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Abstract. In this paper, we introduce the f -derivative for multiple conjuga-

tion quandles with an MCQ Alexander pair f , where a multiple conjugation
quandle is an algebra whose axioms are motivated from handlebody-knot the-

ory, and an MCQ Alexander pair is a pair of maps related to a linear extension

of a multiple conjugation quandle. Using this, we define f -twisted Alexan-
der matrices for handlebody-knots equipped with their multiple conjugation

quandle representations. We show that this matrix produces strictly stronger

invariants than the (twisted) Alexander matrix for handlebody-knots.

1. Introduction

The (twisted) Alexander matrix of a knot group is obtained by using the free
derivative introduced by Fox [6]. Alexander [1] defined a classical knot invariant,
called the Alexander polynomial, which is a generator of the elementary ideal of
the Alexander matrix of the knot group. Lin [18] and Wada [22] generalized it to
the twisted Alexander polynomial of a knot equipped with a group representation.
Topological properties of knots, such as the genus, fiberedness, and so on, appear in
the Alexander polynomials, and the properties are extended to the twisted Alexan-
der polynomials [5, 8, 9, 10, etc.]. More generally, by using the free derivative, we
can obtain invariants of groups equipped with their group representations.

A quandle [17, 19] is an algebra whose axioms are motivated from knot theory.
Oshiro and the first author [16] introduced the f -derivative for quandles with a
pair of maps f called an Alexander pair. An Alexander pair is a dynamical cocy-
cle [2] corresponding to a linear extension of a quandle. They defined invariants
of quandles equipped with their quandle representations by using an f -derivative.
The (twisted) Alexander polynomial for knots can be obtained in their framework.

A multiple conjugation quandle (MCQ) [12] is an algebra whose axioms corre-
spond to the Reidemeister moves for handlebody-knots, where a handlebody-knot
is a handlebody embedded in the 3-sphere S3, which is a generalization of a knot
to higher genera. A handlebody-knot can be also regarded as a quotient struc-
ture of a spatial graph. The second author [20] introduced a pair of maps called
an MCQ Alexander pair, which is an MCQ version of an Alexander pair. The
first author [13] introduced the fundamental MCQ of a handlebody-knot, whose
representations correspond to MCQ colorings for the handlebody-knot. However,
it is not easy to distinguish two MCQs in general. Then counting the number of
MCQ representations of the fundamental MCQ of a handlebody-knot to an MCQ
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gives an elementary combinatorial invariant, called the MCQ coloring number. In
this paper, we introduce the f -derivative for MCQs with an MCQ Alexander pair
f and define the f -twisted Alexander matrix for handlebody-knots equipped with
their MCQ representations. Furthermore, we see that this matrix produces strictly
stronger invariants than the (twisted) Alexander matrix for handlebody-knots and
spatial graphs [15].

This paper is organized as follows. In Section 2, we recall the notions of a
quandle and a multiple conjugation quandle (MCQ). In Section 3, we review the
notion of an MCQ Alexander pair and give some examples of MCQ Alexander pairs.
In Section 4, we recall the notions of an MCQ presentation and the fundamental
MCQ of a handlebody-knot. We see that two handlebody-knots equipped with their
MCQ representations are equivalent if and only if their fundamental MCQs with
the MCQ representations are related by a finite sequence of some transformations.
In Section 5, we introduce the f -derivative for MCQs with an MCQ Alexander
pair f . In Section 6, we introduce f -twisted Alexander matrices and handlebody-
knot invariants derived from the matrices with an MCQ Alexander pair f . In
Section 7, we show that the (twisted) Alexander matrix for handlebody-knots is
recoverable from an f -twisted Alexander matrix for some MCQ Alexander pair f .
In Section 8, calculating our invariants, we distinguish two handlebody-knots whose
complements have isomorphic fundamental groups. We emphasize that they can
not be distinguished by invariants derived from the (twisted) Alexander matrices
for handlebody-knots.

2. Multiple conjugation quandles

A quandle [17, 19] is a non-empty set Q equipped with a binary operation ◁ :
Q×Q → Q satisfying the following axioms:

(Q1) For any a ∈ Q, a ◁ a = a.
(Q2) For any a ∈ Q, the map ◁a : Q → Q defined by ◁a(x) = x ◁ a is bijective.
(Q3) For any a, b, c ∈ Q, (a ◁ b) ◁ c = (a ◁ c) ◁ (b ◁ c).

We denote the iterated map (◁a)n : Q → Q by ◁na for n ∈ Z. For quandles (Q1, ◁1)
and (Q2, ◁2), a quandle homomorphism f : Q1 → Q2 is defined to be a map from
Q1 to Q2 satisfying f(a ◁1 b) = f(a) ◁2 f(b) for any a, b ∈ Q1.

Let G be a group and n an integer. We define a binary operation ◁ on G by
a◁b = b−nabn. Then, (G, ◁) is a quandle. We call it the n-fold conjugation quandle
of G and denote it by Conjn G. The 1-fold conjugation quandle of G is called
the conjugation quandle of G and denoted by ConjG. We define another binary
operation ◁ on G by a ◁ b = ba−1b. Then, (G, ◁) is a quandle. We call it the
core quandle of G and denote it by CoreG. For a positive integer n, we denote by
Zn the cyclic group Z/nZ of order n. We define a binary operation ◁ on Zn by
a ◁ b = 2b− a. Then, (Zn, ◁) is a quandle. We call it the dihedral quandle of order
n and denote it by Rn. Let Q be an R[t±1]-module for a commutative ring R. We
define a binary operation ◁ on Q by a ◁ b = ta + (1 − t)b. Then Q is a quandle,
called an Alexander quandle.

We define the type of a quandle Q by

typeQ = min{n ∈ Z>0 | x ◁n y = x for any x, y ∈ Q},

where we set min ∅ := ∞ for the empty set ∅, and Z>0 denotes the set of positive
integers. We note that (Q, ◁i) is also a quandle for any i ∈ Z, and any finite quandle
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is of finite type. For a quandle Q, an extension of Q is a quandle Q̃ which has a

surjective homomorphism f : Q̃ → Q such that the cardinalities of the inverse
images f−1(a) and f−1(b) coincide for any a, b ∈ Q.

Let (Q, ◁) be a quandle and R a ring. The pair of maps f1, f2 : Q × Q → R is
Alexander pair [16] if f1 and f2 satisfy the following conditions:

• For any a ∈ Q, f1(a, a) + f2(a, a) = 1.
• For any a, b ∈ Q, f1(a, b) is invertible.
• For any a, b, c ∈ Q,

f1(a ◁ b, c)f1(a, b) = f1(a ◁ c, b ◁ c)f1(a, c),

f1(a ◁ b, c)f2(a, b) = f2(a ◁ c, b ◁ c)f1(b, c),

f2(a ◁ b, c) = f1(a ◁ c, b ◁ c)f2(a, c) + f2(a ◁ c, b ◁ c)f2(b, c).

An Alexander pair is a dynamical cocycle [2] corresponding to a linear extension of
a quandle. Many examples of Alexander pairs are given in [16].

Definition 2.1 ([12]). A multiple conjugation quandle (MCQ) X is a disjoint union
of groups Gλ(λ ∈ Λ) with a binary operation ◁ : X×X → X satisfying the following
axioms:

• For any a, b ∈ Gλ, a ◁ b = b−1ab.
• For any x ∈ X and a, b ∈ Gλ, x ◁ eλ = x and x ◁ (ab) = (x ◁ a) ◁ b, where
eλ is the identity of Gλ.

• For any x, y, z ∈ X, (x ◁ y) ◁ z = (x ◁ z) ◁ (y ◁ z).
• For any x ∈ X and a, b ∈ Gλ, (ab)◁x = (a◁x)(b◁x), where a◁x, b◁x ∈ Gµ

for some µ ∈ Λ.

In this paper, we often omit parentheses. When doing so, we apply binary
operations from left on expressions, except for group operations, which we always
apply first. For example, we write a ◁1 b ◁2 cd ◁3 (e ◁4 f ◁5 g) for ((a ◁1 b) ◁2 (cd)) ◁3
((e ◁4 f) ◁5 g) simply, where each ◁i is a binary operation, and c and d are elements
of the same group. For an MCQ X =

⊔
λ∈Λ Gλ, we denote by Ga the group Gλ

containing a ∈ X, and we denote by ea the identity of Ga.
We remark that an MCQ itself is a quandle. For two MCQs X1 =

⊔
λ∈Λ Gλ and

X2 =
⊔

µ∈M Gµ, an MCQ homomorphism f : X1 → X2 is defined to be a map from

X1 to X2 satisfying f(x ◁ y) = f(x) ◁ f(y) for any x, y ∈ X1 and f(ab) = f(a)f(b)
for any λ ∈ Λ and a, b ∈ Gλ. An MCQ homomorphism ρ : X1 → X2 is also called
an MCQ representation of X1 to X2. We denote by Hom(X1, X2) the set of MCQ
homomorphisms from X1 to X2. We call a bijective MCQ homomorphism an MCQ
isomorphism. When there exists an MCQ isomorphism from X1 to X2, we call that
X1 andX2 are isomorphic, denoted byX1

∼= X2. Let ρ1 : X1 → Y and ρ2 : X2 → Y
be MCQ representations. We say (X1, ρ1) and (X2, ρ2) are isomorphic, denoted by
(X1, ρ1) ∼= (X2, ρ2), if there exists an MCQ isomorphism f : X1 → X2 such that

ρ1 = ρ2 ◦ f . For an MCQ X =
⊔

λ∈Λ Gλ, an extension of X is an MCQ X̃ which

has a surjective MCQ homomorphism f : X̃ → X such that the cardinalities of the
inverse images f−1(x) and f−1(y) coincide for any x, y ∈ X.

We recall the definition of a G-family of quandles. A G-family of quandles is an
algebraic system which yields an MCQ.
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Definition 2.2 ([14]). Let G be a group with identity element e. A G-family of
quandles is a non-empty set X with a family of binary operations ◁g : X × X →
X (g ∈ G) satisfying the following axioms:

• For any x ∈ X and g ∈ G, x ◁g x = x.
• For any x, y ∈ X and g, h ∈ G, x ◁e y = x and x ◁gh y = (x ◁g y) ◁h y.

• For any x, y, z ∈ X and g, h ∈ G, (x ◁g y) ◁h z = (x ◁h z) ◁h
−1gh (y ◁h z).

Let R be a ring and G a group with identity element e. Let X be a right R[G]-
module, where R[G] is the group ring of G over R. Then (X, {◁g}g∈G) is a G-family
of quandles, called a G-family of Alexander quandles, with x◁gy = xg+y(e−g) [14].
Let (Q, ◁) be a quandle and put k := typeQ. Then (Q, {◁i}i∈Zk

) is a Zk-family of
quandles, where we put Z∞ := Z.

Let (X, {◁g}g∈G) be a G-family of quandles. Then X ×G =
⊔

x∈X({x} ×G) is
an MCQ with

(x, g) ◁ (y, h) := (x ◁h y, h−1gh), (x, g)(x, h) := (x, gh)

for any x, y ∈ X and g, h ∈ G [12]. We call it the associated MCQ of (X, {◁g}g∈G).
The associated MCQ X ×G is an extension of G, where we regard G as an MCQ
with the conjugation operation.

3. MCQ Alexander pairs

In this section, we recall the notion of MCQ Alexander pairs and give some
examples of them. Throughout this paper, we assume that every ring has the
multiplicative identity 1 ̸= 0. For a ring R, we denote by R× the group of units of
R.

Definition 3.1 ([20]). Let X =
⊔

λ∈Λ Gλ be an MCQ and R a ring. The pair
(f1, f2) of maps f1, f2 : X ×X → R is an MCQ Alexander pair if f1 and f2 satisfy
the following conditions:

• For any a, b ∈ Gλ,

f1(a, b) + f2(a, b) = f1(a, a
−1b). (1-i)

• For any a, b ∈ Gλ and x ∈ X,

f1(a, x) = f1(b, x), (2-i)

f2(ab, x) = f2(a, x) + f1(b ◁ x, a
−1 ◁ x)f2(b, x). (2-ii)

• For any x ∈ X and a, b ∈ Gλ,

f1(x, eλ) = 1, (3-i)

f1(x, ab) = f1(x ◁ a, b)f1(x, a), (3-ii)

f2(x, ab) = f1(x ◁ a, b)f2(x, a). (3-iii)

• For any x, y, z ∈ X,

f1(x ◁ y, z)f1(x, y) = f1(x ◁ z, y ◁ z)f1(x, z), (4-i)

f1(x ◁ y, z)f2(x, y) = f2(x ◁ z, y ◁ z)f1(y, z), (4-ii)

f2(x ◁ y, z) = f1(x ◁ z, y ◁ z)f2(x, z) + f2(x ◁ z, y ◁ z)f2(y, z). (4-iii)
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As same as an Alexander pair for a quandle, an MCQ Alexander pair corresponds
to a linear extension of an MCQ [20]. We note that an MCQ Alexander pair is an
Alexander pair. We call (1, 0) the trivial MCQ Alexander pair, where 0 and 1
respectively denote the zero map and the constant map that sends all elements of
the domain to the multiplicative identity 1 of the ring.

We give some examples of MCQ Alexander pairs. In Section 7, we see that the
MCQ Alexander pairs in Examples 3.2 and 3.3 are related to the Alexander matrix
and the twisted Alexander matrix for handlebody-knots, respectively.

Let R be a ring. We denote by M(m,n;R) the set of m × n matrices over R
and by GL(n;R) the set of n×n invertible matrices over R. Let G0 be the abelian
group 〈

t1, . . . , tr

∣∣∣ tk1
1 , . . . , tkr

r , [ti, tj ] (1 ≤ i < j ≤ r)
〉
,

where k1, . . . , kr ∈ Z≥0, and [ti, tj ] denotes the commutator of ti and tj . We remark
that the group ring R[G0] can be identified with the quotient ring of the Laurent

polynomial ring R[t±1
1 , . . . , t±1

r ]/(tk1
1 − 1, . . . , tkr

r − 1).

Example 3.2. We set maps f1, f2 : G0 ×G0 → R[G0] by

f1(a, b) = b−1, f2(a, b) = b−1a− b−1.

Then the pair (f1, f2) is an MCQ Alexander pair.

Example 3.3. We set maps f1, f2 : GL(k,R[G0])×GL(k,R[G0]) → M(k, k;R[G0])
by

f1(a, b) = b−1, f2(a, b) = b−1a− b−1.

Then the pair (f1, f2) is an MCQ Alexander pair.

Example 3.4. Let X be an MCQ, R a ring and f : X → R× an MCQ homomor-
phism. We set maps f1, f2 : X ×X → R by

f1(x, y) = f(y)−1, f2(x, y) = f(y)−1(f(x)− 1).

Then the pair (f1, f2) is an MCQ Alexander pair.

By using the following proposition, we can construct MCQ Alexander pairs from
Alexander pairs.

Proposition 3.5. Let (Q, ◁) be a quandle and assume k := typeQ < ∞. Let R be
a ring and let (f1, f2) be an Alexander pair of maps f1, f2 : Q×Q → R satisfying

k∏
i=1

f1(x ◁k−i y, y) = 1 and

k∑
i=1

f1(x, x)
i = 0

for any x, y ∈ Q. Let X := Q × Zk be the associated MCQ of a Zk-family of

quandles (Q, {◁i}i∈Zk
). We define maps f̃1, f̃2 : X ×X → R by

f̃1((x, a), (y, b)) =

b∏
i=1

f1(x ◁b−i y, y),

f̃2((x, a), (y, b)) =

b−1∏
i=1

f1(x ◁b−i y, y)

 a∑
j=1

f1(x ◁ y, x ◁ y)j−af2(x, y),
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where for any l ∈ Z, we denote by l the integer satisfying 1 ≤ l ≤ k and l ≡ l

mod k. Then the pair (f̃1, f̃2) is an MCQ Alexander pair.

Proof. We remark that

k∏
i=1

f1(x ◁l−i y, y) = 1, especially f1(x, x)
k = 1,

k∑
i=1

f1(x, x)
l+i = 0

for any x, y ∈ Q and l ∈ Z, and that l1+ l2 ≡ l1 + l2 mod k for any l1, l2 ∈ Z. Since
(f1, f2) is an Alexander pair, we have the following equalities:

f1(x ◁c y, x ◁c y)−a

c−1∏
i=1

f1(x ◁c−i y, y)

 =

c−1∏
i=1

f1(x ◁c−i y, y)

 f1(x ◁ y, x ◁ y)−a,

(1)(
c∏

i=1

f1((x ◁b y) ◁c−i z, z)

) b∏
i=1

f1(x ◁b−i y, y)


=

 b∏
i=1

f1((x ◁b−i y) ◁c z, y ◁c z)

( c∏
i=1

f1(x ◁c−i z, z)

)
, (2)

f2(x ◁c z, y ◁c z)

(
c∏

i=1

f1(y ◁
c−i z, z)

)
=

(
c∏

i=1

f1((x ◁ y) ◁c−i z, z)

)
f2(x, y), (3) a∑

j=1

f1((x ◁ y) ◁c z, (x ◁ y) ◁c z)j−a

( c∏
i=1

f1((x ◁ y) ◁c−i z, z)

)

=

(
c∏

i=1

f1((x ◁ y) ◁c−i z, z)

) a∑
j=1

f1(x ◁ y, x ◁ y)j−a

 , (4)

f2(x ◁ z, y ◁ z)

 b∑
j=1

f1(y ◁ z, y ◁ z)
j−b


=

b∑
j=1

j−b−1∏
i=0

f1((x ◁k−i y) ◁ z, y ◁ z)

 f2((x ◁b−j y) ◁ z, y ◁ z) (5)

for any a, b, c ∈ Z and x, y, z ∈ Q. By the above equalities (1)–(5), the axioms
(2-ii), (4-i), (4-ii) and (4-iii) in Definition 3.1 hold. It is easy to see that the axioms

(1-i), (2-i), (3-i), (3-ii) and (3-iii) in Definition 3.1 hold. Therefore (f̃1, f̃2) is an
MCQ Alexander pair. □

Example 3.6. Let Q be a quandle and assume k := typeQ < ∞. Let R be a ring
and let (f1, f2) be an Alexander pair of maps f1, f2 : Q×Q → R[t±1]/(1+ t+ · · ·+
tk−1) defined by f1(a, b) = t and f2(a, b) = 1−t. Let X := Q×Zk be the associated
MCQ of a Zk-family of quandles (Q, {◁i}i∈Zk

). Then, by Proposition 3.5, we have
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the MCQ Alexander pair (f̃1, f̃2) of maps f̃1, f̃2 : X×X → R[t±1]/(1+t+· · ·+tk−1)
defined by

f̃1((x, a), (y, b)) = tb, f̃2((x, a), (y, b)) = tb(t−a − 1),

which coincides with the case when we set f : X → R[t±1]/(1 + t+ · · ·+ tk−1) by
f(a, x) = ta in Example 3.4.

Example 3.7. Let Q := CoreG be the core quandle of a group G. Let R be a
ring and let (f1, f2) be an Alexander pair of maps f1, f2 : Q × Q → R[G] defined
by f1(a, b) = −ba−1 and f2(a, b) = 1 + ba−1. Since typeQ = 2, we have the
associated MCQ X := Q × Z2 of a Z2-family of quandles (Q, {◁i}i∈Z2

). Then, by

Proposition 3.5, we have the MCQ Alexander pair (f̃1, f̃2) of maps f̃1, f̃2 : X×X →
R[G] defined by

f̃1((x, a), (y, b)) =

{
1 if b = 0,

−yx−1 otherwise,

f̃2((x, a), (y, b)) =


0 if a = 0,

−1− xy−1 if a = 1 and b = 0,

1 + yx−1 if a = 1 and b = 1.

Example 3.8. Let Q be the conjugacy class of the symmetric group of order 4
consisting of cyclic permutations of length 4. We define a binary operation ◁ on
Q by a ◁ b = b−1ab. Then (Q, ◁) is a quandle. We write the elements of Q by
g1 := (1234), g2 := (1423), g3 := (1324), g4 := (1432), g5 := (1324), g6 := (1243) and
define the map f1 : Q×Q → Z4[t

±1]/(t4 − 1) by

f1(x, y) =



t if (x, y) ∈


(g1, g3), (g1, g4), (g2, g1), (g2, g3), (g2, g5), (g3, g1),

(g3, g5), (g3, g6), (g4, g1), (g5, g1), (g5, g2), (g5, g6),

(g6, g1), (g6, g2), (g6, g3), (g6, g5)

,

t2 if (x, y) ∈ {(g1, g5), (g5, g3)},
t3 if (x, y) ∈ {(g1, g6), (g3, g2)},
1 otherwise.

Then the pair (f1, 0) is an Alexander pair, where 0 denotes the zero map. Since
typeQ = 4, we have the associated MCQ X := Q×Z4 of the Z4-family of quandles

(Q, {◁i}i∈Z4
). Then, by Proposition 3.5, we have the MCQ Alexander pair (f̃1, 0),

where f̃1 is the map f̃1 : X ×X → Z4[t
±1]/(t4 − 1) defined by f̃1((x, a), (y, b)) =∏b

i=1 f1(x ◁b−i y, y).

Remark 3.9. In general, a quandle 2-cocycle θ : Q×Q → A induces an Alexander
pair (fθ, 0), where Q and A denote a quandle and an abelian group, respectively,
and fθ : Q × Q → R[A] is the map defined by fθ(a, b) = θ(a, b) for a ring R.
The Alexander pair (f1, 0) in Example 3.8 is obtained through this process from a
quandle 2-cocycle (refer to [4, Appendix]). Taniguchi [21] showed that, for classical
links, the 0-th elementary ideal of the f -twisted Alexander matrix [16] with an
Alexander pair f = (fθ, 0) can be realized from a quandle cocycle invariant [3] with
a quandle 2-cocycle θ.
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Proposition 3.10. Let ρ : X → Y be an MCQ representation. If (f1, f2) is an
MCQ Alexander pair of maps f1, f2 : Y × Y → R, then (f1 ◦ (ρ × ρ), f2 ◦ (ρ × ρ))
is also an MCQ Alexander pair.

Proof. This proposition can be verified by direct calculation. □

4. MCQ presentations and the fundamental MCQ of a
handlebody-link

In this section, we review the notions of MCQ presentations and the fundamental
MCQ of a handlebody-link. For details see [13].

The free MCQ FMCQ(SΛ) over a given set of pairwise disjoint sets SΛ = {Sλ |λ ∈
Λ} is a free object in the category of MCQs. It consists of all MCQ words that can
be built from elements of

⋃
λ∈Λ Sλ as described below. For k ≥ 0, we set

WMCQ(SΛ; 0) :=
⋃
λ∈Λ

Sλ,

WMCQ(SΛ; k + 1)

:=

{
aε11 · · · aεnn

∣∣∣∣ n ≥ 1, ε1, . . . , εn ∈ {0, 1,−1}, a1, . . . , an ∈ WMCQ(SΛ; k),
a1, . . . , an represent multiplicable elements of FMCQ(SΛ)

}
∪ {x ◁ y |x, y ∈ WMCQ(SΛ; k)},

where aε11 · · · aεnn and x ◁ y are symbols, and we put parentheses in appropriate
places. For example,

a ◁ a, a ◁ b, b ◁ a, b ◁ b, a, a0, a−1, b, b0, b−1, aa, aa−1, a−1aa, bb−1, bb0b−1

are elements of WMCQ({{a}, {b}}; 1), and
(a ◁ b) ◁ b−1, aa ◁ (a ◁ b), (a ◁ b) ◁ aa, b−1 ◁ (a ◁ b), (a ◁ b)0, (b−1)−1, (a ◁ b)(a ◁ b)

are elements of WMCQ({{a}, {b}}; 2). We define WMCQ(SΛ) :=
⋃∞

k=0 WMCQ(SΛ; k)
and call its element MCQ word in SΛ. Two MCQ words in SΛ are multiplicable if
they represent multiplicable elements of FMCQ(SΛ).

Lemma 4.1 ([13]). Let SΛ = {Sλ |λ ∈ Λ} be a set of pairwise disjoint sets. For
w1, w2 ∈ WMCQ(SΛ), w1 and w2 represent the same element in FMCQ(SΛ) if and
only if w1 and w2 are related by a finite sequence of the following local replacements
on MCQ words:

abεb−εc ↔ ab0c ↔ ac,

a ◁ b ↔ b−1ab,

x ◁ a0 ↔ x, x ◁ ab ↔ (x ◁ a) ◁ b,

(x ◁ y) ◁ z ↔ (x ◁ z) ◁ (y ◁ z),

ab ◁ x ↔ (a ◁ x)(b ◁ x),

where ε ∈ {0, 1,−1} and a, b, c, x, y, z ∈ WMCQ(SΛ) such that a, b, c are multiplic-
able.

Every MCQ has a presentation ⟨SΛ |R⟩, where SΛ = {Sλ |λ ∈ Λ} is a set of
pairwise disjoint sets, and R ⊂ FMCQ(SΛ)× FMCQ(SΛ). It is also denoted ⟨Sλ (λ ∈
Λ) |R⟩. We call SΛ the generating set of ⟨SΛ |R⟩ and an element of R a relator of
⟨SΛ |R⟩. A relator (a, b) is also written as a = b. For x ∈

⋃
λ∈Λ Sλ, we use the same

symbol x for the element of ⟨SΛ |R⟩ represented by x. A presentation ⟨SΛ |R⟩ is
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called a finite presentation if
⋃

λ∈Λ Sλ and R are finite. For a finitely presented
MCQ, we often write

⟨x1,1, . . . , x1,n1
; . . . ;xl,1, . . . , xl,nl

| r1, . . . , rm⟩
:= ⟨{x1,1, . . . , x1,n1}, . . . , {xl,1, . . . , xl,nl

} | {r1, . . . , rm}⟩.
We define the MCQ isomorphisms

fT1-1 : ⟨SΛ |R⟩ → ⟨SΛ |R, (x, x)⟩ (x ∈ FMCQ(SΛ)),
fT1-2 : ⟨SΛ |R, (a, b)⟩ → ⟨SΛ |R, (a, b), (b, a)⟩,
fT1-3 : ⟨SΛ |R, (a, b), (b, c)⟩ → ⟨SΛ |R, (a, b), (b, c), (a, c)⟩,
fT1-4 : ⟨SΛ |R, (a1, a2), (b1, b2)⟩ → ⟨SΛ |R, (a1, a2), (b1, b2), (a1 ◁b1, a2 ◁b2)⟩,
fT1-5 : ⟨SΛ |R, (a1, a2), (b1, b2)⟩ → ⟨SΛ |R, (a1, a2), (b1, b2), (a1b

−1
1 , a2b

−1
2 )⟩

(ai and bi are multiplicable),
fT2 : ⟨SΛ |R⟩ → ⟨SΛ, {y} |R, (y, w)⟩ (y ̸∈ FMCQ(SΛ), w ∈ FMCQ(SΛ)),
fT3-1 : ⟨SΛ, Sµ, Sν |R, (a0, b0)⟩ → ⟨SΛ, Sµ ∪ Sν |R, (a0, b0)⟩ (a ∈ Sµ, b ∈ Sν)

by

fT1-i(x) = x (i = 1, . . . , 5),

fT2(y) = y,

fT3-1(z) = z

for x, y ∈
⋃

λ∈Λ Sλ and z ∈
⋃

λ∈Λ Sλ∪Sµ∪Sν , respectively, where in the transforma-
tions, ⟨SΛ, S1, . . . , Sn |R, r1, . . . , rm⟩ stands for ⟨SΛ∪{S1, . . . Sn} |R∪{r1, . . . , rm}⟩.
We define the following transformations on presentations with MCQ representa-
tions:

(T1-1) (⟨SΛ |R⟩, ρ) ↔ (⟨SΛ |R, (x, x)⟩, ρ ◦ f−1
T1-1) (x ∈ FMCQ(SΛ)),

(T1-2) (⟨SΛ |R, (a, b)⟩, ρ) ↔ (⟨SΛ |R, (a, b), (b, a)⟩, ρ ◦ f−1
T1-2),

(T1-3) (⟨SΛ |R, (a, b), (b, c)⟩, ρ) ↔ (⟨SΛ |R, (a, b), (b, c), (a, c)⟩, ρ ◦ f−1
T1-3),

(T1-4) (⟨SΛ |R, (a1, a2), (b1, b2)⟩, ρ)↔ (⟨SΛ |R, (a1, a2), (b1, b2), (a1◁b1, a2◁b2)⟩, ρ◦
f−1
T1-4),

(T1-5) (⟨SΛ |R, (a1, a2), (b1, b2)⟩, ρ)↔ (⟨SΛ |R, (a1, a2), (b1, b2), (a1b
−1
1 , a2b

−1
2 )⟩, ρ◦

f−1
T1-5) (ai and bi are multiplicable),

(T2) (⟨SΛ |R⟩, ρ)↔ (⟨SΛ, {y} |R, (y, w)⟩, ρ◦f−1
T2 ) (y ̸∈ FMCQ(SΛ), w ∈ FMCQ(SΛ)),

(T3-1) (⟨SΛ, Sµ, Sν |R, (a0, b0)⟩, ρ) ↔ (⟨SΛ, Sµ ∪Sν |R, (a0, b0)⟩, ρ ◦ f−1
T3-1) (a ∈ Sµ,

b ∈ Sν).

In this paper, we often use the same symbol ρ for ρ ◦ f−1
T1-i, ρ ◦ f

−1
T2 and ρ ◦ f−1

T3-1.
For finitely presented MCQs ⟨SΛ |R⟩ and ⟨S′

Λ′ |R′⟩, and MCQ representations ρ :
⟨SΛ |R⟩ → X and ρ′ : ⟨S′

Λ′ |R′⟩ → X, we write (⟨SΛ |R⟩, ρ) ∼T (⟨S′
Λ′ |R′⟩, ρ′) if

they are transformed into each other by a finite sequence of the transformations
(T1-1)–(T1-5), (T2) and (T3-1). Clearly, if (⟨SΛ |R⟩, ρ) ∼T (⟨S′

Λ′ |R′⟩, ρ′), then
(⟨SΛ |R⟩, ρ) ∼= (⟨S′

Λ′ |R′⟩, ρ′).
In the following, we recall the fundamental MCQ of a handlebody-link and its

Wirtinger presentation. A handlebody-link [11] is a disjoint union of handlebodies
embedded in the 3-sphere S3. A handlebody-knot is a one component handlebody-
link. In this paper, we assume that every component of a handlebody-link is of
genus at least 1. Two handlebody-links are equivalent if there is an orientation-
preserving self-homeomorphism of S3 which sends one to the other. A diagram of
a handlebody-link is a diagram of a spatial trivalent graph whose regular neigh-
borhood is the handlebody-link, where a spatial trivalent graph is a finite trivalent
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graph embedded in S3. In this paper, a trivalent graph may contain circle compo-
nents. Two handlebody-links are equivalent if and only if their diagrams are related
by a finite sequence of R1–R6 moves depicted in Figure 1 [11].

Figure 1. The Reidemeister moves for handlebody-links.

Let D be a diagram of a handlebody-link. A Y-orientation of D is a collection
of orientations of all edges of D without sources and sinks with respect to the
orientation as shown in Figure 2, where an edge of D is a piece of a curve each
of whose endpoints is a vertex. In this paper, a circle component of D is also
regarded as an edge of D. We may represent an orientation of an edge by a normal
orientation, which is obtained by rotating a usual orientation counterclockwise by
π/2 on a diagram. A vertex of a Y-oriented diagram can be allocated a sign; the
vertex is said to have a sign +1 or −1. The standard convention of the signs is
shown in Figure 2. It is known that every diagram has a Y-orientation.

?

@
@R

�
�	 ?

@
@R

�
�	

+1 −1

Figure 2. Y-orientations.

Let H be a handlebody-link represented by a Y-oriented diagram D. We denote
by C(D), V (D) and A(D) the sets of crossings, vertices and arcs of D, respectively.
For each c ∈ C(D), we denote by vc the over-arc of c, and we denote by uc and
wc the under-arcs of c such that the normal orientation of vc points from uc to
wc as illustrated in the left of Figure 3. For each τ ∈ V (D), if τ has a sign
+1 (resp. −1), we denote by wτ the arc whose initial (resp. terminal) vertex
is τ , and we denote by uτ and vτ the arcs incident to τ such that the normal
orientation of wτ points from uτ to vτ as illustrated in the center and right of
Figure 3. We denote by A⊔(D) the quotient set of A(D) by the equivalence relation
generated by

⋃
τ∈V (D){uτ , vτ , wτ}2, that is, two arcs x, x′ ∈ A(D) are equivalent

if there exist arcs x1, x2, . . . , xn ∈ A(D) such that x = x1, x
′ = xn, and that

xi and xi+1 have a common vertex of D for each i. For example, for the Y-
oriented diagram D of a handlebody-knot depicted in Figure 4, we have A⊔(D) =
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{{x1, x2, x3}, {x4, . . . , x10}, {x11}, . . . , {x14}}. Then we define

MCQ(D) := ⟨A⊔(D) | rc, rτ (c ∈ C(D), τ ∈ V (D))⟩ , (6)

where rc and rτ denote the relators (uc ◁ vc, wc) and (uτvτ , wτ ), respectively. The
isomorphism class of MCQ(D) does not depend on the choice of a diagram D of
H and its Y-orientation [13]. We then define MCQ(H) := MCQ(D) and call it the
fundamental MCQ of H. The presentation (6) is called the Wirtinger presentation
of MCQ(H) with respect to D. We obtain the presentationG(D) of the fundamental
group G(H) := π1(S

3−H) by replacing A⊔(D) by A(D), rc by v−1
c ucvcw

−1
c and rτ

by uτvτw
−1
τ in (6), which is called the Wirtinger presentation of G(H) with respect

to D.

?

→
uc

vc

wc
c

?

@
@R

�
�	
→

→
→

uτ vτ

wτ

τ ?
@
@R

�
�	

→

→
→

uτ vτ

wτ

τ

Figure 3. Notations of arcs.

Figure 4. A Y-oriented diagram of a handlebody-knot.

Let D be a Y-oriented diagram of a handlebody-link H and let X be an MCQ.
An X-coloring of D is a map C : A(D) → X satisfying the conditions

C(uc) ◁ C(vc) = C(wc) and C(uτ )C(vτ ) = C(wτ )

for each crossing c ∈ C(D) and vertex τ ∈ V (D). We denote by ColX(D) the set of
X-colorings of D. An X-coloring of D can be regarded as an MCQ representation
of MCQ(D) to X. We can then identify ColX(D) with Hom(MCQ(D), X). Hence
its cardinality gives an invariant for the handlebody-link, called the MCQ coloring
number.

Let D be a Y-oriented diagram of a handlebody-link H and D′ a Y-oriented
diagram of H obtained by changing the Y-orientation of D. We then obtain the
MCQ isomorphism f(D,D′) : MCQ(D) → MCQ(D′) sending x into xε(x) for any
x ∈ A(D), where ε(x) = 1 if the Y-orientations ofD andD′ coincide on x; otherwise
ε(x) = −1. Moreover, let D′′ a Y-oriented diagram of H obtained by applying one
of Reidemeister moves preserving the Y-orientation to D once. We then obtain a
unique MCQ isomorphism f(D,D′′) : MCQ(D) → MCQ(D′′) sending x into x for
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any x ∈ A(D ∩D′′), where A(D ∩D′′) denotes the set of arcs in the outside of the
disk where the move is applied. Let H and H ′ be handlebody-links represented
by Y-oriented diagrams D and D′, respectively. Let ρ : MCQ(D) → X and ρ′ :
MCQ(D′) → X be MCQ representations. Then (H, ρ) and (H ′, ρ′) are equivalent,
denoted by (H, ρ) ∼= (H ′, ρ′), if there exists a sequence D = D1 ↔ · · · ↔ Dn = D′

of Reidemeister moves and Y-orientation changes such that ρ′ = ρ ◦ f−1
(D1,D2)

◦ · · · ◦
f−1
(Dn−1,Dn)

. If H ∼= H ′, then for any MCQ representation ρ : MCQ(D) → X, there

exists a unique MCQ representation ρ′ : MCQ(D′) → X such that (H, ρ) ∼= (H ′, ρ′).
Then we have the following lemma.

Lemma 4.2. Let H and H ′ be handlebody-links represented by Y-oriented diagrams
D and D′, respectively. Let ρ : MCQ(D) → X and ρ′ : MCQ(D′) → X be MCQ rep-
resentations. If (H, ρ) ∼= (H ′, ρ′), then it follows (MCQ(D), ρ) ∼T (MCQ(D′), ρ′).

Proof. Assume (H, ρ) ∼= (H ′, ρ′). By the definition, there exists a sequence D =
D1 ↔ · · · ↔ Dn = D′ of Reidemeister moves and Y-orientation changes such that
ρ′ = ρ ◦ f−1

(D1,D2)
◦ · · · ◦ f−1

(Dn−1,Dn)
. By [13], each MCQ isomorphism f(Di,Di+1)

can be realized as a composition of f±1
T1-1, . . . , f

±1
T1-5, f

±1
T2 and f±1

T3-1. Then we have
(MCQ(D), ρ) ∼T (MCQ(D′), ρ′). □

5. Derivatives with MCQ Alexander pairs

Let SΛ = {Sλ |λ ∈ Λ} be a finite set of pairwise disjoint finite sets and x1, . . . , xn

the elements of
⋃

λ∈Λ Sλ. Let X = ⟨SΛ | {r1, . . . , rm}⟩ be a finitely presented MCQ.
Let FMCQ(SΛ) be the free MCQ on SΛ and pr : FMCQ(SΛ) → X be the canonical
projection. We often omit “pr” to represent pr(x) as x. Let f = (f1, f2) be
an MCQ Alexander pair of maps f1, f2 : X × X → R. We denote by Gµ each

direct summand of FMCQ(SΛ), where µ is an element of an index set Λ, that is,
FMCQ(SΛ) =

⊔
µ∈Λ Gµ.

Definition 5.1. For j ∈ {1, . . . , n}, the f -derivative with respect to xj is a map
∂f

∂xj
: FMCQ(SΛ) → R satisfying

∂f
∂xj

(x ◁ y) = f1(x, y)
∂f
∂xj

(x) + f2(x, y)
∂f
∂xj

(y),

∂f
∂xj

(ab) =
∂f
∂xj

(a) + f1(a, a
−1)

∂f
∂xj

(b),

∂f
∂xj

(xi) = δij

for any x, y ∈ FMCQ(SΛ), a, b ∈ Gµ and i ∈ {1, . . . , n}, where δij denotes the
Kronecker delta.

Theorem 5.2. For j ∈ {1, . . . , n}, the f -derivative
∂f

∂xj
: FMCQ(SΛ) → R is well-

defined.
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Proof. We temporarily regard the f -derivative
∂f

∂xj
as the map

∂f

∂xj
: WMCQ(SΛ) →

R defined by using the following equalities inductively:

∂f
∂xj

(x ◁ y) = f1(x, y)
∂f
∂xj

(x) + f2(x, y)
∂f
∂xj

(y),

∂f
∂xj

(ab) =
∂f
∂xj

(a) + f1(a, a
−1)

∂f
∂xj

(b),

∂f
∂xj

(a−1) = −f1(a, a)
∂f
∂xj

(a),

∂f
∂xj

(xi) = δij ,

∂f
∂xj

(a0) = 0

for x, y, a, b ∈ WMCQ(SΛ), where a and b are multiplicable. This map is well-defined
since for any a, b, c ∈ WMCQ(SΛ) which are multiplicable, we have

∂f
∂xj

((ab)c) =
∂f
∂xj

(ab) + f1(ab, b
−1a−1)

∂f
∂xj

(c)

=
∂f
∂xj

(a) + f1(a, a
−1)

∂f
∂xj

(b) + f1(ab, b
−1a−1)

∂f
∂xj

(c)

=
∂f
∂xj

(a) + f1(a, a
−1)

∂f
∂xj

(b) + f1(a, a
−1)f1(b, b

−1)
∂f
∂xj

(c)

=
∂f
∂xj

(a) + f1(a, a
−1)

∂f
∂xj

(bc)

=
∂f
∂xj

(a(bc)).

For any x1, x2, y1, y2, a1, a2, b1, b2 ∈ WMCQ(SΛ) satisfying that ai, bi are multiplic-
able for i = 1, 2, if

∂f
∂xj

(x1) =
∂f
∂xj

(x2),
∂f
∂xj

(y1) =
∂f
∂xj

(y2),
∂f
∂xj

(a1) =
∂f
∂xj

(a2),
∂f
∂xj

(b1) =
∂f
∂xj

(b2)

and x1 = x2, y1 = y2, a1 = a2, b1 = b2 in FMCQ(SΛ), then we have

∂f
∂xj

(x1 ◁ y1) =
∂f
∂xj

(x2 ◁ y2),
∂f
∂xj

(a1b1) =
∂f
∂xj

(a2b2).
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Hence, by Lemma 4.1, the well-definedness of the f -derivative
∂f

∂xj
: FMCQ(SΛ) → R

follows from the following equalities:

∂f
∂xj

(bεb−ε) =
∂f
∂xj

(b0) = 0,

∂f
∂xj

(a ◁ b) =
∂f
∂xj

(b−1ab),

∂f
∂xj

(x ◁ a0) =
∂f
∂xj

(x),

∂f
∂xj

(x ◁ (ab)) =
∂f
∂xj

((x ◁ a) ◁ b),

∂f
∂xj

((x ◁ y) ◁ z) =
∂f
∂xj

((x ◁ z) ◁ (y ◁ z)),

∂f
∂xj

((ab) ◁ x) =
∂f
∂xj

((a ◁ x)(b ◁ x)),

where ε ∈ {0, 1,−1} and a, b, c, x, y, z ∈ WMCQ(SΛ) such that a, b, c are multiplic-
able. We can see that these equalities hold by direct calculation, where the fourth
and sixth equalities follow from [20, Lemma 2.6]. This completes the proof. □

Proposition 5.3. For any µ ∈ Λ, a ∈ Gµ and j ∈ {1, . . . , n}, we have

∂f
∂xj

(eµ) = 0,

∂f
∂xj

(a−1) = −f1(a, a)
∂f
∂xj

(a).

Proof. The first equality follows from

∂f
∂xj

(eµeµ) =
∂f
∂xj

(eµ) + f1(eµ, eµ)
∂f
∂xj

(eµ) =
∂f
∂xj

(eµ) +
∂f
∂xj

(eµ).

The second equality follows from

∂f
∂xj

(eµ) =
∂f
∂xj

(a−1a) =
∂f
∂xj

(a−1) + f1(a
−1, a)

∂f
∂xj

(a).

□

6. f-twisted Alexander matrices for handlebody-links

Let R be a ring. We denote by M(m,n;R) the set of m×n matrices over R and
by GL(n;R) the set of n× n invertible matrices over R. We say that two matrices
A1 and A2 over R are equivalent, denoted by A1 ∼ A2, if they are related by a
finite sequence of the following transformations:

• (a1, . . . ,ai, . . . ,aj , . . . ,an) ↔ (a1, . . . ,ai + ajr, . . . ,aj , . . . ,an) (r ∈ R),
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•



a1

...
ai

...
aj

...
an


↔



a1

...
ai + raj

...
aj

...
an


(r ∈ R), • A ↔

(
A
0

)
, • A ↔

(
A 0
0 1

)
.

By the definitions, we have the following equivalences (for details see [16]):

• (a1, . . . ,ai, . . . ,aj , . . . ,an) ∼ (a1, . . . ,aj , . . . ,ai, . . . ,an),
• (a1, . . . ,ai, . . . ,an) ∼ (a1, . . . ,aiu, . . . ,an) (u ∈ R×),

•



a1

...
ai

...
aj

...
an


∼



a1

...
aj

...
ai

...
an


, •



a1

...
ai

...
an

 ∼



a1

...
uai

...
an

 (u ∈ R×).

Let R be a commutative ring, and let A ∈ M(m,n;R). A k-minor of A is the
determinant of a k× k submatrix of A. For any d ∈ Z≥0, the d-th elementary ideal
Ed(A) of A is the ideal of R generated by all (n− d)-minors of A if n−m ≤ d < n,
and

Ed(A) :=

{
0 if d < n−m,

R if n ≤ d.

Suppose that R is a GCD domain. Then the d-th Alexander invariant ∆d(A) of A
is the greatest common divisor of all (n− d)-minors of A if n−m ≤ d < n, and

∆d(A) :=

{
0 if d < n−m,

1 if n ≤ d.

We remark that ∆d(A) coincides with the greatest common divisor of generators
of Ed(A) and is determined up to unit multiple. If A ∼ B, then Ed(A) = Ed(B)
and ∆d(A)

.
= ∆d(B), where “

.
=” means “is equal to, up to multiplication by a

unit”. See [7] for more details.

Remark 6.1. LetR be a commutative ring. We can regard a matrix inM(m,n;M(k, k;R))
as a matrix in M(km, kn;R). We call such matrices flat matrices. We note that
equivalent matrices are equivalent as flat matrices.

For an MCQ representation ρ : X → Y and an MCQ Alexander pair f = (f1, f2)
of maps f1, f2 : Y ×Y → R, we set f ◦ (ρ× ρ) := (f1 ◦ (ρ× ρ), f2 ◦ (ρ× ρ)), which is
an MCQ Alexander pair by Proposition 3.10. For a relator r = (r1, r2), we define

∂f
∂xj

(r) :=
∂f
∂xj

(r1)−
∂f
∂xj

(r2).

Definition 6.2. Let X = ⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm⟩ be a
finitely presented MCQ and ρ : X → Y an MCQ representation. Let f = (f1, f2)
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be an MCQ Alexander pair of maps f1, f2 : Y × Y → R. The f -twisted Alexander
matrix of (X, ρ) (with respect to the presentation ⟨x | r⟩) is

A(X, ρ; f1, f2) =


∂f◦(ρ×ρ)

∂x1
(r1) · · · ∂f◦(ρ×ρ)

∂xn
(r1)

...
. . .

...
∂f◦(ρ×ρ)

∂x1
(rm) · · · ∂f◦(ρ×ρ)

∂xn
(rm)

 .

The following proposition shows that the equivalence class of an f -twisted Alexan-
der matrix is invariant under the transformations (T1-1)–(T1-5), (T2) and (T3-1)
with MCQ representations.

Proposition 6.3. Let X = ⟨x | r⟩ and X ′ = ⟨x′ | r′⟩ be finitely presented MCQs,
and let ρ : X → Y and ρ′ : X ′ → Y be MCQ representations. Let (f1, f2) be an
MCQ Alexander pair of maps f1, f2 : Y × Y → R. If (X, ρ) ∼T (X ′, ρ′), then we
have

A(X, ρ; f1, f2) ∼ A(X ′, ρ′; f1, f2).

Especially, we have

Ed(A(X, ρ; f1, f2)) = Ed(A(X ′, ρ′; f1, f2))

if R is a commutative ring, and we have

∆d(A(X, ρ; f1, f2))
.
= ∆d(A(X ′, ρ′; f1, f2))

if R is a GCD domain.

Proof. Put f := (f1, f2) and fρ
i := fi ◦ (ρ × ρ) for each i = 1, 2, that is, f ◦

(ρ × ρ) = (fρ
1 , f

ρ
2 ). We show that the equivalence class of an f -twisted Alexander

matrix A(X, ρ, f1, f2) is invariant under the transformations (T1-1)–(T1-5), (T2)
and (T3-1). We remark again that the same symbol ρ is used for ρ ◦ f−1

T1-i, ρ ◦ f
−1
T2

and ρ ◦ f−1
T3-1 on the transformations. We set A := A(⟨x | r⟩, ρ; f1, f2) and A′ :=

A(⟨x′ | r′⟩, ρ′; f1, f2). We denote by ai the i-th row vector of A, and we denote by
ai,j (resp. a′i,j) the (i, j) entry of A (resp. A′).

At first, we check (T1-1)–(T1-5). For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, x = x⟩ (x ∈ FMCQ(x)),

we have

A =


∂f◦(ρ×ρ)

∂x1
(r1) · · · ∂f◦(ρ×ρ)

∂xn
(r1)

...
. . .

...
∂f◦(ρ×ρ)

∂x1
(rm) · · · ∂f◦(ρ×ρ)

∂xn
(rm)

 ∼
(
A
0

)
= A′.

For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a = b⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a = b, b = a⟩,

we have

A =

 a1

...
am+1

 ∼


a1

...
am+1

0

 ∼


a1

...
am+1

−am+1

 = A′.
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For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a = b, b = c⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a = b, b = c, a = c⟩,

we have

A =


a1

...
am+1

am+2

 ∼


a1

...
am+1

am+2

0

 ∼


a1

...
am+1

am+2

am+1 + am+2

 = A′.

For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2, a1 ◁ b1 = a2 ◁ b2⟩,

we have

A =


a1

...
am+1

am+2

 ∼


a1

...
am+1

am+2

0

 ∼


a1

...
am+1

am+2

fρ
1 (a1, b1)am+1 + fρ

2 (a1, b1)am+2

 = A′.

For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a1 = a2, b1 = b2, a1b

−1
1 = a2b

−1
2 ⟩,

where ai and bi are multiplicable, we have

A =


a1

...
am+1

am+2

 ∼


a1

...
am+1

am+2

0

 ∼


a1

...
am+1

am+2

am+1 − fρ
1 (a1, a

−1
1 )fρ

1 (b1, b1)am+2

 = A′.

Next, we check (T2). For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn; y | r1, . . . , rm, y = w⟩ (y /∈ FMCQ(x), w ∈ FMCQ(x)),

we have

A =


∂f◦(ρ×ρ)

∂x1
(r1) · · · ∂f◦(ρ×ρ)

∂xn
(r1)

...
. . .

...
∂f◦(ρ×ρ)

∂x1
(rm) · · · ∂f◦(ρ×ρ)

∂xn
(rm)

 ∼
(
A 0
0 1

)
∼
(

A 0
−∂w

∂x 1

)
= A′,

where −∂w
∂x is the row vector

(
−∂f◦(ρ×ρ)

∂x1
(w), . . . ,−∂f◦(ρ×ρ)

∂xn
(w)
)
.
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Finally, we check (T3-1). For the presentations

⟨x | r⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xl′ ;xl′+1, . . . , xn | r1, . . . , rm, a0 = b0⟩,
⟨x′ | r′⟩ = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm, a0 = b0⟩,

where a ∈ {xl, . . . , xl′} and b ∈ {xl′+1, . . . , xn}, we have A = A′ easily.
This completes the proof. □
Let H be a handlebody-link represented by a Y-oriented diagram D. Let ρ :

MCQ(D) → X be an MCQ representation, which can be regarded as an X-coloring
of D. Let f = (f1, f2) be an MCQ Alexander pair of maps f1, f2 : X × X → R.
Then we define the f -twisted Alexander matrix of (H, ρ) (with respect to D) by

A(H, ρ; f1, f2) = A(MCQ(D), ρ; f1, f2).

We also define

Ed(H, ρ; f1, f2) := Ed(A(MCQ(D), ρ; f1, f2)),

∆d(H, ρ; f1, f2) := ∆d(A(MCQ(D), ρ; f1, f2))

if R is a commutative ring or a GCD domain, respectively.
By Lemma 4.2 and Proposition 6.3, we have the following theorem.

Theorem 6.4. Let H and H ′ be handlebody-links represented by Y-oriented dia-
grams D and D′, respectively. Let ρ : MCQ(D) → X and ρ′ : MCQ(D′) → X
be MCQ representations. Let (f1, f2) be an MCQ Alexander pair of maps f1, f2 :
X ×X → R. If (H, ρ) ∼= (H ′, ρ′), then we have

A(H, ρ; f1, f2) ∼ A(H ′, ρ′; f1, f2).

Especially, we have

Ed(H, ρ; f1, f2) = Ed(H
′, ρ′; f1, f2)

if R is a commutative ring, and we have

∆d(H, ρ; f1, f2)
.
= ∆d(H

′, ρ′; f1, f2)

if R is a GCD domain.

We calculate our invariants of the genus g trivial handlebody-knot for any MCQ
Alexander pair f .

Proposition 6.5. Let Og be the trivial handlebody-knot of genus g. Let Dg be
the Y-oriented diagram of Og illustrated in Figure 5. For any MCQ representation
ρ : MCQ(Dg) → X and MCQ Alexander pair (f1, f2) of maps f1, f2 : X ×X → R,
we have

A(Og, ρ; f1, f2) ∼
(
0 · · · 0

)
∈ M(1, g;R).

Especially, we have

Ed(Og, ρ; f1, f2) =

{
0 if d < g,

R if g ≤ d

if R is a commutative ring, and we have

∆d(Og, ρ; f1, f2) =

{
0 if d < g,

1 if g ≤ d

if R is a GCD domain.
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Proof. Assume that g ≥ 2. The Wirtinger presentation MCQ(Dg) is given by〈
x1, . . . , x3g−3

∣∣∣∣ x1x2 = x1, x3g−3x3g−4 = x3g−3,
x3ix3i+1 = x3i−1, x3ix3i+1 = x3i+2 (1 ≤ i ≤ g − 2)

〉
.

We put ai := f1 ◦ (ρ× ρ)(xi, x
−1
i ) ∈ R×. We then have

A(Og, ρ; f1, f2)

=



0 a1
0 −1 1 a3

1 a3 −1 · · · 0
−1 1 a6

1 a6 −1
...

. . .
...

−1 1 a3g−6

0 · · · 1 a3g−6 −1 0
a3g−3 0


∼
(
0 · · · 0

)
∈ M(1, g;R).

It is easy to see that A(O1, ρ; f1, f2) ∼
(
0
)
∈ M(1, 1;R). □

Figure 5. A Y-oriented diagram Dg of the genus g trivial
handlebody-knot Og.

Remark 6.6. In the same way as proof of Proposition 6.5, we have the following
statement. Let Og1,...,gm be the m-component trivial handlebody-link the genera
of whose components are g1, . . . , gm, respectively. Let Dg1,...,gm be a Y-oriented
diagram of Og1,...,gm . Put g := g1 + · · · + gm. For any MCQ representation ρ :
MCQ(Dg1,...,gm) → X and MCQ Alexander pair (f1, f2) of maps f1, f2 : X ×X →
M(n, n;R), we have

A(Og1,...,gm , ρ; f1, f2) ∼
(
0 · · · 0

)
∈ M(1, ng;R),

where we regard A(Og1,...,gm , ρ; f1, f2) as a flat matrix. Especially, we have

Ed(Og1,...,gm , ρ; f1, f2) =

{
0 if d < ng,

R if ng ≤ d

if R is a commutative ring, and we have

∆d(Og1,...,gm , ρ; f1, f2) =

{
0 if d < ng,

1 if ng ≤ d

if R is a GCD domain.
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7. (Twisted) Alexander matrices for handlebody-links

In this section, we recall the notion of the (twisted) Alexander matrix for handlebody-
links [15] and see that it can be realized as an f -twisted Alexander matrix for some
MCQ Alexander pair f .

Let H be a handlebody-link represented by a Y-oriented diagram D. We then
have the Wirtinger presentations

MCQ(D) = ⟨x1, . . . , xk; . . . ;xl, . . . , xn | r1, . . . , rm⟩,

G(D) = ⟨x1, . . . , xk, . . . , xl, . . . , xn | rGrp1 , . . . , rGrpm ⟩,

where

ri =

{
(ui ◁ vi, wi) if 1 ≤ i ≤ m′,

(uivi, wi) if m′ + 1 ≤ i ≤ m,

rGrpi =

{
v−1
i uiviw

−1
i if 1 ≤ i ≤ m′,

uiviw
−1
i if m′ + 1 ≤ i ≤ m.

See Section 4. Let R be a commutative ring. Set G := GL(k;R). For a group
representation ρ : G(D) → G, we use the same symbol ρ for the induced MCQ
representation of MCQ(D) to G sending xi into ρ(xi), where we regard G as an
MCQ with the conjugation operation. Put S := {x1, . . . , xn}, and let FGrp(S) be
the free group on S and G0 the abelian group〈

t1, . . . , tr

∣∣∣ tk1
1 , . . . , tkr

r , [ti, tj ] (1 ≤ i < j ≤ r)
〉
,

where k1, . . . , kr ∈ Z≥0. The group ring R[G0] can be identified with the quotient

ring of the Laurent polynomial ring R[t±1
1 , . . . , t±1

r ]/(tk1
1 − 1, . . . , tkr

r − 1). The Fox
derivative [6] with respect to xj is the R-homomorphism

∂Grp
∂xj

: R[FGrp(S)] → R[FGrp(S)]

satisfying

∂Grp
∂xj

(pq) =
∂Grp
∂xj

(p) + p
∂Grp
∂xj

(q) and
∂Grp
∂xj

(xi) = δij .

Let pr : FGrp(S) → G(D) be the canonical projection and α : G(D) → G0 an
surjective homomorphism. We denote the linear extensions of pr, α and ρ by
the same symbols pr : R[FGrp(S)] → R[G(D)], α : R[G(D)] → R[G0] and ρ :
R[G(D)] → M(k, k;R), respectively. Then the R-homomorphism

ρ⊗ α : R[G(D)] → M(k, k;R[G0])

is defined by

(ρ⊗ α)
(∑

rigi

)
=
∑

riρ(gi)α(gi) (ri ∈ R, gi ∈ G(D)).

The Alexander matrix of G(D) associated with α is the m× n matrix(
(α ◦ pr)

(
∂Grp
∂xj

(rGrpi )

))
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over R[G0]. The twisted Alexander matrix of G(D) associated with α and ρ is the
matrix

(
((ρ⊗ α) ◦ pr)

(
∂Grp
∂xj

(rGrpi )

))
,

which we regard as a km×knmatrix over R[G0]. These matrices produce invariants
for handlebody-links by evaluating them with ideals and greatest common divisors
as we see in [15].

For the induced MCQ representations α : MCQ(D) → G0 and ρ : MCQ(D) → G,
we define the MCQ representation ρ ·α : MCQ(D) → GL(k;R[G0]) by (ρ ·α)(x) =
ρ(x)α(x). Under the following proposition, the (twisted) Alexander matrices for
handlebody-links can be obtained in our framework.

Proposition 7.1. (1) Let f = (f1, f2) be the MCQ Alexander pair in Exam-
ple 3.2, that is, f1, f2 : G0 × G0 → R[G0] defined by f1(a, b) = b−1 and
f2(a, b) = b−1a − b−1. Let α : G(D) → G0 be a surjective homomor-
phism. Then the f -twisted Alexander matrix A(H,α; f1, f2) coincides with
the Alexander matrix of G(D) associated with α.

(2) Set G := GL(k;R). Let f = (f1, f2) be the MCQ Alexander pair in Ex-
ample 3.3, that is, f1, f2 : GL(k,R[G0]) × GL(k,R[G0]) → M(k, k;R[G0])
defined by f1(a, b) = b−1 and f2(a, b) = b−1a − b−1. Let α : G(D) → G0

be a surjective homomorphism and ρ : G(D) → G a group representation.
Then the f -twisted Alexander matrix A(H, ρ · α; f1, f2) coincides with the
twisted Alexander matrix of G(D) associated with α and ρ.

Proof. We prove (2). Put fρ·α
i := fi ◦ (ρ · α × ρ · α) for each i = 1, 2, that is,

f ◦ (ρ · α × ρ · α) = (fρ·α
1 , fρ·α

2 ). We remark again that we often omit “pr” to

represent pr(x) as x. We note that
∂Grp

∂xj
(ui),

∂Grp

∂xj
(vi) and

∂Grp

∂xj
(wi) are equal to 0 or

1 for each i and j. For 1 ≤ i ≤ m′, we have

((ρ⊗ α) ◦ pr)
(
∂Grp
∂xj

(v−1
i uiviw

−1
i )

)
= ((ρ⊗ α) ◦ pr)

(
−v−1

i

∂Grp
∂xj

(vi) + v−1
i

∂Grp
∂xj

(ui) + v−1
i ui

∂Grp
∂xj

(vi)− v−1
i uiviw

−1
i

∂Grp
∂xj

(wi)

)
= ((ρ⊗ α) ◦ pr)(v−1

i )
∂Grp
∂xj

(ui) + ((ρ⊗ α) ◦ pr)(v−1
i ui − v−1

i )
∂Grp
∂xj

(vi)−
∂Grp
∂xj

(wi)

= fρ·α
1 (ui, vi)

∂f◦(ρ·α×ρ·α)

∂xj
(ui) + fρ·α

2 (ui, vi)
∂f◦(ρ·α×ρ·α)

∂xj
(vi)−

∂f◦(ρ·α×ρ·α)

∂xj
(wi)

=
∂f◦(ρ·α×ρ·α)

∂xj
(ui ◁ vi = wi).
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For m′ + 1 ≤ i ≤ m, we have

((ρ⊗ α) ◦ pr)
(
∂Grp
∂xj

(uiviw
−1
i )

)
= ((ρ⊗ α) ◦ pr)

(
∂Grp
∂xj

(ui) + ui
∂Grp
∂xj

(vi)− uiviw
−1
i

∂Grp
∂xj

(wi)

)
=

∂Grp
∂xj

(ui) + ((ρ⊗ α) ◦ pr)(ui)
∂Grp
∂xj

(vi)−
∂Grp
∂xj

(wi)

=
∂f◦(ρ·α×ρ·α)

∂xj
(ui) + fρ·α

1 (ui, u
−1
i )

∂f◦(ρ·α×ρ·α)

∂xj
(vi)−

∂f◦(ρ·α×ρ·α)

∂xj
(wi)

=
∂f◦(ρ·α×ρ·α)

∂xj
(uivi = wi).

Therefore the f -twisted Alexander matrix A(H, ρ · α; f1, f2) coincides with the
twisted Alexander matrix of G(D) associated with α and ρ.

In the same way, we can prove (1). □

8. f-twisted Alexander matrices and handlebody-knot complements

In this section, calculating our invariants, we distinguish two handlebody-knots
whose complements have isomorphic fundamental groups, which can not be dis-
tinguished by invariants derived from the (twisted) Alexander matrices. That is,
f -twisted Alexander matrices produce strictly stronger invariants than (twisted)
Alexander matrices for handlebody-knots.

Example 8.1. Let H1 and H2 be the handlebody-knots represented by the Y-
oriented diagrams D1 and D2 depicted in Figure 6, respectively. We note that
H1 and H2 have complements whose fundamental groups are isomorphic. The
Wirtinger presentations MCQ(D1) and MCQ(D2) are given by

〈
x1, x10, x11;x7, x8, x12;
x2;x3;x4;x5;x6;x9

∣∣∣∣∣∣
x1 ◁ x6 = x2, x2 ◁ x7 = x3, x3 ◁ x5 = x4, x4 ◁ x3 = x5,

x5 ◁ x4 = x6, x6 ◁ x2 = x7, x8 ◁ x11 = x9, x9 ◁ x12 = x10,
x11 ◁ x9 = x12, x1x11 = x10, x12x7 = x8

〉

and

〈
x1, x10, x11;x7, x8, x12;
x2;x3;x4;x5;x6;x9

∣∣∣∣∣∣
x1 ◁ x6 = x2, x2 ◁ x7 = x3, x4 ◁ x5 = x3, x5 ◁ x6 = x4,

x6 ◁ x4 = x5, x6 ◁ x2 = x7, x8 ◁ x11 = x9, x9 ◁ x12 = x10,
x11 ◁ x9 = x12, x1x11 = x10, x12x7 = x8

〉
,

respectively. Let X and (f̃1, 0) be the MCQ and the MCQ Alexander pair of

maps f̃1, 0 : X × X → Z4[t
±1]/(t4 − 1) in Example 3.8, respectively. Putting

aρi := f̃1 ◦ (ρ × ρ)(uci , vci) for each MCQ representation ρ : MCQ(D1) → X and
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each crossing ci of D1, we have

A
(
H1, ρ; f̃1, 0

)
=



aρ1 −1
aρ2 −1

aρ3 −1 0
aρ4 −1

aρ5 −1
aρ6 −1

0 aρ7 −1
aρ8 −1

aρ9 −1
1 −1 1

1 −1 1


∼
(
aρ1a

ρ
2a

ρ
3a

ρ
4a

ρ
5a

ρ
6a

ρ
7a

ρ
8 aρ7a

ρ
8a

ρ
9 − 1

)
∈ M(1, 2;Z4[t

±1]/(t4 − 1)).

On the other hand, putting bρi := f̃1 ◦ (ρ× ρ)(uci , vci) for each MCQ representation
ρ : MCQ(D2) → X and each crossing ci of D2, we have

A
(
H2, ρ; f̃1, 0

)
=



bρ1 −1
bρ2 −1

−1 bρ3 0
−1 bρ4

−1 bρ5
bρ6 −1

0 bρ7 −1
bρ8 −1

bρ9 −1
1 −1 1

1 −1 1


∼
(
bρ1b

ρ
2b

ρ
6 − bρ3b

ρ
4b

ρ
5b

ρ
9 bρ7b

ρ
8b

ρ
9 − 1

)
∈ M(1, 2;Z4[t

±1]/(t4 − 1)).

Evaluating these matrices for each MCQ representation ρ, we obtain the multisets{
∆1

(
H1, ρ; f̃1, 0

) ∣∣∣ ρ ∈ Hom(MCQ(D1), X)
}
=

{
0 (96 times), t+ 3 (384 times),

t2 + 3 (768 times)

}
and{
∆1

(
H2, ρ; f̃1, 0

) ∣∣∣ ρ ∈ Hom(MCQ(D2), X)
}
= {0 (864 times), t+ 3 (384 times)} .

Therefore H1 and H2 are not equivalent by Theorem 6.4.

Remark 8.2. We emphasize again that, in Example 8.1, H1 and H2 have com-
plements whose fundamental groups are isomorphic. This implies that f -twisted
Alexander matrices yield strictly stronger invariants than (twisted) Alexander ma-
trices for handlebody-knots. In particular, it also indicates that the fundamental
MCQ distinguishes handlebody-knots whose complements have isomorphic funda-
mental groups. Then it is natural to consider the following problem.

Problem 8.3. Does the fundamental MCQ distinguish handlebody-knots whose
complements are homeomorphic? In particular, do our invariants distinguish them?
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Figure 6. Y-oriented diagrams of two handlebody-knots whose
complements have isomorphic fundamental groups.

We can easily see that the fundamental MCQ distinguishes handlebody-“links”
(not handlebody-“knots”) whose complements are homeomorphic. Let H1 and
H2 be the 2-component handlebody-links represented by the Y-oriented diagrams
D1 and D2 depicted in Figure 7, respectively. We note that H1 and H2 have
homeomorphic complements. Set

M := (aij) =


1 3 2 5 4 1
3 2 1 6 2 4
2 1 3 3 6 5
5 6 4 4 1 2
4 5 6 1 5 3
6 4 5 2 3 6


and QM := {1, 2, 3, 4, 5, 6}. We define a binary operation ◁ on QM by i ◁ j = aij .
Then (QM , ◁) is a quandle, called the quandle QS61. Since typeQM = 2, we have
the associated MCQ X := QM × Z2 of the Z2-family of quandles (QM , {◁i}i∈Z2

).
Then we obtain

#Hom(MCQ(D1), X) = 192 and #Hom(MCQ(D2), X) = 168,

where #S denotes the cardinality of the set S. Hence we have MCQ(D1) ≇
MCQ(D2), which implies that H1 and H2 are not equivalent.
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Figure 7. Y-oriented diagrams of two handlebody-links whose
complements are homeomorphic.
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