation of α points from r(α) to r′(α)
(see the right picture of Figure 1). Let Y be a Q-set. A QY -coloring ρY of D is an
extension of a Q-coloring ρ of D that assigns an element of Y to each region of D
satisfying the condition

ρY (r(α)) ◁ ρ(α) = ρY (r
′(α))

for each semi-arc α ∈ A(D), where the color ρ(α) of a semi-arc α is defined by the
color of the arc from which the semi-arc originates. We remark that the colors of
the regions are determined by those of the arcs and one region. We denote by rout
the outermost region of a link diagram. We denote by ρ̃ the QAsQ-coloring that is
the extension of ρ satisfying ρ̃(rout) = 1. The Alexander numbering nA : R(D) → Z
is a map satisfying nA(rout) = 0 and nA(r

′(α)) = nA(r(α)) + 1 for any semi-arc α.
Let Q be a quandle, and let Y := Z be the Q-set with y ◁ a := y + 1. Then the
Alexander numbering gives a QY -coloring.

Let (Q, ◁) be a quandle. Let R be a unital ring. The pair (f1, f2) of maps
f1, f2 : Q×Q→ R is an Alexander pair if f1 and f2 satisfy the following conditions:

• For any a ∈ Q, f1(a, a) + f2(a, a) = 1.
• For any a, b ∈ Q, f1(a, b) is invertible.
• For any a, b, c ∈ Q,

f1(a ◁ b, c)f1(a, b) = f1(a ◁ c, b ◁ c)f1(a, c),

f1(a ◁ b, c)f2(a, b) = f2(a ◁ c, b ◁ c)f1(b, c), and

f2(a ◁ b, c) = f1(a ◁ c, b ◁ c)f2(a, c) + f2(a ◁ c, b ◁ c)f2(b, c).

Definition 3.1 ([11]). Let (f1, f2) be an Alexander pair. A column relation map
fcol : Q→ R is a map satisfying

fcol(a ◁ b) = f1(a, b)fcol(a) + f2(a, b)fcol(b)

for any a, b ∈ Q.

Proposition 3.2 ([11]). For each c ∈ Q, the map fcol : Q→ R defined by fcol(a) =
f2(a ◁

−1 c, c) is a column relation map.
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Definition 3.3 ([10]). Let (f1, f2) be an Alexander pair. Let Y be a Q-set. A row
relation map frow : Y ×Q→ R is a map satisfying

frow(y, a) = frow(y ◁ b, a ◁ b)f1(a, b), and

frow(y ◁ a, b) = frow(y, b) + frow(y ◁ b, a ◁ b)f2(a, b)

for any a, b ∈ Q and y ∈ Y .

Proposition 3.4 ([10]). Let Y be the Q-set Q×R× with (y, z)◁a := (y◁a, f1(y, a)z).
The map frow : Y × Q → R defined by frow((y, z), a) = z−1f1(y, a)

−1f2(y, a) is a
row relation map.

Let Y, Y ′ be a Q-set, and let φ : Y ′ → Y be a Q-set homomorphism. Let
frow : Y ×Q→ R be a row relation map. Then the map f ′row : Y ′×Q→ R defined
by f ′row(y, a) = frow(φ(y), a) is a row relation map. In particular, for z ∈ Y , the
map f ′row : AsQ × Q → R defined by f ′row(y, a) = frow(φz(y), a) is a row relation
map, where φz : AsQ → Y is the Q-set homomorphism satisfying φz(1) = z. We
give some examples of Alexander pairs and relation maps.

Example 3.5. Let Q be a quandle and R a unital ring. Let f : Q → ConjR× be
a quandle homomorphism. Let Y be the Q-set R× with y ◁ a := f(a)−1y.

(1) The maps f1, f2 : Q × Q → R defined by f1(a, b) = f(b)−1 and f2(a, b) =
1 − f(b)−1 form an Alexander pair. The map fcol : Q → R defined by
fcol(a) = 1 is a column relation map, and the map frow : Y × Q → R
defined by frow(y, a) = y−1(f(a)− 1) is a row relation map.

(2) The maps f1, f2 : Q × Q → R defined by f1(a, b) = f(b)−1 and f2(a, b) =
f(b)−1f(a)−f(b)−1 form an Alexander pair. The map fcol : Q→ R defined
by fcol(a) = f(a)−1 is a column relation map, and the map frow : Y ×Q→
R defined by frow(y, a) = y−1 is a row relation map.

By setting f(x) = xn, we have the following corollary:

Example 3.6. Let G be a group, and let Q := ConjnG. Let R[G] be the group
ring of G over a commutative ring R. Let Y be the Q-set R[G]× with y◁a := a−ny.

(1) The maps f1, f2 : Q × Q → R[G] defined by f1(a, b) = b−n and f2(a, b) =
1 − b−n form an Alexander pair. The map fcol : Q → R[G] defined by
fcol(a) = 1 is a column relation map, and the map frow : Y × Q → R[G]
defined by frow(y, a) = y−1(an − 1) is a row relation map.

(2) The maps f1, f2 : Q × Q → R[G] defined by f1(a, b) = b−n and f2(a, b) =
b−nan − b−n form an Alexander pair. The map fcol : Q→ R[G] defined by
fcol(a) = an−1 is a column relation map, and the map frow : Y ×Q→ R[G]
defined by frow(y, a) = y−1 is a row relation map.

Example 3.7. Let G be a group, and let Q := CoreG. Let R[G] be the group ring
of G over a commutative ring R. Let Y be the Q-set Q×R[G]× with (y, z) ◁ a :=
(ay−1a,−ay−1z). The maps f1, f2 : Q × Q → R[G] defined by f1(a, b) = −ba−1

and f2(a, b) = ba−1 + 1 form an Alexander pair. The map fcol,c : Q → R[G]
defined by fcol,c(a) = ac + 1 is a column relation map for c ∈ Q, and the map
frow : Y ×Q → R[G] defined by frow((y, z), a) = −z−1(ya−1 + 1) is a row relation
map.

Example 3.8. Let Q := Rn. Let Z be a commutative ring, and let R := Z[t]/(P ),
where P is a factor of tn − 1 in Z[t]. Let Y be the Q-set Q×R× with (y, z) ◁ a :=
(2a − y,−ta−yz). The maps f1, f2 : Q × Q → R defined by f1(a, b) = −tb−a and
f2(a, b) = tb−a + 1 form an Alexander pair. The map fcol,c : Q → R defined by
fcol,c(a) = ta+c+1 is a column relation map for c ∈ Q, and the map frow : Y ×Q→
R defined by frow((y, z), a) = −z−1(ty−a + 1) is a row relation map.
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Figure 2

4. The normalized quandle twisted Alexander invariant

Hereafter, we assume that link diagrams satisfy the condition that every compo-
nent has at least one undercrossing, and we label the arc starting from a crossing ci
as xi (see the left picture of Figure 2). It is easy to see that two diagrams satisfying
this condition represent the same link if and only if they are related by a finite
sequence of Reidemeister moves on link diagrams that satisfy the condition.

Let L be an oriented link, and let D be a diagram of L with n crossings c1, . . . , cn.
We note again that xi denotes the arc starting from a crossing ci for each i. Then,
C(D) = {c1, . . . , cn} and A(D) = {x1, . . . , xn}. We denote by ui, wi and vi the
under-arcs and over-arc, respectively, of a crossing ci such that the normal orien-
tation of vi points from ui to wi (see the right picture of Figure 2). We denote by
sgn(c) the sign of a crossing c. We define wr(D) :=

∑
c∈C(D) sgn(c).

Let Q be a quandle and R a unital ring. Let (f1, f2) be an Alexander pair of
maps f1, f2 : Q×Q → R, and let ρ : Q(L) → Q be a quandle representation. The
(f1, f2)-twisted Alexander matrix A(D, ρ; f1, f2) of (D, ρ) is the n×n matrix whose
(i, j)-entry is

δ(ui, xj)f1(ai, bi) + δ(vi, xj)f2(ai, bi)− δ(wi, xj),

where ai = ρ(ui), bi = ρ(vi), and

δ(x, y) :=

{
1 if x = y,

0 otherwise.

The (f1, f2)-twisted Alexander matrix of the diagram depicted in Figure 3 is −1 f2(ρ(x3), ρ(x2)) f1(ρ(x3), ρ(x2))
f1(ρ(x1), ρ(x3)) −1 f2(ρ(x1), ρ(x3))
f2(ρ(x2), ρ(x1)) f1(ρ(x2), ρ(x1)) −1

 .

Remark 4.1. Let ⟨x1, . . . , xn | r1, . . . , rn⟩ be the Wirtinger presentation of Q(L)
with respect to D, where ri is the relation ui ◁ vi = wi. In [12], for an Alexander

pair f = (f1, f2), we introduced the notion of an f -derivative
∂f

∂xj
. Then the

(f1, f2)-twisted Alexander matrix A(D, ρ; f1, f2) coincides with
(

∂f◦ρ2

∂xj
(ri)

)
, where

f ◦ ρ2 = (f1 ◦ (ρ× ρ), f2 ◦ (ρ× ρ)).

Let L = K1 ∪ · · · ∪Kr be an oriented r-component link, and let D be a diagram
of L. Let D(Ki) be the diagram of Ki that is obtained by removing the other
components fromD. We denote by A(D;Ki) the set of arcs ofD that originate from
Ki, and denote by C(D;Ki) the set of crossings of D whose under arcs originate
from Ki. We define wr(D;Ki) :=

∑
c∈C(D;Ki)

sgn(c). We then have wr(D;Ki) =

wr(D(Ki)) + lk(Ki, L −Ki) and wr(D) =
∑r

i=1 wr(D;Ki). We denote by C+(D)
and C−(D) the sets of positive and negative crossings of D, respectively. We denote
by #S the number of elements of a set S.

Definition 4.2. Let (f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R,
and let ρ : Q(L) → Q be a quandle representation. We fix ω1, . . . , ωr ∈ R× so
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that ωi = f1(ρ(α), ρ(α)) for some α ∈ A(D;Ki). We define the correction value
cor(D, ρ; f1, f2) of (D, ρ) by

cor(D, ρ; f1, f2) = (−1)#C+(D)
r∏

i=1

ω
rot(D(Ki))+wr(D(Ki))+1

2
i

∏
c∈C−(D)

f1(ρ(uc), ρ(vc)),

where rot(D(Ki)) is the rotation number of D(Ki).

We remark that cor(D, ρ; f1, f2) ∈ R× because rot(D(Ki)) + wr(D(Ki)) + 1 is
always even. For the diagram depicted in Figure 3, we have

cor(D, ρ; f1, f2) = (−1)3ω
−2+3+1

2
1 = −ω1,

as #C+(D) = 3, C−(D) = ∅, rot(D) = −2 and wr(D) = 3.
We define

Ã(D, ρ; f1, f2) :=

(
A(D, ρ; f1, f2) 0

0 cor(D, ρ; f1, f2)
−1

)
.

We call Ã(D, ρ; f1, f2) the normalized (f1, f2)-twisted Alexander matrix of (D, ρ).
For column relation maps fcol,1, . . . , fcol,m : Q→ R, we define

Rcol(D, ρ; fcol,1, . . . , fcol,m) :=

fcol,1(ρ(x1)) · · · fcol,m(ρ(x1))
...

. . .
...

fcol,1(ρ(xn)) · · · fcol,m(ρ(xn))

 .

We denote Rcol(D, ρ; fcol,1, . . . , fcol,m) by Rcol(D, ρ;fcol) for short.

Proposition 4.3 ([11, Proposition 5.1]). For column relation maps fcol,1, . . . , fcol,m :
Q→ R, the matrix Rcol(D, ρ;fcol) is a column relation matrix of A(D, ρ; f1, f2).
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We define ri := r(α(wi; ci)), where α(wi; ci) is the semi-arc that originates from
the arc wi and is incident to the crossing ci (see Figure 4). For row relation maps
frow,1, . . . , frow,m : AsQ×Q→ R, we define

Rrow(D, ρ; frow,1, . . . , frow,m)

:=

 sgn(c1)frow,1(ρ̃(r1), ρ(w1)) · · · sgn(cn)frow,1(ρ̃(rn), ρ(wn))
...

. . .
...

sgn(c1)frow,m(ρ̃(r1), ρ(w1)) · · · sgn(cn)frow,m(ρ̃(rn), ρ(wn))

 .

We denote Rrow(D, ρ; frow,1, . . . , frow,m) by Rrow(D, ρ;frow) for short.

Proposition 4.4 ([10, Theorem 6.1]). The matrix Rrow(D, ρ;frow) is a row rela-
tion matrix of A(D, ρ; f1, f2).

We set

R̃row(D, ρ;frow) :=
(
Rrow(D, ρ;frow) 0

)
,

R̃col(D, ρ;fcol) :=

(
Rcol(D, ρ;fcol)

0

)
.

Remark 4.5. The matrix R̃row(D, ρ;frow) (resp. R̃col(D, ρ;fcol)) is regular if and
only if Rrow(D, ρ;frow) (resp. Rcol(D, ρ;fcol)) is regular.

Remark 4.6. By Propositions 2.6 and 2.7 (5), the equivalence class of the triple

(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol))

does not depend on the choice of the order of crossings and that of ω1, . . . , ωr ∈ R×,
since we have

f1(ρ(wc), ρ(wc)) = f1(ρ(uc) ◁ ρ(vc), ρ(uc) ◁ ρ(vc))

= f1(ρ(uc), ρ(vc))f1(ρ(uc), ρ(uc))f1(ρ(uc), ρ(vc))
−1.

Theorem 4.7. Let Q be a quandle and R a unital ring. Let (f1, f2) be an Alexander
pair of maps f1, f2 : Q × Q → R. Let frow,1, . . . , frow,m : AsQ × Q → R be row
relation maps, and let fcol,1, . . . , fcol,m : Q → R be column relation maps. Let
D1, D2 be diagrams of an oriented link L, and let ρ : Q(L) → Q be a quandle
representation. Then we have

(R̃row(D1, ρ;frow), Ã(D1, ρ; f1, f2), R̃col(D1, ρ;fcol))

∼ (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)).

This theorem is proven by verifying the invariance of the triple under each Rei-
demeister move. We postpone the proof to Section 9.

When R is a field, we define

∆(L, ρ; f1, f2;frow;fcol) := ∆(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol)).

When R is a matrix ring over a field, we define

∆(L, ρ; f1, f2;frow;fcol) := ∆
(
R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol)

)
.

When R is a commutative ring, we define

∆(L, ρ; f1, f2; ∅; ∅) := ∆(∅, Ã(D, ρ; f1, f2), ∅).
When R is a matrix ring over a Euclidean domain, we define

∆(L, ρ; f1, f2; ∅; ∅) := ∆
(
∅, Ã(D, ρ; f1, f2), ∅

)
.

From Theorems 2.12, 2.13, 4.7 and Propositions 2.14, 2.15, these are invariants
of (L, ρ). We remark that the invariants ∆(L, ρ; f1, f2;frow;fcol) for R = Z and
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R = M(1, 1;Z) coincide. Hereafter, we regard M(1, 1;Z) as the ring Z. When
we regard M(1, 1;Z) as Z, we identify a matrix A ∈ M(m,n;M(1, 1;Z)) with
A ∈M(m,n;Z). For x ∈ Z, detx stands for x.

We end this section with the following proposition, which is useful in the calcu-
lation of ∆(L, ρ; f1, f2;frow;fcol).

Proposition 4.8. Let D be a diagram of L with n crossings. Let F be a field.
Setting d := n−m and R =M(k, k;F ), we have

∆(L, ρ; f1, f2;frow;fcol)

=
sgnσ sgn τ detA(D, ρ; f1, f2)σ(kd+km),τ(kd+km) det cor(D, ρ; f1, f2)

−1

detRrow(D, ρ;frow)km,σ(km) detRcol(D, ρ;fcol)τ(km),km

for any σ, τ ∈ Skn such that Rrow(D, ρ;frow)km,σ(km) and Rcol(D, ρ;fcol)τ(km),km

are invertible.

Proof. Setting σ̃ := σ ⊕ 1Sk
and τ̃ := τ ⊕ 1Sk

, we have

∆(L, ρ; f1, f2;frow;fcol)

=
sgn σ̃ sgn τ̃ det Ã(D, ρ; f1, f2)σ̃(kd+k+km),τ̃(kd+k+km)

det R̃row(D, ρ;frow)km,σ̃(km) det R̃col(D, ρ;fcol)τ̃(km),km

=
sgnσ sgn τ detA(D, ρ; f1, f2)σ(kd+km),τ(kd+km) det cor(D, ρ; f1, f2)

−1

detRrow(D, ρ;frow)km,σ(km) detRcol(D, ρ;fcol)τ(km),km

,

where we remark that sgn σ̃ = sgnσ and sgn τ̃ = sgn τ . □

We note that the equality in Proposition 4.8 implies

∆(L, ρ; f1, f2;frow;fcol)

=
sgnσ sgn τ detA(D, ρ; f1, f2)σ(d+m),τ(d+m) cor(D, ρ; f1, f2)

−1

detRrow(D, ρ;frow)m,σ(m) detRcol(D, ρ;fcol)τ(m),m

when k = 1.

5. The quandle cocycle invariant

We recall the definition of a quandle cocycle invariant introduced in [3]: Let
L = K1 ∪ · · · ∪Kr be an oriented r-component link and D a diagram of L. Let Q
be a quandle and A an abelian group. A quandle 2-cocycle ϕ : Q×Q→ A is a map
satisfying ϕ(a, a) = 0 and ϕ(a◁ b, c)+ϕ(a, b) = ϕ(a◁ c, b ◁ c)+ϕ(a, c) for a, b, c ∈ Q.
The quandle cocycle invariant Φ(L;ϕ) of L is the multiset

Φ(L;ϕ) = {Φ(L, ρ;ϕ) | ρ ∈ ColQ(D)},
where

Φ(L, ρ;ϕ) :=
∑

c∈C(D)

sgn(c)ϕ(ρ(uc), ρ(vc)),

which we call the quandle cocycle invariant of (L, ρ). Here, we recall that uc, vc are
the arcs around c (see Figure 1). We define

Φ((L,Ki), ρ;ϕ) :=
∑

c∈C(D;Ki)

sgn(c)ϕ(ρ(uc), ρ(vc)).

We then have

Φ(L, ρ;ϕ) =

r∑
i=1

Φ((L,Ki), ρ;ϕ).
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Proposition 5.1. Let (Q, ◁) be a quandle, and let ϕ : Q × Q → A be a quandle
2-cocycle, where A = Z or Zp. Let L = K1 ∪ · · · ∪Kr be an oriented r-component

link, and let ρ : Q(L) → Q be a quandle representation. Let Q̃ := Q×{1, . . . , r} be
the quandle with (a, i) ◁ (b, j) = (a ◁ b, i). Set

R :=

{
Z[t±1

1 , . . . , t±1
r ] if A = Z,

Z[t±1
1 , . . . , t±1

r ]/(tp1 − 1, . . . , tpr − 1) if A = Zp.

We define the Alexander pair of maps f1, f2 : Q̃× Q̃→ R by

f1((a, i), (b, j)) = t
ϕ(a,b)
i , f2((a, i), (b, j)) = 0.

Then we have

∆(L, ρ; f1, f2; ∅; ∅) =
r∏

i=1

(1− t
Φ((L,Ki),ρ;ϕ)
i ).

In particular, for a knot K, we have

∆(K, ρ; f1, f2; ∅; ∅) = 1− t
Φ(K,ρ;ϕ)
1 .

Proof. Let D be a diagram of L. Set ni := #C(D;Ki), which coincides with
the number of the arcs of Ki. We define [i] := n1 + · · · + ni and [0] := 0. Let
c[i−1]+1, . . . , c[i] be the crossings of C(D;Ki) for i = 1, . . . , r. We assume that the
terminal point of xi is ci+1 if i /∈ {[1], [2], . . . , [r]}, and c[k−1]+1 if i = [k]. Put
ci,j := c[i−1]+j , ui,j := u[i−1]+j , vi,j := v[i−1]+j , and εi,j := sgn(ci,j) for i = 1, . . . , r
and j = 1, . . . , ni. We define A((D;Ki), ρ; f1, f2) to be

ϕi,1(−εi,1) ϕi,1(εi,1)
ϕi,2(εi,2) ϕi,2(−εi,2)

ϕi,3(εi,3) ϕi,3(−εi,3)
. . .

. . .

ϕi,ni
(εi,ni

) ϕi,ni
(−εi,ni

)

 ,

where

ϕi,j(ε) :=

{
t
ϕ(ρ(ui,j),ρ(vi,j))
i if ε = 1,

−1 if ε = −1.

The determinant of A((D;Ki), ρ; f1, f2) is∣∣∣∣∣∣∣∣∣∣∣

−1 ϕi,1(1)
εi,1

ϕi,2(1)
εi,2 −1

ϕi,3(1)
εi,3 −1

. . .
. . .

ϕi,ni
(1)εi,ni −1

∣∣∣∣∣∣∣∣∣∣∣
∏

c∈C−(D;Ki)

(−tϕ(ρ(uc),ρ(vc))
i ),

which is

(1− t
Φ((L,Ki),ρ;ϕ)
i )(−1)ni

∏
c∈C−(D;Ki)

(−tϕ(ρ(uc),ρ(vc))
i ),

where C−(D;Ki) = C(D;Ki) ∩ C−(D). We define

cor((D;Ki), ρ; f1, f2) := (−1)#C+(D;Ki)
∏

c∈C−(D;Ki)

t
ϕ(ρ(uc),ρ(vc))
i ,

where C+(D;Ki) = C(D;Ki) ∩ C+(D). We then have

detA((D;Ki), ρ; f1, f2) cor((D;Ki), ρ; f1, f2)
−1 = 1− t

Φ((L,Ki),ρ;ϕ)
i .
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c1 c2

x1x2

Figure 5

Since

A(D, ρ; f1, f2) = A((D;K1), ρ; f1, f2)⊕ · · · ⊕ A((D;Kr), ρ; f1, f2),

cor(D, ρ; f1, f2) =

r∏
i=1

cor((D;Ki), ρ; f1, f2),

we have

∆(L, ρ; f1, f2; ∅; ∅) =
r∏

i=1

(1− t
Φ((L,Ki),ρ;ϕ)
i ).

□

6. Properties

In this section, we determine our invariant for the trivial knot and the mirror
image of an oriented link.

For σ ∈ Sn, we define σ ∈ Skn by

σ((a− 1)k + b) = (σ(a)− 1)k + b

for a = 1, . . . , n and b = 1, . . . , k, where we note that sgn σ = (sgnσ)k. For example,

when σ =

(
1 2 3
2 1 3

)
∈ S3 and k = 2, we have

σ =

(
1 2 3 4 5 6
3 4 1 2 5 6

)
∈ S6 and sgnσ = 1.

Proposition 6.1. Let Q be a quandle and let R :=M(k, k;F ), where F is a field.
Let (f1, f2) be an Alexander pair of maps f1, f2 : Q×Q→ R. Let frow : AsQ×Q→
R and fcol : Q → R be row and column relation maps, respectively. Let O be the
trivial knot, and let ρ : Q(O) → Q be a quandle representation. Let a ∈ Im ρ. If
frow(1, a), fcol(a) ∈ R×, then we have

∆(O, ρ; f1, f2; frow; fcol) =
(−1)k det f1(a, a)

−1

det frow(1, a) det fcol(a)
.

Proof. Let D be the diagram of O depicted in Figure 5. We have

A(D, ρ; f1, f2) =

(
−1 f1(a, a) + f2(a, a)

f1(a, a) + f2(a, a) −1

)
=

(
−1 1
1 −1

)
,

cor(D, ρ; f1, f2) = (−1)2 · f1(a, a)
−1+2+1

2 = f1(a, a),

Rrow(D, ρ; frow) =
(
frow(1, a) frow(1, a)

)
,

Rcol(D, ρ; fcol) =

(
fcol(a)
fcol(a)

)
.
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Since frow(1, a), fcol(a) ∈ R×, the matrices Rrow(D, ρ; frow) and Rcol(D, ρ; fcol) are
regular. Setting σ = 1S2

, we have σ = 1S2k
. It follows that

∆(O, ρ; f1, f2; frow; fcol)

=
sgnσ sgnσ detA(D, ρ; f1, f2)σ(k+k),σ(k+k) det cor(D, ρ; f1, f2)

−1

detRrow(D, ρ; frow)k,σ(k) detRcol(D, ρ; fcol)σ(k),k

=

det

(
−1 1
1 −1

)
(k+1,...,2k),(k+1,...,2k)

det f1(a, a)
−1

det
(
frow(1, a) frow(1, a)

)
(1,...,k),(1,...,k)

det

(
fcol(a)
fcol(a)

)
(1,...,k),(1,...,k)

=
(−1)k det f1(a, a)

−1

det frow(1, a) det fcol(a)
.

□

Let L be an oriented link and D a diagram of L. Let Q be a quandle and A a
multiplicative abelian group. For ρ ∈ ColQ(D), we define

Ψ(L, ρ;ψ) :=
∏

c∈C(D)

ψ(ρ(uc), ρ(vc))
sgn(c),

where ψ : Q × Q → A is a quandle 2-cocycle, which satisfies ψ(a, a) = 1 and
ψ(a ◁ b, c)ψ(a, b) = ψ(a ◁ c, b ◁ c)ψ(a, c) for a, b, c ∈ Q. We then define the multiset

Ψ(L;ψ) := {Ψ(L, ρ;ψ) | ρ ∈ ColQ(D)},
which is the multiplicative version of the quandle cocycle invariant introduced in
the previous section. For a map f : Q×Q→ A satisfying

f(a ◁ b, c)f(a, b) = f(a ◁ c, b ◁ c)f(a, c),

we define the quandle 2-cocycle ψ(f) : Q×Q→ A by

ψ(f)(a, b) = f(a, a)−1f(a, b),

where we note that f(a ◁ c, a ◁ c) = f(a, a).

Proposition 6.2. Let R := M(k, k;F ), where F is a field. Let (f1, f2) be an
Alexander pair of maps f1, f2 : Q × Q → R. Let frow,1, . . . , frow,m : AsQ × Q →
R be row relation maps, and let fcol,1, . . . , fcol,m : Q → R be column relation
maps. Let L = K1 ∪ · · · ∪Kr be an oriented r-component link, and let −L∗ be the
mirror image of L with the orientation reversed. Let ρ : Q(L) → Q be a quandle
representation, and let ρ∗ : Q(−L∗) → Q be the quandle representation induced
from ρ with the reflection. Let D be a diagram of L. We fix ω1, . . . , ωr ∈ R× so
that ωi = f1(ρ(α), ρ(α)) for some α ∈ A(D;Ki). Then we have

∆(−L∗, ρ∗; f1, f2; frow,1, . . . , frow,m; fcol,1, . . . , fcol,m)

=
(−1)k(r+m)∆(L, ρ; f1, f2; frow,1, . . . , frow,m; fcol,1, . . . , fcol,m)

det(
∏r

i=1 ω
lk(Ki,L−Ki)
i )Ψ(L, ρ;ψ(det ◦f1))

,

where lk(K, ∅) = 0 for a knot K.

Proof. Let x1, . . . , xn be the arcs of D such that xn1+···+ni−1+1, . . . , xn1+···+ni are
the arcs of Ki. We set

υ :=
(
1 2 · · · n1

) (
n1 + 1 n1 + 2 · · · n1 + n2

)
· · ·

(
n1 + · · ·+ nr−1 + 1 n1 + · · ·+ nr−1 + 2 · · · n

)
∈ Sn
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and assume that the terminal point of xi is cυ(i) for i = 1, . . . , n. Let φ : R2 → R2

be the involution defined by φ(x, y) = (−x, y). We then denote by −D∗ the diagram
φ(D) with the orientation reversed, which is a diagram of −L∗. For an arc xi of
D, we label the arc φ(xi) of −D∗ as xi (see Figure 6). Since ci is the crossing from
which the arc xi starts, we have φ(ci) = cυ−1(i) for i = 1, . . . , n. From ρ∗ = ρ◦φ−1,
we have ρ∗(xi) = ρ(xi). Set d := n−m. Because

A(−D∗, ρ∗; f1, f2) = A(D, ρ; f1, f2)υ(n),n,

Rrow(−D∗, ρ∗;frow) = −Rrow(D, ρ;frow)m,υ(n),

Rcol(−D∗, ρ∗;fcol) = Rcol(D, ρ;fcol),

we have

A(−D∗, ρ∗; f1, f2)σ(d+m),τ(d+m) = A(D, ρ; f1, f2)σ′(d+m),τ(d+m),

Rrow(−D∗, ρ∗;frow)m,σ(m) = −Rrow(D, ρ;frow)m,σ′(m),

Rcol(−D∗, ρ∗;fcol)τ(m),m = Rcol(D, ρ;fcol)τ(m),m,

sgnσ sgn τ = (−1)r+n sgnσ′ sgn τ,

where σ′ = υ ◦ σ. Since

#C+(−D∗) = n−#C+(D), rot(−D∗(Ki)) = rot(D(Ki)),

wr(−D∗(Ki)) = −wr(D(Ki)), C−(−D∗) = C+(D),

we have

det cor(−D∗, ρ∗; f1, f2)

= (−1)k(n−#C+(D))
r∏

i=1

detω
rot(D(Ki))−wr(D(Ki))+1

2
i

∏
c∈C+(D)

det f1(ρ(uc), ρ(vc)),

= (−1)kn
r∏

i=1

detω
−wr(D(Ki))
i

∏
c∈C(D)

det f1(ρ(uc), ρ(uc))
sgn(c)

·
∏

c∈C(D)

(
det f1(ρ(uc), ρ(uc))

−1 det f1(ρ(uc), ρ(vc))
)sgn(c)

· (−1)k#C+(D)
r∏

i=1

detω
rot(D(Ki))+wr(D(Ki))+1

2
i

∏
c∈C−(D)

det f1(ρ(uc), ρ(vc))

= (−1)kn
r∏

i=1

detω
lk(Ki,L−Ki)
i Ψ(L, ρ;ψ(det ◦f1)) det cor(D, ρ; f1, f2),
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Figure 7. The granny knot and square knot

where the last equality follows from wr(D;Ki) = wr(D(Ki)) + lk(Ki, L − Ki).
Consequently, we have

∆(−L∗, ρ∗; f1, f2;frow;fcol)

=
sgnσ sgn τ detA(−D∗, ρ∗; f1, f2)σ(kd+km),τ(kd+km) det cor(−D∗, ρ; f1, f2)

−1

detRrow(−D∗, ρ∗;frow)km,σ(km) detRcol(−D∗, ρ∗;fcol)τ(km),km

=
(−1)k(r+m)

det(
∏r

i=1 ω
lk(Ki,L−Ki)
i )Ψ(L, ρ;ψ(det ◦f1))

·
sgnσ′ sgn τ detA(D, ρ; f1, f2)σ′(kd+km),τ(kd+km) det cor(D, ρ; f1, f2)

−1

detRrow(D, ρ;frow)km,σ′(km) detRcol(D, ρ;fcol)τ(km),km

=
(−1)k(r+m)∆(L, ρ; f1, f2;frow;fcol)

det(
∏r

i=1 ω
lk(Ki,L−Ki)
i )Ψ(L, ρ;ψ(det ◦f1))

.

□

Example 6.3. Let Q := R3 and R := Q[t]/(t2 + t+ 1), where we note that t3 = 1
in R. Let Y be the Q-set Q×R× with (y, z)◁a := (2a−y,−ta−yz). Let (f1, f2) be
the Alexander pair in Example 3.8, that is, f1(a, b) = −tb−a and f2(a, b) = tb−a+1.
Let frow and fcol,c (c ∈ Q) be the row and column relation maps in Example 3.8,
that is, frow((y, z), a) = −z−1(ty−a + 1) and fcol,c(a) = ta+c + 1. For c ∈ Q, we
define the row relation map frow,c : AsQ×Q→ R by frow,c(y, a) = frow(φc(y), a),
where φc : AsQ→ Y is the Q-set homomorphism satisfying φc(1) = (c, 1). Let K1

and K2 be the granny knot and square knot, respectively, that is, K1 = 31#31 and
K2 = 31#3∗1. Let D1 and D2 be respectively the oriented diagrams of K1 and K2

depicted in Figure 7. We note that K1 and K2 are invertible.
Let ρ : Q(K1) → Q be a quandle representation defined by

ρ(x1) = a, ρ(x2) = b, ρ(x3) = 2a+ 2b,

ρ(x4) = 2a+ 2b, ρ(x5) = c, ρ(x6) = a+ b+ 2c,
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where a, b, c ∈ R3. We then have

A(D1, ρ; f1, f2)

=


−ta+2b −1 ta+2b + 1 0 0 0
ta+2b + 1 −ta+2b 0 −1 0 0

−1 ta+2b + 1 −ta+2b 0 0 0
0 0 0 −t2a+2b+2c −1 t2a+2b+2c + 1
0 0 0 t2a+2b+2c + 1 −t2a+2b+2c −1
0 0 −1 0 t2a+2b+2c + 1 −t2a+2b+2c

 ,

Rrow(D1, ρ; frow,0, frow,1)

= −
(
t2b + 1 ta+b + 1 t2a + 1 t2c + 1 t2a+2b+c + 1 ta+b + 1
t2b+1 + 1 ta+b+1 + 1 t2a+1 + 1 t2c+1 + 1 t2a+2b+c+1 + 1 ta+b+1 + 1

)
,

Rcol(D1, ρ; fcol,0, fcol,1) =


ta + 1 ta+1 + 1
tb + 1 tb+1 + 1

t2a+2b + 1 t2a+2b+1 + 1
t2a+2b + 1 t2a+2b+1 + 1
tc + 1 tc+1 + 1

ta+b+2c + 1 ta+b+2c+1 + 1

 ,

cor(D1, ρ; f1, f2) = (−1)0 · (−1)
−3−6+1

2 · (−ta+2b)3(−t2a+2b+2c)3 = 1.

When a ̸= b, by setting σ = 1S6 , we obtain

∆(K1, ρ; f1, f2; frow,0, frow,1; fcol,0, fcol,1)

=
sgnσ sgnσ detA(D1, ρ; f1, f2)σ(4+2),σ(4+2) cor(D1, ρ; f1, f2)

−1

detRrow(D1, ρ; frow,0, frow,1)2,σ(2) detRcol(D1, ρ; fcol,0, fcol,1)σ(2),2

=

det


−ta+2b 0 0 0

0 −t2a+2b+2c −1 t2a+2b+2c + 1
0 t2a+2b+2c + 1 −t2a+2b+2c −1
−1 0 t2a+2b+2c + 1 −t2a+2b+2c

 · 1

det

(
t2b + 1 ta+b + 1
t2b+1 + 1 ta+b+1 + 1

)
det

(
ta + 1 ta+1 + 1
tb + 1 tb+1 + 1

)
=

−ta+2b(t2a+2b+2c + ta+b+c + 1)

−9ta+2b+1
=

{
−(t+ 1)/3 if {a, b, c} = {0, 1, 2},
0 if c = a ̸= b or c = b ̸= a.

When a = b ̸= c, by setting σ =

(
1 2 3 4 5 6
1 5 2 3 4 6

)
, we obtain

∆(K1, ρ; f1, f2; frow,0, frow,1; fcol,0, fcol,1)

=
sgnσ sgnσ detA(D1, ρ; f1, f2)σ(4+2),σ(4+2) cor(D1, ρ; f1, f2)

−1

detRrow(D1, ρ; frow,0, frow,1)2,σ(2) detRcol(D1, ρ; fcol,0, fcol,1)σ(2),2

=

det


−ta+2b 0 −1 0
ta+2b + 1 −ta+2b 0 0

0 0 −t2a+2b+2c t2a+2b+2c + 1
0 −1 0 −t2a+2b+2c

 · 1

det

(
t2b + 1 t2a+2b+c + 1
t2b+1 + 1 t2a+2b+c+1 + 1

)
det

(
ta + 1 ta+1 + 1
tc + 1 tc+1 + 1

)
=

3t2b+c

9t2b+c+1
= −(t+ 1)/3.
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Thus, we have

{∆(K1, ρ; f1, f2; frow,0, frow,1; fcol,0, fcol,1) | ρ is nontrivial}
= {0 (12 times), −(t+ 1)/3 (12 times)}.

From Proposition 6.2, we have

{∆(−K∗
1 , ρ; f1, f2; frow,0, frow,1; fcol,0, fcol,1) | ρ is nontrivial}

= {0 (12 times), (t+ 1)/3 (12 times)},

which implies K1 ̸∼= −K∗
1
∼= K∗

1 . Since K2
∼= K∗

2 , we can conclude K1 ̸∼= K2, which
also follows from

{∆(K2, ρ; f1, f2; frow,0, frow,1; fcol,0, fcol,1) | ρ is nontrivial}
= {0 (12 times), (t+ 1)/3 (6 times), −(t+ 1)/3 (6 times)}.

7. The normalized (twisted) Alexander polynomial

In this section, we demonstrate how the Alexander–Conway polynomial and
the normalized twisted Alexander polynomial introduced by Kitayama [15] can be
obtained in our framework.

Let L = K1 ∪ · · · ∪Kr be an oriented r-component link, and let D be a diagram
of L. Let Q be a quandle and let R := M(k, k;F ), where F is a field. Let (f1, f2)
be an Alexander pair of maps f1, f2 : Q × Q → R, and let ρ : Q(L) → Q be a
quandle representation. We fix ω1, . . . , ωr ∈ R× so that ωi = f1(ρ(α), ρ(α)) for

some α ∈ A(D;Ki). Suppose that (detω1)
1
2 , . . . , (detωr)

1
2 ∈ F×. We define

∇(L, ρ; f1, f2;frow;fcol)

:= ∆(L, ρ; f1, f2;frow;fcol)

r∏
i=1

(detωi)
1−lk(Ki,L−Ki)

2 ,

where we note that detωi does not depend on the choice of ωi ∈ R×. We then have

∇(L, ρ; f1, f2;frow;fcol)

=
sgnσ sgn τ detA(D, ρ; f1, f2)σ(kd+km),τ(kd+km) detcor∇(D, ρ; f1, f2)

−1

detRrow(D, ρ;frow)km,σ(km) detRcol(D, ρ;fcol)τ(km),km

,

where

detcor∇(D, ρ; f1, f2)

:= (−1)k#C+(D)
r∏

i=1

(detωi)
rot(D(Ki))+wr(D;Ki)

2

∏
c∈C−(D)

det f1(ρ(uc), ρ(vc)).

The Alexander–Conway polynomial ∇L(z) of an oriented link L is characterized
by the following:

• For the trivial knot O, we have ∇O(z) = 1.
• Let D+, D− and D0 be diagrams that are identical outside a disk where
they are the tangles depicted in Figure 8. We call (D+, D−, D0) a skein
triple. Then the skein relation

∇D+
(z)−∇D−(z) = z∇D0

(z)

holds, where ∇D(z) is the Alexander–Conway polynomial ∇L(z) of an ori-
ented link L represented by D.

The Alexander–Conway polynomial ∇L(z) is a normalized Alexander polynomial.
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Proposition 7.1. Let Q be a quandle and F a field. Let (f1, f2) be an Alexander
pair of maps f1, f2 : Q×Q→ F . Let frow : AsQ×Q→ F and fcol : Q→ F be row
and column relation maps, respectively. Let L be an oriented link. Let ρ : Q(L) → Q
be a trivial quandle representation, whose image is {a}. Set t := f1(a, a)

−1. Suppose
that frow(1, a), fcol(a), t

1/2 ∈ F×. Then we have

∇L(t
1/2 − t−1/2)

∇O(t1/2 − t−1/2)
=

∇(L, ρ; f1, f2; frow; fcol)

∇(O, ρ; f1, f2; frow; fcol)
,

where ∇O(t
1/2 − t−1/2) = 1 and

∇(O, ρ; f1, f2; frow; fcol) =
−t1/2

frow(1, a)fcol(a)
.

Proof. Let (D+, D−, D0) be a skein triple with n common crossings c1, . . . , cn and
the crossing cn+1 of D+ and D− depicted in Figure 8, and let L+, L− and L0 be
the oriented links represented by D+, D− and D0, respectively. We use the same
symbol ρ for the trivial quandle representations of Q(L+), Q(L−) and Q(L0) to Q
that send every element to a. We then have

A(D+, ρ; f1, f2) =

(
An−2 an−1 + bn an bn−1

0 1− t−1 t−1 −1

)
,

A(D−, ρ; f1, f2) =

(
An−2 an−1 an + bn−1 bn
0 −1 1− t−1 t−1

)
,

A(D0, ρ; f1, f2) =
(
An−2 an−1 + bn−1 an + bn

)
.

The Laplace expansions for det(A(D±, ρ; f1, f2)n+1,n+1) along the last rows yield

det(A(D+, ρ; f1, f2)n+1,n+1) + det(A(D−, ρ; f1, f2)n+1,n+1)

= (t−1 − 1) det(A(D0, ρ; f1, f2)n−1+1,n−1+1).

We have

detcor∇(D+, ρ; f1, f2) = −t−1/2 detcor∇(D0, ρ; f1, f2),

detcor∇(D−, ρ; f1, f2) = t−1/2 detcor∇(D0, ρ; f1, f2),

since

detcor∇(D, ρ; f1, f2) = (−1)#C+(D)t−
rot(D)+wr(D)

2 t−#C−(D)

= (−1)#C+(D)t−
rot(D)+#C(D)

2 .

Since ρ is trivial, we have

Rcol(D+, ρ; fcol) = Rcol(D−, ρ; fcol) =

fcol(a)...
fcol(a)

 , Rcol(D0, ρ; fcol) =

fcol(a)...
fcol(a)


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and

Rrow(D+, ρ; frow)

=
(
sgn(c1)frow(1 ◁

i1 a, a) · · · sgn(cn)frow(1 ◁
in a, a) frow(1 ◁

in+1 a, a)
)
,

Rrow(D−, ρ; frow)

=
(
sgn(c1)frow(1 ◁

i1 a, a) · · · sgn(cn)frow(1 ◁
in a, a) −frow(1 ◁i

′
n+1 a, a)

)
,

Rrow(D0, ρ; frow)

=
(
sgn(c1)frow(1 ◁

i1 a, a) · · · sgn(cn)frow(1 ◁
in a, a)

)
for some i1, . . . , in, in+1, i

′
n+1 ∈ Z. The equality frow(y, a) = frow(y ◁ a, a)f1(a, a)

implies frow(1◁
i1 a, a) ∈ F×. Put d := sgn(c1)frow(1◁

i1 a, a)fcol(a) ∈ F×. It follows
that

∇(L+, ρ; f1, f2; frow; fcol)−∇(L−, ρ; f1, f2; frow; fcol)

= −t1/2 detcor∇(D0, ρ; f1, f2)
−1 det(A(D+, ρ; f1, f2)n+1,n+1)d

−1

− t1/2 detcor∇(D0, ρ; f1, f2)
−1 det(A(D−, ρ; f1, f2)n+1,n+1)d

−1

= (t1/2 − t−1/2) detcor∇(D0, ρ; f1, f2)
−1 det(A(D0, ρ; f1, f2)n−1+1,n−1+1)d

−1

= (t1/2 − t−1/2)∇(L0, ρ; f1, f2; frow; fcol).

Since
∇(L, ρ; f1, f2; frow; fcol)

∇(O, ρ; f1, f2; frow; fcol)
satisfies the conditions characterizing the Alexander–

Conway polynomial ∇L(t
1/2 − t−1/2), they coincide. Since ∇O(t

1/2 − t−1/2) = 1,
we have the equality

∇L(t
1/2 − t−1/2)

∇O(t1/2 − t−1/2)
=

∇(L, ρ; f1, f2; frow; fcol)

∇(O, ρ; f1, f2; frow; fcol)
.

From Proposition 6.1, we have

∇(O, ρ; f1, f2; frow; fcol) = t−1/2∆(O, ρ; f1, f2; frow; fcol) =
−t1/2

frow(1, a)fcol(a)
.

□

Kitayama [15] gave a normalized twisted Alexander polynomial ∆̃K,ρ(t) for an
oriented knot K and a group representation ρ : G(K) → GL(k;F ), where F is
a field. Fix an element µ ∈ G(K) represented by a meridian in E(K). Let
α : G(K) → ⟨t⟩ be the group representation that sends µ to t. We define the
group representation ρ ⊗ α : G(K) → GL(k;F (t)) by (ρ ⊗ α)(x) = α(x)ρ(x)
for x ∈ G(K). Set Q := ConjGL(k;F (t)). Let (f1, f2) be the Alexander pair
of maps f1, f2 : Q × Q → M(k, k;F (t)) in Example 3.6 (2) with n = 1, that
is, f1(a, b) = b−1 and f2(a, b) = b−1a − b−1. Let D be a diagram of K. Let
⟨x | s⟩ := ⟨x1, . . . , xn | s1, . . . , sn⟩ be the Wirtinger presentation of G(K) with re-
spect to D, where si is the relation v−1

i uiviw
−1
i . A presentation that is ob-

tained by removing one relation from ⟨x | s⟩ also represents G(K). Set ⟨x | s′⟩ :=
⟨x1, . . . , xn | s2, . . . , sn⟩. Then, the normalized twisted Alexander polynomial of
(K, ρ) is determined by

∆̃K,ρ(t) =
δ(⟨x | s′⟩)k

(tk det ρ(µ))d(⟨x | s′⟩) ·
detA(D, ρ⊗ α; f1, f2)k(n−1)+k,k(n−1)+k

det(tρ(µ)− 1)
,(3)

where δ(⟨x | s′⟩) ∈ {±1} and d(⟨x | s′⟩) ∈ {n/2 |n ∈ Z} are independent of k and
ρ. For details, we refer the reader to [15].
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Lemma 7.2. We have

δ(⟨x | s′⟩) = (−1)#C+(D)+1 sgn(c1), d(⟨x | s′⟩) = nA(r1)−
rot(D) + #C(D)

2
.

Furthermore, we have

∆̃K,ρ(t) =

(
(−1)#C+(D)+1 sgn(c1)

)k
(tk det ρ(µ))nA(r1)− rot(D)+#C(D)

2

·
detA(D, ρ⊗ α; f1, f2)k(n−1)+k,k(n−1)+k

det(tρ(µ)− 1)
.

Proof. Let ρ be the trivial group representation ρ : G(K) → GL(1;F ), which is
the constant map with constant value 1. Then we may identify ρ ⊗ α with α. By
Lemma 4.6 in [15], we have

∇K(t1/2 − t−1/2) = (t1/2 − t−1/2)∆̃K,ρ(t).

We use the same symbol α : Q(K) → Q for the induced quandle representation.
Let Y be the Q-set F (t)× defined by y ◁ a := a−1y. Let frow : Y ×Q → F (t) and
fcol : Q→ F (t) be, respectively, the row and column relation maps in Example 3.6
(2) with n = 1, that is, fcol(a) = a − 1 and frow(y, a) = y−1. We define the
row relation map frow,1 : AsQ × Q → F (t) by frow,1(y, a) = frow(φ(y), a), where
φ : AsQ→ Y is the Q-set homomorphism satisfying φ(1) = 1. By Proposition 7.1,
we have

∇K(t1/2 − t−1/2) = (t−1/2 − t1/2)∇(K,α; f1, f2; frow,1; fcol),

since

∇(O,α; f1, f2; frow,1; fcol) =
−t1/2

t− 1
=

1

t−1/2 − t1/2
.

We then have

∆̃K,ρ(t) = −∇(K,α; f1, f2; frow,1; fcol).(4)

We have

Rrow(D,α; frow,1) =
(
sgn(c1)α̃(r1)

−1 · · · sgn(cn)α̃(rn)
−1

)
=

(
sgn(c1)t

nA(r1) · · · sgn(cn)t
nA(rn)

)
,

Rcol(D,α; fcol) =

t− 1
...

t− 1

 .

Setting σ = τ = 1Sn
, we have

∇(K, ρ; f1, f2; frow,1; fcol)

=
sgnσ sgn τ detA(D, ρ; f1, f2)σ(n−1+1),τ(n−1+1) detcor∇(D,α; f1, f2)

−1

detRrow(D,α; frow,1)1,σ(1) detRcol(D,α; fcol)τ(1),1

=
detA(D,α; f1, f2)n−1+1,n−1+1 detcor∇(D,α; f1, f2)

−1

sgn(c1)tnA(r1)(t− 1)
.(5)

From (3), we have

∆̃K,ρ(t) =
δ(⟨x | s′⟩)
td(⟨x | s′⟩)

detA(D,α; f1, f2)n−1+1,n−1+1

t− 1
.(6)

The equalities (4)–(6) imply

δ(⟨x | r′⟩)
td(⟨x | r′⟩) = −detcor∇(D,α; f1, f2)

−1

sgn(c1)tnA(r1)
,

since
detA(D,α; f1, f2)n−1+1,n−1+1

t− 1
̸= 0,
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which follows from detA(D,α; f1, f2)n−1+1,n−1+1|t=1 = ±1 ̸= 0. Therefore, we
have

δ(⟨x | s′⟩)
td(⟨x | r′⟩) =

− sgn(c1)(−1)#C+(D)

tnA(r1)t−
rot(D)+wr(D)

2 t−#C−(D)
=

(−1)#C+(D)+1 sgn(c1)

tnA(r1)− rot(D)+#C(D)
2

,

which implies that

δ(⟨x | s′⟩) = (−1)#C+(D)+1 sgn(c1), d(⟨x | s′⟩) = nA(r1)−
rot(D) + #C(D)

2
.

□
Definition 7.3. Set Q := ConjGL(k;F (t)), where F is a field. Let Y be the Q-set
GL(k;F (t)) defined by y ◁ a := a−1y. Let (f1, f2) be the Alexander pair of maps
f1, f2 : Q×Q→M(k, k;F (t)) in Example 3.6 (2) with n = 1, that is, f1(a, b) = b−1

and f2(a, b) = b−1a − b−1. Let frow : Y × Q → M(k, k;F (t)) and fcol : Q →
M(k, k;F (t)) be, respectively, the row and column relation maps in Example 3.6
(2) with n = 1, that is, fcol(a) = a − 1 and frow(y, a) = y−1. We define the row
relation map frow,1 : AsQ × Q → M(k, k;F (t)) by frow,1(y, a) = −frow(φ(y), a),
where φ : AsQ → Y is the Q-set homomorphism satisfying φ(1) = 1. Let L be
an oriented link, and let ρ : G(L) → GL(k;F ) be a group representation. We
use the same symbol ρ ⊗ α : Q(L) → Q for the induced quandle representation of
ρ⊗ α : G(L) → GL(k;F (t)). We then define

∇(L, ρ) := ∇(L, ρ⊗ α; f1, f2; frow,1; fcol).

Proposition 7.4. Let K be an oriented knot, and let ρ : G(K) → GL(k;F ) be a
group representation. Then we have

∆̃K,ρ(t) = ∇(K, ρ).

Proof. Let D be a diagram of K with n crossings. Putting

A := A(D, ρ⊗ α; f1, f2), B := Rrow(D, ρ⊗ α; frow,1),

C := Rcol(D, ρ⊗ α; fcol),

we have

B =
(
− sgn(c1)t

nA(r1)ρ̃(r1)
−1 · · · − sgn(cn)t

nA(rn)ρ̃(rn)
−1

)
,

C =

tρ(x1)− 1
...

tρ(xn)− 1

 .

Setting σ = τ = 1Sn , we have

∇(K, ρ)

=
sgnσ sgn τ detA

σ(k(n−1)+k),τ(k(n−1)+k)
detcor∇(D, ρ⊗ α; f1, f2)

−1

detBk,σ(k) detCτ(k),k

=
detcor∇(D, ρ⊗ α; f1, f2)

−1

det(− sgn(c1)tnA(r1)ρ̃(r1)−1)
·
detA

k(n−1)+k,k(n−1)+k

det(tρ(x1)− 1)

=
((−1)k(#C+(D)+1)(det(t−1ρ(x1)

−1))
rot(D)+#C(D)

2 )−1

sgn(c1)ktknA(r1) det ρ(x1)nA(r1)
·
detA

k(n−1)+k,k(n−1)+k

det(tρ(x1)− 1)

=

(
(−1)#C+(D)+1 sgn(c1)

)k
(tk det ρ(x1))nA(r1)− rot(D)+#C(D)

2

·
detA

k(n−1)+k,k(n−1)+k

det(tρ(x1)− 1)

= ∆̃K,ρ(t),

where the last equality follows from Lemma 7.2. □
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8. Cohomologous Alexander pairs and relation maps

Let (f1, f2) and (g1, g2) be Alexander pairs of maps f1, f2, g1, g2 : Q × Q → R.
Let frow : AsQ × Q → R and grow : AsQ × Q → R be row relation maps with
respect to (f1, f2) and (g1, g2), respectively. Let fcol : Q → R and gcol : Q → R
be column relation maps with respect to (f1, f2) and (g1, g2), respectively. Two
tuples (f1, f2; frow; fcol) and (g1, g2; grow; gcol) are cohomologous if there exists a
map h : Q→ R× satisfying the following conditions:

• For any a, b ∈ Q, h(a ◁ b)f1(a, b) = g1(a, b)h(a).
• For any a, b ∈ Q, h(a ◁ b)f2(a, b) = g2(a, b)h(b).
• For any a ∈ Q, h(a)fcol(a) = gcol(a).
• For any a ∈ Q and y ∈ AsQ, frow(y, a) = grow(y, a)h(a).

We then write (f1, f2; frow; fcol) ∼h (g1, g2; grow; gcol) to specify h. For i = 1, . . . ,m,
let frow,i : AsQ × Q → R and grow,i : AsQ × Q → R be row relation maps
with respect to (f1, f2) and (g1, g2), respectively. For i = 1, . . . ,m, let fcol,i :
Q → R and gcol,i : Q → R be column relation maps with respect to (f1, f2)
and (g1, g2), respectively. When (f1, f2; frow,i; fcol,i) ∼h (g1, g2; grow,i; gcol,i) for any
i ∈ {1, . . . ,m}, we write (f1, f2;frow;fcol) ∼h (g1, g2; grow; gcol).

Example 8.1. For an Alexander pair (f1, f2) and a ∈ Q, we define f1 ◁a and f2 ◁a
by

(f1 ◁ a)(x, y) = f1(x ◁ a, y ◁ a), (f2 ◁ a)(x, y) = f2(x ◁ a, y ◁ a).

For a column relation map fcol and a ∈ Q, we define fcol ◁ a by

(fcol ◁ a)(x) = f1(x, a)fcol(x).

For a row relation map frow and a ∈ Q, we define frow ◁ a by

(frow ◁ a)(y, x) = frow(y, x)f1(x, a)
−1.

Putting h(x) := f1(x, a), we have

(f1, f2; frow; fcol) ∼h (f1 ◁ a, f2 ◁ a; frow ◁ a; fcol ◁ a).

Example 8.2. Let (f1, f2), frow and fcol be the Alexander pair and row and column
relation maps in Example 3.5 (1). Let (g1, g2), grow and gcol be the Alexander
pair and row and column relation maps in Example 3.5 (2). We define the row
relation maps frow,1 : AsQ × Q → R and grow,1 : AsQ × Q → R by frow,1(y, a) =
frow(φ(y), a) and grow,1(y, a) = grow(φ(y), a), where φ : AsQ → Y is the Q-set
homomorphism satisfying φ(1) = 1. We define a map h : Q → R by h(x) =
f(x)− 1. Suppose that h(a) is invertible for any a ∈ Q. Then (f1, f2; frow; fcol) ∼h

(g1, g2; grow; gcol).

Proposition 8.3. Let L = K1∪· · ·∪Kr be an oriented r-component link, and let ρ :
Q(L) → Q be a quandle representation. Let D be a diagram of L with n crossings.
Set R := M(k, k;F ), where F is a field. Let (f1, f2) and (g1, g2) be Alexander
pairs of maps f1, f2, g1, g2 : Q × Q → R. Let frow,1, . . . , frow,m : AsQ × Q → R
and grow,1, . . . , grow,m : Q → R be row relation maps with respect to (f1, f2) and
(g1, g2), respectively. Let fcol,1, . . . , fcol,m : Q → R and gcol,1, . . . , gcol,m : Q →
R be column relation maps with respect to (f1, f2) and (g1, g2), respectively. If
(f1, f2;frow;fcol) ∼h (g1, g2; grow; gcol), then we have

(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol))

∼ (R̃row(D, ρ; grow), Ã(D, ρ; g1, g2), R̃col(D, ρ; gcol)).

Furthermore, we have

∆(L, ρ; f1, f2;frow;fcol) = ∆(L, ρ; g1, g2; grow; gcol).
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Proof. Put

A(f) := A(D, ρ; f1, f2), A(g) := A(D, ρ; g1, g2),

Rrow(f) := Rrow(D, ρ;frow), Rrow(g) := Rrow(D, ρ; grow),

Rcol(f) := Rcol(D, ρ;fcol), Rcol(g) := Rcol(D, ρ; gcol),

cor(f) := cor(D, ρ; f1, f2), cor(g) := cor(D, ρ; g1, g2).

By the proof of Theorem 9.3 in [12], we have

h(ρ(w))A(f) = A(g)h(ρ(x)),

where h(ρ(a)) is the diagonal matrix in M(n, n;R) whose (i, i)-entry is h(ρ(ai)).
From frow,i(y, ρ(wj)) = grow,i(y, ρ(wj))h(ρ(wj)), we have

Rrow(f) = Rrow(g)h(ρ(w)).(7)

From h(ρ(xi))fcol,j(ρ(xi)) = gcol,j(ρ(xi)), we have

h(ρ(x))Rcol(f) = Rcol(g).(8)

From

(−1)#C+(D)
r∏

i=1

ω
rot(D(Ki))+wr(D(Ki))+1

2
i

∏
c∈C−(D)

h(ρ(wc))f1(ρ(uc), ρ(vc))

= (−1)#C+(D)
r∏

i=1

ω
rot(D(Ki))+wr(D(Ki))+1

2
i

∏
c∈C−(D)

g1(ρ(uc), ρ(vc))h(ρ(uc)),

we have

cor(f)
∏

c∈C(D)

h(ρ(wc)) = cor(g)
∏

c∈C−(D)

h(ρ(uc))
∏

c∈C+(D)

h(ρ(wc))

= cor(g)
∏

c∈C(D)

h(ρ(xc))

in the abelianization of R×, since xc = wc for a positive crossing c and xc = uc
for a negative crossing c. Setting hΠ(ρ(w)) :=

∏n
i=1 h(ρ(wi)) and hΠ(ρ(x)) :=∏n

i=1 h(ρ(xi)), we have

(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol))

=

((
Rrow(g)h(ρ(w)) 0

)
,

(
A(f) 0
0 cor(f)−1

)
,

(
Rcol(f)

0

))
∼

((
Rrow(g) 0

)
,

(
h(ρ(w))A(f) 0

0 hΠ(ρ(w))−1 cor(f)−1

)
,

(
Rcol(f)

0

))
∼

((
Rrow(g) 0

)
,

(
A(g)h(ρ(x)) 0

0 cor(g)−1hΠ(ρ(x))−1

)
,

(
Rcol(f)

0

))
∼

((
Rrow(g) 0

)
,

(
A(g) 0
0 cor(g)−1

)
,

(
h(ρ(x))Rcol(f)

0

))
= (R̃row(D, ρ; grow), Ã(D, ρ; g1, g2), R̃col(D, ρ; gcol)).

□

Example 8.4. Let G := GL(k;F ) and Q := ConjG, where F is a field. Let
R := M(k, k;F (t)). Let Y be the Q-set GL(k;F (t)) defined by y ◁ a := a−1y. Let
(f1, f2), frow and fcol be the Alexander pair and row and column relation maps in
Example 3.6 (1), that is, f1(a, b) = b−1, f2(a, b) = 1 − b−1, frow(y, a) = y−1(a −
1) and fcol(a) = 1. Let (g1, g2), grow and gcol be the Alexander pair and row
and column relation maps in Example 3.6 (2), that is, g1(a, b) = b−1, g2(a, b) =
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xn

xn+1

cn+1
R1↔

xn

R1↔

xn

xn+1

cn+1

D1 D2 D3

Figure 9

b−1a− b−1, grow(y, a) = y−1 and gcol(a) = a− 1. We define the row relation maps
frow,1 : AsQ × Q → R and grow,1 : AsQ × Q → R by frow,1(y, a) = frow(φ(y), a)
and grow,1(y, a) = grow(φ(y), a), where φ : AsQ → Y is the Q-set homomorphism
satisfying φ(1) = 1. Let L be an oriented link, and let ρ : Q(L) → Q be a quandle
representation. Let α : G(L) → ⟨t⟩ be the group representation that sends a
meridian to t. We define the group representation ρ⊗ α : G(L) → GL(k;F (t)) by
(ρ⊗α)(x) = α(x)ρ(x) for x ∈ G(L). Setting h(x) = x− 1 in Example 8.2, we have
(f1, f2; frow,1; fcol) ∼h (g1, g2; grow,1; gcol). We then have

∆(L, ρ⊗ α; f1, f2; frow,1; fcol) = ∆(L, ρ⊗ α; g1, g2; grow,1; gcol),

where we remark that the right invariant corresponds to the twisted Alexander
polynomial.

9. Proof of Theorem 4.7

In this section, we give a proof of Theorem 4.7. For short, we set

A(D) := A(D, ρ; f1, f2), cor(D) := cor(D, ρ; f1, f2),

Rrow(D) := Rrow(D, ρ;frow), Rcol(D) := Rcol(D, ρ;fcol),

fcol(a) :=
(
fcol,1(a) · · · fcol,m(a)

)
, frow(z, a) :=

 frow,1(z, a)
...

frow,m(z, a)

 .

9.1. Reidemeister move I. Let D1, D2 and D3 be diagrams of an oriented link
L that differ by a single Reidemeister move I as shown in Figure 9. Let c1, . . . , cn
be n crossings of D1, D2 and D3 that stay outside the disk in which the move is
applied, and let cn+1 be the other crossing of D1 and D3 that stays within the disk.
We remark again that, for each i, we denote by xi the arc starting from a crossing
ci. Put a := ρ(xn) = ρ(xn+1) and z := ρ̃(rn+1). We then have

A(D1) =

(
An−1 a′

n a′′
n

0 f1(a, a) f2(a, a)− 1

)
, A(D2) =

(
An−1 an

)
,

A(D3) =

(
An−1 a′

n a′′
n

0 f2(a, a)− 1 f1(a, a)

)
,

where a′
n + a′′

n = an, since the arc xn in D2 is separated into the two arcs xn and
xn+1 in D1 and D3. We also have

Rrow(D1) =
(
Bn frow(z, a)

)
, Rrow(D2) = Bn,

Rrow(D3) =
(
Bn −frow(z, a)

)
,
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and

Rcol(D1) =

 Cn−1

fcol(a)
fcol(a)

 , Rcol(D2) =

(
Cn−1

fcol(a)

)
, Rcol(D3) =

 Cn−1

fcol(a)
fcol(a)

 .

In the abelianization of R×, we have

cor(D1) = −f1(a, a) cor(D2), cor(D3) = f1(a, a) cor(D2).

We have Bna
′′
n − frow(z, a)f1(a, a) = 0, since Rrow(D1) is a row relation matrix of

A(D1). It follows that

(R̃row(D1, ρ;frow), Ã(D1, ρ; f1, f2), R̃col(D1, ρ;fcol))

=

(
Bn frow(z, a) 0

)
,

An−1 a′
n a′′

n 0
0 f1(a, a) −f1(a, a) 0
0 0 0 α

 ,


Cn−1

fcol(a)
fcol(a)

0




∼

(
Bn frow(z, a) 0

)
,

An−1 an a′′
n 0

0 0 −f1(a, a) 0
0 0 0 α

 ,


Cn−1

fcol(a)
0
0




∼

(
Bn 0 0

)
,

An−1 an 0 0
0 0 −f1(a, a) 0
0 0 0 cor(D1)

−1

 ,


Cn−1

fcol(a)
0
0




∼

(
Bn 0

)
,

(
An−1 an 0
0 0 −f1(a, a) cor(D1)

−1

)
,

 Cn−1

fcol(a)
0


∼

(
Bn 0

)
,

(
An−1 an 0
0 0 cor(D2)

−1

)
,

 Cn−1

fcol(a)
0


= (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)),

where α = cor(D1)
−1. In a similar manner, we have

(R̃row(D3, ρ;frow), Ã(D3, ρ; f1, f2), R̃col(D3, ρ;fcol))

∼ (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)).

9.2. Reidemeister move II. Let D1 and D2 be diagrams of an oriented link L
that differ by a single Reidemeister move II as shown in Figure 10. Let c1, . . . , cn
be n crossings of D1 and D2 that stay outside the disk in which the move is applied,
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and let cn+1 and cn+2 be the other crossings of D1 that stay within the disk. Put
a := ρ(xn), b := ρ(xn−1) and z := ρ̃(rn+1) = ρ̃(rn+2). We then have

A(D1) =

An−2 an−1 a′
n 0 a′′

n

0 f2(a, b) f1(a, b) −1 0
0 f2(a, b) 0 −1 f1(a, b)

 ,

A(D2) =
(
An−2 an−1 an

)
,

where a′
n + 0 + a′′

n = an, since the arc xn in D2 is separated into the three arcs
xn, xn+1 and xn+2 in D1. We also have

Rrow(D1) =
(
Bn frow(z, a ◁ b) −frow(z, a ◁ b)

)
, Rrow(D2) = Bn,

and

Rcol(D1) =


Cn−2

fcol(b)
fcol(a)

fcol(a ◁ b)
fcol(a)

 , Rcol(D2) =

 Cn−2

fcol(b)
fcol(a)

 .

In the abelianization of R×, we have

cor(D1) = −f1(a, b) cor(D2).

We put

AR2
1 :=

An−2 an−1 an 0 a′′
n

0 f2(a, b) f1(a, b) −1 0
0 f2(a, b) f1(a, b) −1 f1(a, b)

⊕ (cor(D1)
−1),

AR2
2 :=

An−2 an−1 an 0 a′′
n

0 0 0 −1 0
0 0 0 −1 f1(a, b)

⊕ (cor(D1)
−1),

AR2
3 :=

An−2 an−1 an 0 a′′
n

0 0 0 −1 0
0 0 0 0 f1(a, b)

⊕ (cor(D1)
−1),

AR2
4 :=

An−2 an−1 an 0 0
0 0 0 −1 0
0 0 0 0 f1(a, b)

⊕ (cor(D1)
−1),

AR2
5 :=

(
An−2 an−1 an

)
⊕ (−f1(a, b) cor(D1)

−1),

and

RR2
col,1 :=


Cn−2

fcol(b)
fcol(a)

fcol(a ◁ b)
0
0

 , RR2
col,2 :=


Cn−2

fcol(b)
fcol(a)
cn+1

0
0

 ,

where cn+1 = fcol(a ◁ b) − f1(a, b)fcol(a) − f2(a, b)fcol(b) = 0. We have Bna
′′
n −

frow(z, a ◁ b)f1(a, b) = 0, since Rrow(D1) is a row relation matrix of A(D1). It
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follows that

(R̃row(D1, ρ;frow), Ã(D1, ρ; f1, f2), R̃col(D1, ρ;fcol))

∼
((
Bn frow(z, a ◁ b) −frow(z, a ◁ b) 0

)
, AR2

1 , RR2
col,1

)
∼

((
Bn frow(z, a ◁ b) −frow(z, a ◁ b) 0

)
, AR2

2 , RR2
col,2

)
∼

((
Bn 0 −frow(z, a ◁ b) 0

)
, AR2

3 , RR2
col,2

)
∼

((
Bn 0 bn+2 0

)
, AR2

4 , RR2
col,2

)
∼ (R̃row(D2, ρ;frow), AR2

5 , R̃col(D2, ρ;fcol))

∼ (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)),

where bn+2 = −frow(z, a ◁ b) +Bna
′′
nf1(a, b)

−1 = 0.
We next consider the situation depicted in Figure 11. Let D1 andD2 be diagrams

of an oriented link L that differ by a single Reidemeister move II as shown in
Figure 11. Let c1, . . . , cn be n crossings of D1 and D2 that stay outside the disk in
which the move is applied, and let cn+1 and cn+2 be the other crossings of D1 that
stay within the disk. Put a := ρ(xn+1), b := ρ(xn−1) and z := ρ̃(rn+1) = ρ̃(rn+2).
We then have

A(D1) =

An−2 an−1 a′
n 0 a′′

n

0 f2(a, b) −1 f1(a, b) 0
0 f2(a, b) 0 f1(a, b) −1

 ,

A(D2) =
(
An−2 an−1 an

)
,

where a′
n + 0 + a′′

n = an, since the arc xn in D2 is separated into the three arcs
xn, xn+1 and xn+2 in D1. We also have

Rrow(D1) =
(
Bn −frow(z, a ◁ b) frow(z, a ◁ b)

)
, Rrow(D2) = Bn,

and

Rcol(D1) =


Cn−2

fcol(b)
fcol(a ◁ b)
fcol(a)

fcol(a ◁ b)

 , Rcol(D2) =

 Cn−2

fcol(b)
fcol(a ◁ b)

 .

In the abelianization of R×, we have

cor(D1) = −f1(a, b) cor(D2).

In a similar manner as the previous situation, we have

(R̃row(D1, ρ;frow), Ã(D1, ρ; f1, f2), R̃col(D1, ρ;fcol))

∼ (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)).
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9.3. Reidemeister move III. Let D1 and D2 be diagrams of an oriented link L
that differ by a single Reidemeister move III as shown in Figure 12. Let c1, . . . , cn−3

be n − 3 crossings of D1 and D2 that stay outside the disk in which the move is
applied, and let cn−2, cn−1 and cn be the other crossings of D1 and D2 as shown in
Figure 12. Put a := ρ(xn−5), b := ρ(xn−4), c := ρ(xn−3) and z := (ρ̃(rn)◁

−1c)◁−1b.
We then have

A(D1)

=


An−6 an−5 an−4 an−3 0 an−1 an

0 f1(a, b) f2(a, b) 0 −1 0 0
0 0 f1(b, c) f2(b, c) 0 −1 0
0 0 0 f2(a ◁ b, c) f1(a ◁ b, c) 0 −1

 ,

A(D2)

=


An−6 an−5 an−4 an−3 0 an−1 an

0 f1(a, c) 0 f2(a, c) −1 0 0
0 0 f1(b, c) f2(b, c) 0 −1 0
0 0 0 0 f1(a ◁ c, b ◁ c) f2(a ◁ c, b ◁ c) −1


and

Rrow(D1)

=
(
Bn−3 frow(z ◁ b, a ◁ b) frow(z ◁ c, b ◁ c) frow((z ◁ b) ◁ c, (a ◁ b) ◁ c)

)
,

Rrow(D2)

=
(
Bn−3 frow(z ◁ c, a ◁ c) frow((z ◁ a) ◁ c, b ◁ c) frow((z ◁ b) ◁ c, (a ◁ b) ◁ c)

)
.

We also have

Rcol(D1) =



Cn−6

fcol(a)
fcol(b)
fcol(c)

fcol(a ◁ b)
fcol(b ◁ c)

fcol((a ◁ b) ◁ c)


, Rcol(D2) =



Cn−6

fcol(a)
fcol(b)
fcol(c)

fcol(a ◁ c)
fcol(b ◁ c)

fcol((a ◁ b) ◁ c)


,

and

cor(D1, ρ; f1, f2) = cor(D2, ρ; f1, f2).
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We put

AR3
1 :=


An−6 an−5 an−4 an−3 0 an−1 an

0 f1(a, b) f2(a, b) 0 −1 0 0
0 0 f1(b, c) f2(b, c) 0 −1 0
0 an,n−5 an,n−4 an,n−3 0 0 −1

⊕ (cor(D1)
−1),

AR3
2 :=


An−6 an−5 an−4 an−3 0 an−1 an

0 0 0 0 −1 0 0
0 0 f1(b, c) f2(b, c) 0 −1 0
0 an,n−5 an,n−4 an,n−3 0 0 −1

⊕ (cor(D1)
−1),

AR3
3 :=


An−6 an−5 an−4 an−3 0 an−1 an

0 f1(a, c) 0 f2(a, c) −1 0 0
0 0 f1(b, c) f2(b, c) 0 −1 0
0 an,n−5 an,n−4 an,n−3 0 0 −1

⊕ (cor(D2)
−1),

where

an,n−5 = f1(a ◁ b, c)f1(a, b) = f1(a ◁ c, b ◁ c)f1(a, c),

an,n−4 = f1(a ◁ b, c)f2(a, b) = f2(a ◁ c, b ◁ c)f1(b, c),

an,n−3 = f2(a ◁ b, c) = f1(a ◁ c, b ◁ c)f2(a, c) + f2(a ◁ c, b ◁ c)f2(b, c).

We put

RR3
row :=

(
Bn−3 bn−2 frow(z ◁ c, b ◁ c) frow((z ◁ b) ◁ c, (a ◁ b) ◁ c) 0

)
,

where bn−2 = frow(z ◁ b, a ◁ b)− frow((z ◁ b) ◁ c, (a ◁ b) ◁ c)f1(a ◁ b, c) = 0. We also
put

RR3
col :=



Cn−6

fcol(a)
fcol(b)
fcol(c)
cn−2

fcol(b ◁ c)
fcol((a ◁ b) ◁ c)

0


,

where cn−2 = fcol(a ◁ b)− f1(a, b)fcol(a)− f2(a, b)fcol(b) = 0. It follows that

(R̃row(D1, ρ;frow), Ã(D1, ρ; f1, f2), R̃col(D1, ρ;fcol))

∼
(
RR3

row, A
R3
1 , R̃col(D1, ρ;fcol))

)
∼

(
RR3

row, A
R3
2 , RR3

col

)
∼

(
RR3

row, A
R3
3 , R̃col(D2, ρ;fcol))

)
∼ (R̃row(D2, ρ;frow), Ã(D2, ρ; f1, f2), R̃col(D2, ρ;fcol)),

where the third equivalence follows from

cn−2 = 0 = fcol(a ◁ c)− f1(a, c)fcol(a)− f2(a, c)fcol(c)

and the last equivalence follows from

bn−2 = 0 = frow(z ◁ c, a ◁ c)− frow((z ◁ b) ◁ c, (a ◁ b) ◁ c)f1(a ◁ c, b ◁ c),

frow(z ◁ c, b ◁ c)

= frow((z ◁ a) ◁ c, b ◁ c)− frow((z ◁ b) ◁ c, (a ◁ b) ◁ c)f2(a ◁ c, b ◁ c).



36 ATSUSHI ISHII AND KANAKO OSHIRO

Acknowledgments

The authors would like to thank Tsuyoshi Aita for his helpful comments. The
first author was supported by JSPS KAKENHI Grant Number 18K03292. The
second author was supported by JSPS KAKENHI Grant Number 21K03233.

References

[1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30

(1928), 275–306.
[2] N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Adv. Math. 178

(2003), no. 2, 177–243.

[3] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and
state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003)
3947–3989.

[4] J. C. Cha, Fibered knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355
(2003), no. 10, 4187–4200.

[5] J. H. Conway, An enumeration of knots and links, and some of their algebraic proper-
ties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon,
Oxford, (1970) 329–358.

[6] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications
1 (1992), no. 4, 343–406.

[7] R. H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math.

(2) 59 (1954), 196–210.
[8] S. Friedl and T. Kim, The Thurston norm, fibered manifolds and twisted Alexander polyno-

mials, Topology 45 (2006), no. 6, 929–953.
[9] A. Ishii, M. Iwakiri, Y. Jang, and K. Oshiro, A G-family of quandles and handlebody-knots,

Illinois J. Math. 57 (2013), no. 3, 817–838.

[10] A. Ishii and K. Oshiro, Row relations of twisted Alexander matrices and shadow quandle

2-cocycles, Topology Appl. 301 (2021), Paper No. 107513.
[11] A. Ishii and K. Oshiro, Quandle twisted Alexander invariants, Osaka J. Math. 59 (2022),

no. 3, 683–702.
[12] A. Ishii and K. Oshiro, Derivatives with Alexander pairs for quandles, Fund. Math. 259

(2022), no. 1, 1–31.

[13] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982)
37–65.

[14] H. Goda, T. Kitano, and T. Morifuji, Reidemeister torsion, twisted Alexander polynomial

and fibered knots, Comment. Math. Helv. 80 (2005), no. 1, 51–61.
[15] T. Kitayama, Normalization of twisted Alexander invariants, Internat. J. Math. 26 (2015),

1550077, 21 pp.

[16] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math.
Sin. (Engl. Ser.) 17 (2001), 361–380.

[17] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119 (161) (1982)
78–88.

[18] L. P. Neuwirth, Knot groups, Annals of Mathematics Studies, No. 56 Princeton University

Press, Princeton, N.J. 1965.
[19] Y. Taniguchi, Alexander matrices of link quandles associated to quandle homomorphisms

and quandle cocycle invariants, preprint.
[20] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994),

no. 2, 241–256.

Department of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

Email address: aishii@math.tsukuba.ac.jp

Department of Information and Communication Sciences, Sophia University, Tokyo

102-8554, Japan

Email address: oshirok@sophia.ac.jp


