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Abstract

The bracket polynomial is not only a fundamental tool for defin-
ing the Jones polynomial but also provides an elementary proof of its
invariance. In contrast, although the Alexander polynomial is a clas-
sical link invariant as important as the Jones polynomial, no bracket
polynomial has been defined for it, and no elementary proof of its
invariance using link diagrams has been given. In this paper, we in-
troduce a bracket polynomial for the (multivariable) Alexander poly-
nomial, providing an elementary proof of its invariance. Furthermore,
we extend this framework by defining a quandle-twisted version of the
bracket polynomial. We demonstrate that this new polynomial serves
as a bracket polynomial for the quandle-twisted Alexander invariant
under certain conditions, where the quandle-twisted Alexander invari-
ant is a generalization of the Alexander polynomial, the multivariable
Alexander polynomial and the twisted Alexander polynomial.

1 Introduction

The Alexander–Conway polynomial [1, 2] and the Jones polynomial [9] are
well-known knot invariants and are easily calculated with their skein rela-
tions. The Kauffman bracket [11] gives an elementary proof of the invariance
of the Jones polynomial. In this paper, we introduce counterparts of the
Kauffman bracket for the Alexander–Conway polynomial and the multivari-
able Alexander polynomial and give elementary proofs of their invariance. We
also extend the definitions of the bracket polynomials to a quandle twisted
Alexander invariant with f1 + f2 = 1. A quandle twisted Alexander invari-
ant [7] is a family of invariants constructed by fixing a quandle and its linear
extension. We note that a bracket polynomial for the HOMFLYPT polyno-
mial [3, 16] was given in [14]. Our bracket polynomials are for Alexander type
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invariants. We focus on bracket polynomials for the Alexander–Conway poly-
nomial, the multivariable Alexander polynomial and the Rp-twisted Alexan-
der polynomial and give their properties.

In Section 2, we describe the behavior of the bracket polynomial for the
Alexander–Conway polynomial under the Reidemeister moves and show that
its normalization coincides with the Alexander–Conway polynomial, which
gives an elementary proof of the invariance of the Alexander–Conway poly-
nomial. We establish the same result for the multivariable Alexander poly-
nomial and prove it in Section 5. In Section 3, we recall the notions of a
quandle [10, 13], an Alexander pair [6], a column relation map [5] and a row
relation map [4]. A quandle is an algebraic structure whose axioms corre-
spond to the Reidemeister moves on link diagrams. The others are notions
used to define a quandle twisted Alexander invariant, which is a generaliza-
tion of the Alexander–Conway polynomial, the multivariable Alexander poly-
nomial and the twisted Alexander polynomial [12, 17]. A quandle twisted
Alexander matrix is defined with an Alexander pair (f1, f2), which is a pair
of maps corresponding to a linear extension of a quandle. A row relation map
and a column relation map also yield matrices which annihilate the quandle
twisted Alexander matrix from the left and right, respectively. We recall
the definition of the quandle twisted Alexander invariant in Section 6. We
introduce a quandle twisted version of the bracket polynomial in Section 4
and show that the bracket polynomial coincides with the determinant of a
generalized quandle twisted Alexander matrix of a diagram with vertices in
Section 7. We show that the Rp-twisted Alexander invariant is recoverable
from the quandle twisted version of the bracket polynomial in Section 8 and
give some properties of the invariant in Section 9.

In the rest of this section, we provide an overview of the results of this
paper with minimal introduction of terminology. See Sections 2, 3 and 6 for
the precise definitions of unfamiliar terms. Throughout this paper we work
in the piecewise linear category.

An (n, n)-tangle is a tangle with n top endpoints and n bottom endpoints
as depicted in the left picture of Figure 1. In this paper, a tangle may
contain vertices other than endpoints. We call such vertices inner vertices.
Throughout this paper, we assume that an inner vertex is of indegree 1 and
of degree 1, 2 or 3. A tangle is classical if it has no inner vertices. In this
paper, a graph and a tangle may contain circle components, which have no
vertices. In particular, a (0, 0)-tangle is a link. We denote by T̂ the closure

of an (n, n)-tangle T (see Figure 1). For a diagram D of T , we denote by D̂

the diagram of T̂ as depicted in Figure 1. A tangle is cyclic if its underlying
graph contains a cycle. A tangle is acyclic if it is not cyclic, that is, its
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T

n︷ ︸︸ ︷

︸ ︷︷ ︸
n

(n, n)-tangle

→ T

T̂

Figure 1: An (n, n)-tangle and its closure

underlying graph is a disjoint union of trees.

Definition 1.1. Let D be a diagram of an oriented uni-trivalent (n, n)-
tangle. We define ⟨D⟩ ∈ Z[t±1] by the local relations〈 〉

= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉
,〈 〉

= −t

〈 〉
+ t

〈 〉
+

〈 〉
and, for a diagram D without crossings,

⟨D⟩ =

{
1 if D is a diagram of an acyclic tangle,

0 if D is a diagram of a cyclic tangle.

Let T be an oriented classical (n, n)-tangle, and let D be a diagram of T .
We define the rotation number rot(D) of D to be the total rotation angle of
the tangent vector on D divided by 2π. The writhe wr(D) of D is the total
number of positive crossings minus the total number of negative crossings of
D. We then have rot(D) = rot(D̂)− n and wr(D) = wr(D̂).

Theorem 1.2. Let T be an oriented classical (n, n)-tangle. Let D be a
diagram of T . Then

t
rot(D)+wr(D)

2 ⟨D⟩

is invariant under the Reidemeister moves. In particular, for an oriented
classical (1, 1)-tangle T , we have

∆T̂ (t) = t
rot(D)+wr(D)

2 ⟨D⟩,

where ∆L(t) is the Alexander–Conway polynomial of an oriented link L.
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Let T be an oriented (n, n)-tangle, and let K1, . . . , Kr be the connected
components of T . Let D be a diagram of T . We denote by A(D) the set of
arcs of D, where an arc of D is a piece of a curve each of whose endpoints
is an undercrossing or a vertex. Suppose that T is classical. We denote by
A(D;Ki) the set of arcs of D that originate from Ki, and denote by C(D;Ki)
the set of crossings of D whose under arcs originate from Ki. We define
wr(D;Ki) :=

∑
c∈C(D;Ki)

sgn(c). We then have wr(D) =
∑r

i=1 wr(D;Ki).

Definition 1.3. Let D be a diagram of an oriented 1, 2, 3-valent (n, n)-tangle
T , and let ρ : A(D) → Z>0 be a map. We define ⟨(D, ρ)⟩ ∈ Z[t±1

1 , t±1
2 , . . .] by

the local relations〈
a b

b c

〉
= −t−1

b

〈
a b

b c

〉
+

〈
a b

b c

〉
+ t−1

b

〈
a b

b c

〉
,〈

a b

b c
〉

= −tb

〈
a b

b c
〉
+ tb

〈
a b

b c
〉
+

〈
a b

b c
〉

and, for a diagram D without crossings,

⟨(D, ρ)⟩ =

{
1 if D is a diagram of an acyclic tangle,

0 if D is a diagram of a cyclic tangle.

A colored classical (n, n)-tangle is a pair (T, ρ) of a classical (n, n)-tangle
T and a map ρ : {K1, . . . , Kr} → Z>0, where K1, . . . , Kr are the connected
components of T . An ordered classical (n, n)-tangle is a colored classical
(n, n)-tangle (T, ρ) such that ρ(Ki) = i for any i ∈ {1, . . . , r}. We often
write T = T1∪· · ·∪Tr for an ordered classical (n, n)-tangle (T, ρ) by omitting
ρ. The multivariable Alexander polynomial ∆L(t1, . . . , tr) is an invariant of
an ordered oriented link L = K1 ∪ · · · ∪ Kr. Let D be a diagram of T .
A map ρ : {K1, . . . , Kr} → Z>0 induces a map from A(D) to Z>0 which
sends α ∈ A(D;Ki) into ρ(Ki). We denote the map by the same symbol
ρ : A(D) → Z>0.

Theorem 1.4. Let (T, ρ) be a colored oriented classical (n, n)-tangle, and
let D be a diagram of T . Let K1, . . . , Kr be the connected components of T .
Then

r∏
i=1

t
rot(D(Ki))+wr(D;Ki)

2

ρ(Ki)
⟨(D, ρ)⟩

is invariant under the colored Reidemeister moves. In particular, for an
ordered oriented classical (1, 1)-tangle T = T1 ∪ · · · ∪ Tr such that Tj is a
strand connecting the end points of T , we have

∆T̂ (t1, . . . , tr) =

∏r
i=1 t

rot(D(Ki))+wr(D;Ki)

2
i ⟨(D, ρ)⟩

t
1/2
j − t

−1/2
j

.
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Let Rp = (Z/pZ, ◁) be the dihedral quandle of order p, where the binary
operation is given by a ◁ b = 2b− a.

Definition 1.5. Let p be an odd prime number, and let F := Q(
√
−1)[t]/(tp−1+

· · ·+1). Let D be a diagram of an oriented 1, 2, 3-valent (n, n)-tangle T , and
let ρ : A(D) → Rp be a map. We define ⟨(D, ρ)⟩ ∈ F by the local relations〈

a b

b c

〉
= tb−a

〈
a b

b c

〉
+

〈
a b

b c

〉
− tb−a

〈
a b

b c

〉
,〈

a b

b c
〉

= ta−b

〈
a b

b c
〉
− ta−b

〈
a b

b c
〉
+

〈
a b

b c
〉

and, for a diagram D without crossings,

⟨(D, ρ)⟩ =

{
1 if D is a diagram of an acyclic tangle,

0 if D is a diagram of a cyclic tangle.

We denote by Q(L) the fundamental quandle of an oriented link L. Let Q
be a quandle. A quandle representation ρ : Q(L) → Q induces an Q-coloring
of a diagram D of L, which we denote by the same symbol ρ : A(D) → Q. We
also use the same symbol ρ : A(D′) → Q for the restriction of the Q-coloring
ρ : A(D) → Q to a subdiagram D′ of D, which is a part of D.

Let L be an oriented link, and let ρ : Q(L) → Rp be a quandle represen-
tation. Suppose ρ is trivial. Let D1 be a diagram of a (1, 1)-tangle whose
closure is L. Suppose ρ is nontrivial. Let D2 be a diagram of a (2, 2)-tangle
whose closure is L such that the images of ρ on the top endpoints of D2 are
distinct elements a, b ∈ Rp. We then define

∆p(L, ρ) :=


(−1)−

rot(D1)+wr(D1)
2 ⟨(D1, ρ)⟩ if ρ is trivial,

(−1)−
rot(D2)+wr(D2)

2 ⟨(D2, ρ)⟩
(ta − tb)(t−a − t−b)

if ρ is nontrivial.

Theorem 1.6. Let T be an oriented classical (n, n)-tangle, and let D be a
diagram of T . Let ρ : A(D) → Rp be a quandle coloring. Then

(−1)−
rot(D)+wr(D)

2 ⟨(D, ρ)⟩

is invariant under the colored Reidemeister moves. Furthermore, for an ori-
ented r-component link L = K1 ∪ · · · ∪ Kr and its quandle representation
ρ : Q(L) → Rp, we have

∆p(L, ρ) = (−1)r−1∆L(−1)
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if ρ is trivial, and we have

∆p(L, ρ) = (−1)r/2+lk(L)(t− 2 + t−1)∆(L, ρ; f1, f2; 0, 1)

if ρ is nontrivial, where lk(L) :=
∑

i<j lk(Ki, Kj) and ∆(L, ρ; f1, f2; 0, 1) is

the normalized quandle twisted Alexander invariant with f1(a, b) = −tb−a and
f2(a, b) = tb−a + 1.

Proposition 1.7. We have

∆p

a b

a b

}
p

 = (−1)−p/2∆p

a b

a b

 ,

∆p

a a

a a

}
n

 = (−1)(1−n)/2n∆p

(a a

a a

)

+ (−1)−n/2(1− n)∆p

(a a

a a

)
for n ∈ Z and any distinct elements a, b ∈ Rp, where the n crossings indicates
−n negative crossings if n < 0. We have

∆p

( a )
= 1,

∆p

( a b )
=

{
1

(ta−tb)(t−a−t−b)
if a ̸= b,

0 if a = b,

∆p

( a1 ar )
= 0

for r ≥ 3 and a, b, a1 . . . , ar ∈ Rp.

Using the properties in Proposition 1.7, we have the following calculation
example.
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Example 1.8. For a, b, c ∈ Rp, we have

∆p

 a

b

b c

p
{ }

p

 =


0 (a ̸= b ̸= c),

(−1)1/2p
(ta−tb)(t−a−t−b)

(a ̸= b = c),
(−1)1/2p

(tb−tc)(t−b−t−c)
(a = b ̸= c),

p2 (a = b = c),

∆p

 a

b

b c

p
{ }

p

 =


0 (a ̸= b ̸= c),

(−1)1/2p
(ta−tb)(t−a−t−b)

(a ̸= b = c),
(−1)−1/2p

(tb−tc)(t−b−t−c)
(a = b ̸= c),

p2 (a = b = c).

We remark that these two knots are generalization of the granny knot and
square knot and can be distinguished by the invariant ∆p.

2 A bracket polynomial for the Alexander–

Conway polynomial

A tangle is a graph embedded in I3 such that the intersection of the graph
and the boundary of I3 is a union of several univalent vertices of the graph.
We call a univalent vertex on the boundary an endpoint of the tangle and
call a vertex in the interior an inner vertex of the tangle. A d1, . . . , dk-valent
tangle is a tangle, each inner vertex of which has valency d1, . . . , dn−1, or dn.
An (m,n)-tangle is a tangle with m top endpoints and n bottom endpoints.

Let f be a map from a set of tangle diagrams to a commutative ring R.
For given scalars a1, . . . , an ∈ R and (nt, nb)-tangle diagrams T1, . . . , Tn, the
local relation

a1f(T1) + · · ·+ anf(Tn) = 0

means that the equality

a1f(L(T1)) + · · ·+ anf(L(Tn)) = 0

holds for any tangle diagrams L(T1), . . . , L(Tn) which are identical outside a
disk where they are the tangle diagrams T1, . . . , Tn. When f is an invariant
of classical tangles, we call a local relation a skein relation.

The Alexander–Conway polynomial ∆L(t) of an oriented link L is char-
acterized by the following:

• For the trivial knot ⃝, we have ∆⃝(t) = 1.
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• The skein relation

∆ (t)−∆ (t) = (t1/2 − t−1/2)∆ (t)

holds.

The bracket ⟨D⟩ introduced in Definition 1.1 is also defined as a state
sum, which ensures that the bracket is well-defined. We denote by C(D) the
set of crossings of D. We denote by sgn(c) the sign of a crossing c. A state
σ of an oriented uni-trivalent (n, n)-tangle diagram D is an assignment of an
element of {0, 1,−1} to each crossings:

, →

0

,

1

,

−1

,

which is a map from C(D) to {0, 1,−1}. We denote by S(D) the set of states
of D. For a state σ, we define the weight wt(c; σ) of a crossing c by

wt(c; σ) =


1 if σ(c) = sgn(c),

t− sgn(c) if σ(c) = − sgn(c),

−t− sgn(c) if σ(c) = 0.

We denote by Dσ the digram obtained from D by replacing each crossing
with

, , or

according to σ. We then have

⟨D⟩ =
∑

σ∈S(D)

∏
c∈C(D)

wt(c; σ)δ(Dσ), (1)

where

δ(Dσ) =

{
1 if Dσ is a diagram of an acyclic tangle,

0 if Dσ is a diagram of a cyclic tangle.

From the state sum formula (1), we have the following lemma.

Lemma 2.1. We have〈 〉
=

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
,〈

︸ ︷︷ ︸
n

〉
=

〈
︸ ︷︷ ︸

n

〉
= 0 (n ≥ 0).
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Figure 2: Top endpoints are connected

Proof. It is easy to see the equalities for diagrams without crossings. From
the state sum formula (1), we have the equalities for any oriented uni-trivalent
(n, n)-tangle diagrams.

Lemma 2.2. We have〈 〉
+

〈 〉
=

〈 〉
+

〈 〉
.

Proof. It is sufficient to show the equality for diagrams without crossings.
If the two top endpoints of the tangles are connected by a path outside the
tangles as shown in Figure 2, we have〈 〉

= 0 =

〈 〉
,

〈 〉
=

〈 〉
,

which imply the desired equality. In a similar manner, we have the desired
equality in the following cases:

(a) The two bottom endpoints of the tangles are connected by a path out-
side the tangles.

(b) The two left endpoints of the tangles are connected by a path outside
the tangles.

(c) The two right endpoints of the tangles are connected by a path outside
the tangles.

If no two of the endpoints of the tangles are connected by a path outside the
tangles, we have〈 〉

=

〈 〉
=

〈 〉
=

〈 〉
,

which imply the desired equality.
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Lemma 2.3. We have〈 〉
=

〈 〉
,

〈 〉
= t−1

〈 〉
+ (1− t−1)

〈 〉
,〈 〉

=

〈 〉
,

〈 〉
= t

〈 〉
+ (1− t)

〈 〉
.

Proof. By Lemma 2.1, we have〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉
=

〈 〉
.

In a similar manner, we have the other equalities.

Lemma 2.4. We have〈 〉
=

〈 〉
=

〈 〉
, t−1

〈 〉
=

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
= t

〈 〉
.

Proof. By Lemma 2.1, we have〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉
=

〈 〉
.

In a similar manner, we have the other equalities.

Lemma 2.5. We have

〈 〉
=

〈 〉
.
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Proof. By Lemmas 2.1 and 2.4, we have

〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉

= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉

=

〈 〉
.

Proposition 2.6. We have

t

〈 〉
=

〈 〉
=

〈 〉
, t−1

〈 〉
=

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
.

Proof. From the defining relations of ⟨D⟩, we have

〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉
= t−1

〈 〉
,

where the last equality follows from Lemma 2.1. In a similar manner, we
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have〈 〉
=

〈 〉
,

〈 〉
= t

〈 〉
,

〈 〉
=

〈 〉
.

By Lemmas 2.2–2.4, we have〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉
=

〈 〉
,

〈 〉
= −t

〈 〉
+ t

〈 〉
+

〈 〉
=

〈 〉
,

〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉

= −
〈 〉

+

〈 〉
+

〈 〉
=

〈 〉
.

By Lemmas 2.3 and 2.5, we have

〈 〉
= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉

= −t−1

〈 〉
+

〈 〉
+ t−1

〈 〉

=

〈 〉
.
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Proposition 2.7. We have

t1/2
〈 〉

− t−1/2

〈 〉
= (t1/2 − t−1/2)

〈 〉
.

Proof. The local relation follows from

t1/2
〈 〉

= −t−1/2

〈 〉
+ t1/2

〈 〉
+ t−1/2

〈 〉
,

t−1/2

〈 〉
= −t1/2

〈 〉
+ t1/2

〈 〉
+ t−1/2

〈 〉
.

Proposition 2.8. We have

t1/2

〈
T

〉
= t−1/2

〈
T

〉

for any oriented classical (2, 2)-tangle T .

Proof. By Propositions 2.6 and 2.7, we have〈
T

〉
= α

〈 〉
+ β

〈 〉
for some α, β ∈ Z[t±1/2]. We then have〈

T

〉
= α

〈 〉
= t−1α

〈 〉
= t−1α,

〈
T

〉
= α

〈 〉
= α

〈 〉
= α,

which imply the desired equality.

Proof of Theorem 1.2. Let T be an oriented classical (n, n)-tangle. Let D be
a diagram of T . By Proposition 2.6,

t
rot(D)+wr(D)

2 ⟨D⟩

is invariant under the Reidemeister moves.
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Let L be an oriented link, and let T be an oriented classical (1, 1)-tangle
whose closure is L. Let D be a diagram of T . We define

X(L) := t
rot(D)+wr(D)

2 ⟨D⟩.

By Proposition 2.8, X(L) does not depend on the choice of the oriented
classical (1, 1)-tangle T whose closure is L. By Proposition 2.7, X(L) satisfies
the skein relation

X

( )
−X

( )
= (t1/2 − t−1/2)X

( )
.

We then have
∆L(t) = X(L),

since both satisfy the same skein relation and ∆⃝(t) = 1 = X(⃝). Therefore
we have

∆T̂ (t) = X(T̂ ) = t
rot(D)+wr(D)

2 ⟨D⟩.

3 Quandles and Alexander pairs

In this section, we will briefly recall quandles and Alexander pairs. For
details, we refer the reader to [4, 5, 6]. Throughout this paper, for a positive
integer n, we denote the cyclic group Z/nZ of order n as Zn.

A quandle [10, 13] is a non-empty set Q equipped with a binary operation
◁ : Q×Q → Q satisfying the following axioms:

• For any a ∈ Q, a ◁ a = a.

• For any a ∈ Q, the map ◁a : Q → Q defined by ◁a(x) = x ◁ a is
bijective.

• For any a, b, c ∈ Q, (a ◁ b) ◁ c = (a ◁ c) ◁ (b ◁ c).

We denote by (◁a)n : Q → Q by ◁na for n ∈ Z. Then Rn = (Zn, ◁) is
a quandle, where a ◁ b = 2b − a. A trivial quandle is a quandle Q with a
binary operation ◁ satisfying a ◁ b = a for any a, b ∈ Q. Let (Q1, ◁1) and
(Q2, ◁2) be quandles. A quandle homomorphism from Q1 to Q2 is defined to
be a map f : Q1 → Q2 satisfying f(a ◁1 b) = f(a) ◁2 f(b) for any a, b ∈ Q1.
A quandle representation ρ of a quandle X into a quandle Q is a quandle
homomorphism ρ : X → Q.
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→
uc

vc

wc
c

→
α

r(α) r′(α)

Figure 3:

Let Q be a quandle. Let D be a diagram of an oriented classical (n, n)-
tangle T . A Q-coloring of D is a map C : A(D) → Q satisfying the condition

C(uc) ◁ C(vc) = C(wc)

for each crossing c ∈ C(D), where uc, vc and wc are the arcs forming the
crossing c as shown in the left picture of Figure 3. Here, the normal orienta-
tion is obtained by rotating the usual orientation counterclockwise by π/2 on
the diagram. A Q-coloring is trivial if it is a constant map. A colored classi-
cal (n, n)-tangle is an oriented classical (n, n)-tangle T with a Z>0-coloring ρ,
where Z>0 is a trivial quandle. We denote by ColQ(D) the set of Q-colorings
of D. Let D′ be a diagram of T obtained by applying a single Reidemeister
move to D. Then, each Q-coloring C of D has a unique Q-coloring C ′ of D′

that coincides with C except in the disk in which the move is applied. This
gives a one-to-one correspondence between ColQ(D) and ColQ(D

′). The col-
ored Reidemeister moves are listed in Figure 4, which are the Reidemeister
moves with corresponding Q-colorings.

For a quandle (Q, ◁), a Q-set is a non-empty set Y equipped with a map
◁ : Y ×Q → Y satisfying the following axioms:

• For any a ∈ Q, the map ◁a : Y → Y defined by ◁a(y) = y ◁ a is
bijective.

• For any y ∈ Y and a, b ∈ Q, we have (y ◁ a) ◁ b = (y ◁ b) ◁ (a ◁ b).

The associated group AsQ of a quandle Q is a group defined by the presen-
tation:

⟨x (x ∈ Q) | x ◁ y = y−1xy (x, y ∈ Q)⟩.

Then AsQ is a Q-set with y ◁ a = ya. Let (Y1, ◁1) and (Y2, ◁2) be Q-sets.
A Q-set homomorphism from Y1 to Y2 is defined to be a map f : Y1 → Y2

satisfying f(y ◁1 a) = f(y) ◁2 a for any y ∈ Y1 and a ∈ Q. Let D be a
diagram of an oriented link L. We denote by SA(D) the set of semi-arcs
of D, where a semi-arc is a piece of a curve such that the endpoints of the
piece are crossings. We denote by R(D) the set of complementary regions
of D. For a semi-arc α, we denote by r(α) and r′(α) the regions facing the

15



a

a

↔

a

↔

a

a a

a

↔

a

↔

a

a

a b

a b

a◁b ↔

a b

↔

a b

a b

b◁−1a

a b

a b

a◁−1b ↔

a b

a b c

a ◁ b

c b◁c (a◁b)◁c

↔

a b c

a ◁ c

c b◁c (a◁c)◁(b◁c)

Figure 4: Colored Reidemeister moves

semi-arc α as shown in the right picture of Figure 3. For an arc α, we set
r(α) := r(α0) and r′(α) := r′(α0), where α0 is the semi-arc that originates
from the arc α and shares its initial point with the arc α. Let Y be a Q-set.
A QY -coloring ρY of D is an extension of a Q-coloring ρ of D that assigns
an element of Y to each region of D satisfying the condition

ρY (r(α)) ◁ ρ(α) = ρY (r
′(α))

for each semi-arc α ∈ A(D), where the color ρ(α) of a semi-arc α is defined
by the color of the arc from which the semi-arc originates. We denote by ρ̃
the QAsQ-coloring that is the extension of ρ satisfying ρ̃(rout) = 1, where rout
is the outermost region of D.

Let Q be a quandle, and let R be a unital ring. The pair (f1, f2) of maps
f1, f2 : Q×Q → R is an Alexander pair [6] if f1 and f2 satisfy the following
conditions:

• For any a ∈ Q, f1(a, a) + f2(a, a) = 1.

• For any a, b ∈ Q, f1(a, b) is invertible.

• For any a, b, c ∈ Q,

f1(a ◁ b, c)f1(a, b) = f1(a ◁ c, b ◁ c)f1(a, c),

f1(a ◁ b, c)f2(a, b) = f2(a ◁ c, b ◁ c)f1(b, c), and

f2(a ◁ b, c) = f1(a ◁ c, b ◁ c)f2(a, c) + f2(a ◁ c, b ◁ c)f2(b, c).

16



Assuming that f1(a, b) + f2(a, b) = 1 for any a, b ∈ Q, we have the last
equality follows from the other conditions, since we have

f1(a ◁ c, b ◁ c)f2(a, c) + f2(a ◁ c, b ◁ c)f2(b, c)− f2(a ◁ b, c)

= −f1(a ◁ c, b ◁ c)f1(a, c)− f2(a ◁ c, b ◁ c)f1(b, c) + f1(a ◁ b, c)

= −f1(a ◁ b, c)f1(a, b)− f1(a ◁ b, c)f2(a, b) + f1(a ◁ b, c) = 0.

Let (f1, f2) be an Alexander pair. A column relation map fcol : Q → R is
a map satisfying

fcol(a ◁ b) = f1(a, b)fcol(a) + f2(a, b)fcol(b)

for any a, b ∈ Q. For each c ∈ Q, the map fcol : Q → R defined by
fcol(a) = f2(a ◁

−1 c, c) is a column relation map ([5]).
Let (f1, f2) be an Alexander pair. Let Y be a Q-set. A row relation map

frow : Y ×Q → R is a map satisfying

frow(y, a) = frow(y ◁ b, a ◁ b)f1(a, b), and

frow(y ◁ a, b) = frow(y, b) + frow(y ◁ b, a ◁ b)f2(a, b)

for any a, b ∈ Q and y ∈ Y . Let Y be the Q-set Q × R× with (y, z) ◁ a :=
(y ◁ a, f1(y, a)z). The map frow : Y × Q → R defined by frow((y, z), a) =
z−1f1(y, a)

−1f2(y, a) is a row relation map ([4]). For each c ∈ Q, the map
frow : AsQ × Q → R defined by frow(y, a) = frow(φc(y), a) is a row relation
map, where φc : AsQ → Y is the Q-set homomorphism satisfying φc(1) =
(c, 1).

4 A bracket polynomial for an (f1, f2)-twisted

Alexander invariant with f1 + f2 = 1

Definition 4.1. Let Q be a quandle, and let R be a commutative ring. Let
(f1, f2) be an Alexander pair of f1, f2 : Q × Q → R satisfying f1(a, b) +
f2(a, b) = 1 for any a, b ∈ Q. Let D be a diagram of an oriented 1, 2, 3-valent
(n, n)-tangle T , and let ρ : A(D) → Q be a map. We define ⟨(D, ρ)⟩ ∈ R by
the local relations〈

a b

b c

〉
= −f1(a, b)

〈
a b

b c

〉
+

〈
a b

b c

〉
+ f1(a, b)

〈
a b

b c

〉
,〈

a b

b c
〉

= −f1(a, b)
−1

〈
a b

b c
〉
+ f1(a, b)

−1

〈
a b

b c
〉
+

〈
a b

b c
〉

17



and, for a diagram D without crossings,

⟨(D, ρ)⟩ =

{
1 if D is a diagram of an acyclic tangle,

0 if D is a diagram of a cyclic tangle.

Let D be a diagram of an oriented classical (n, n)-tangle T , and let
K1, . . . , Kr be the connected components of T . Let D(Ki) be the diagram
of Ki that is obtained by removing the other connected components from D.
We then have rot(D) =

∑r
i=1 rot(D(Ki)).

Proposition 4.2. Let T be an oriented classical (n, n)-tangle, and let D
be a diagram of T . Let ρ : A(D) → Q be a quandle coloring. We fix
ω1, . . . , ωr ∈ R× so that ωi = f1(ρ(α), ρ(α)) for some α ∈ A(D;Ki). Then(

r∏
i=1

ω
rot(D(Ki))+wr(D(Ki))+1

2
i

)−1

⟨(D, ρ)⟩

is invariant under the colored Reidemeister moves.

We remark that f1(ρ(α), ρ(α)) does not depend on the choice of the arc α,
since f1(ρ(α), ρ(α)) = f1(ρ(α) ◁ c, ρ(α) ◁ c) follows from f1(a ◁ a, c)f1(a, a) =
f1(a ◁ c, a ◁ c)f1(a, c).

The bracket ⟨(D, ρ)⟩ introduced in Definition 4.1 is also defined as a state
sum, which ensures that the bracket is well-defined. A state σ of D is an
assignment of an element of {0, 1,−1} to each crossings:

, →

0

,

1

,

−1

,

which is a map from C(D) to {0, 1,−1}. For a state σ, we define the weight
wt(c; σ) of a crossing c by

wt(c; σ) =


1 if σ(c) = sgn(c),

f1(ρ(uc), ρ(vc))
sgn(c) if σ(c) = − sgn(c),

−f1(ρ(uc), ρ(vc))
sgn(c) if σ(c) = 0.

We denote by Dσ the digram obtained from D by replacing each crossing
with

, , or

according to σ. We then have

⟨(D, ρ)⟩ =
∑

σ∈S(D)

∏
c∈C(D)

wt(c; σ)δ(Dσ),

18



where

δ(Dσ) =

{
1 if Dσ is a diagram of an acyclic tangle,

0 if Dσ is a diagram of a cyclic tangle.

In a similar way as in Section 2, we have the following lemmas and propo-
sition.

Lemma 4.3. We have〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
=

〈 〉
=

〈 〉
,

〈 〉
=

〈 〉
=

〈 〉
=

〈 〉
,

〈
a

a

〉
=

〈
a

〉
,

〈 〉
=

〈 〉
,

〈
︸ ︷︷ ︸

n

〉
=

〈
︸ ︷︷ ︸

n

〉
= 0

for a ∈ Q, m ∈ {0, 1, 2} and n ≥ 0, where we omit colors of the arcs. There
are no restrictions between the omitted colors other than the requirement that
the colors of the corresponding endpoints are the same.

Lemma 4.4. We have〈
a c

b d

〉
+

〈
a c

b d

〉
=

〈
a c

b d

〉
+

〈
a c

b d

〉
for a, b, c, d ∈ Q.

Lemma 4.5. We have〈
a

b a◁b

〉
=

〈
a

b

〉
,

〈
a◁b

a b

〉
=

〈
a◁b

b

〉
,〈

a b

a◁b

〉
= f1(a, b)

〈
a b

a◁b

〉
+ (1− f1(a, b))

〈
a b

a◁b

〉
,〈

a

b a◁b
〉

= f1(a, b)
−1

〈
a

b a◁b
〉
+ (1− f1(a, b)

−1)

〈
a

b a◁b
〉

for a, b ∈ Q.
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Lemma 4.6. We have〈 c

b◁−1a

a b

〉
=

〈 c

a b

〉
=

〈 c

a◁b

a b

〉
,

f1(a ◁
−1 b, b)

〈a b

a◁−1b

c

〉
=

〈a b

c

〉
=

〈 a b

b◁−1a

c

〉
,

〈a b

a◁b

c

〉
=

〈a b

c

〉
= f1(b, a)

−1

〈 a b

b◁a

c

〉

for a, b, c ∈ Q.

Lemma 4.7. We have

〈 b c

b
d

b◁c d◁c

〉
−

〈 b c

b◁c

b◁c d◁c

〉

= (f1(b, c)− f1(d, c))

(〈 b c

c b◁c d◁c

〉
−

〈 b c

c b◁c d◁c

〉)

for b, c, d ∈ Q.
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Proposition 4.8. We have〈 a

a

〉
= f1(a, a)

〈
a

〉
,

〈 a

a

〉
=

〈
a

〉
,

〈
a

a 〉
= f1(a, a)

−1

〈
a

〉
,

〈
a

a 〉
=

〈
a

〉
,

〈a b

a b

a◁b

〉
=

〈a b

a b

〉
=

〈 a b

a b

b◁−1a

〉
,

〈a b

a b

a◁−1b

〉
=

〈a b

a b

〉
,

〈a b c

a ◁ b

c b◁c (a◁b)◁c

〉
=

〈a b c

a ◁ c

c b◁c (a◁c)◁(b◁c)

〉

for a, b, c ∈ Q.

Proposition 4.2 follows from this proposition.

Proposition 4.9. Let T be an oriented classical (n, n)-tangle containing
a split link component L, which is a link component of T with a 2-sphere
separating L from T − L. Let D be a diagram of T . Let ρ : A(D) → Q be a
quandle coloring. Then, we have ⟨(D, ρ)⟩ = 0.

Proof. By Proposition 4.8, we may assume that D = DT−L ⊔ DL, that is,
there is a circle separating L from T −L on the diagram D, where DT−L and
DL are diagrams of T − L and L, respectively. Since any state of DL has a
cycle, we have ⟨(D, ρ)⟩ = 0.

5 A bracket polynomial for the multivariable

Alexander polynomial

Let Q := Z>0 be the trivial quandle, and let R := Z[t±1
1 , t±1

2 , . . .]. Let (f1, f2)
be an Alexander pair of maps f1, f2 : Q×Q → R defined by f1(a, b) = t−1

b and
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f2(a, b) = 1− t−1
b . Then, the bracket polynomial introduced in Definition 4.1

coincides with the bracket polynomial introduced in Definition 1.3. In this
section, we discuss this bracket polynomial ⟨(D, ρ)⟩.

Lemma 5.1. We have

〈a b〉
= t−1

a t−1
b

〈a b〉
+ (1− t−1

b )

〈a b

a b

〉
+ t−1

b (1− t−1
a )

〈a b

a b

〉
,

〈a b〉
= tatb

〈a b〉
+ ta(1− tb)

〈a b

a b

〉
+ (1− ta)

〈a b

a b

〉

for a, b ∈ Z>0.

Proof. By Lemmas 4.3 and 4.6, we have

〈a b〉
= −t−1

b

〈a b

a b

〉
+

〈a b

a b

〉
+ t−1

b

〈a b

a b

〉

= t−1
a t−1

b

〈a b〉
+ (1− t−1

b )

〈a b

a b

〉
+ t−1

b (1− t−1
a )

〈a b

a b

〉
.

In a similar manner, we have the other local relation.
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Proposition 5.2. We have

t1/2a

〈a a〉
− t−1/2

a

〈a a〉
= (t1/2a − t−1/2

a )

〈a a〉
, (2)

ta

〈a b〉
+ t−1

b

〈a b〉
= (ta + t−1

b )

〈a b〉
, (3)

α1

〈
a b c

〉
+ α2

〈
a b c

〉
+ α3

〈
a b c

〉
+ α3

〈
a b c

〉

+ α4

〈a b c〉
+ α5

〈a b c〉
+ α6

〈a b c〉
= 0, (4)

〈 a

b
〉

= t−1
b (1− t−1

a )

〈 a〉
(5)

for a, b, c ∈ Z>0, where

α1 = tatbtc − tatc + tbtc − tc, α2 = −tatbtc − tatb + tatc + ta,

α3 = tatb − tbtc, α4 = −ta + tb − tat
−1
c + tbtc,

α5 = −tatb + t−1
a tc − tb + tc, α6 = tat

−1
c − t−1

a tc.

Proof. Using Lemma 5.1, we have the equalities.

Proposition 5.3. We have

t1/2a

〈
T

a

a

b 〉
= t

−1/2
b

〈
T

b

b

a 〉

for any oriented classical (2, 2)-tangle T .
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Figure 5: A collection of positive full-twists

Proof. By Propositions 4.8, 4.9 and 5.2, we have

〈
T

a

a

b

b

〉
= α

〈a b〉
+ β

〈a b〉
(6)

for some α, β ∈ Z[t±1/2
1 , t

±1/2
2 , . . .]. See [15]. We then have

〈
T

a

a

b 〉
= α

〈 a

b
〉

= t−1
b (1− t−1

a )α

〈 a〉
= t−1/2

a t−1
b α,

〈
T

b

b

a 〉
= α

〈 b

a
〉

= (1− t−1
b )α

〈 b〉
= t

−1/2
b α,

which imply the desired equality.

Remark 5.4. We give a concrete procedure to obtain (6). In the following
procedure, we freely use Proposition 4.8. Let (T, ρ) be a colored oriented
classical (2, 2)-tangle, and let D be a diagram of T .

1. We focus on a circle component K of T . By using (2), we can transform
K into trivial links without self-crossings. Strictly speaking, ⟨D⟩ is a
linear combination of ⟨D1⟩, . . . , ⟨Dn⟩, where Di is an oriented classical
(2, 2)-tangle whose circle component corresponding to K is a trivial
link without self-crossings in Di.

2. By using (3), we can transform the diagrams in Step 1 into diagrams in
which the intersection of K and the other connected components is a
collection of positive full-twists as shown in Figure 5, where thickened
strands correspond to K.
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3. By using (4), we can transform two positive full-twists into one or zero
two positive full-twist:

→ , , ,

, , ,

where thickened strands correspond to K. Repeating this transforma-
tion, we can transform the diagrams in Step 2 into diagrams in which
the intersection of each circle component of K and the other connected
components is one or zero positive full-twist.

4. By using (5) and Proposition 4.9, we can remove K from T .

5. Repeating Steps 1–4, we may assume that T has no circle components.
Applying the transformations in Steps 1–3 to the right strand of T , we
obtain the diagrams

T ′ , T ′′ .

6. By using (2), we can transform the diagrams in Step 5 into the diagrams

, , .

7. By using (5), we can transform the diagrams in Step 6 into the diagrams

, .

Proof of Theorem 1.4. Let (T, ρ) be a colored oriented classical (n, n)-tangle,
and let D be a diagram of T . Let K1, . . . , Kr be the connected components
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of T . By Proposition 4.2,

r∏
i=1

t
rot(D(Ki))+wr(D;Ki)

2

ρ(Ki)
⟨(D, ρ)⟩ =

r∏
i=1

t
lk(Ki,L−Ki)−1

2

ρ(Ki)

r∏
i=1

t
rot(D(Ki))+wr(D(Ki))+1

2

ρ(Ki)
⟨(D, ρ)⟩

is invariant under the colored Reidemeister moves.
Let L be an oriented link, and let T be an oriented classical (1, 1)-tangle

whose closure is L. LetD be a diagram of T . LetK1, . . . , Kr be the connected
components of T such that Tj is a strand connecting the end points of T .
We then define

X(L, ρ) :=

∏r
i=1 t

rot(D(Ki))+wr(D;Ki)

2
i ⟨(D, ρ)⟩

t
1/2
j − t

−1/2
j

.

By Proposition 5.3, X(L, ρ) does not depend on the choice of the oriented
classical (1, 1)-tangle T whose closure is L. By Proposition 5.2, X(L, ρ)
satisfies the skein relation

X

(a a)
−X

(a a)
= (t1/2a − t−1/2

a )X

(a a)
,

X


a b+X


a b = (t1/2a t

1/2
b + t−1/2

a t
−1/2
b )X


a b ,

β1X


a b c+ β2X


a b c+ β3X


a b c+ β3X


a b c

+ β4X


a b c+ β5X


a b c+ β6X


a b c = 0,

X


a

b

 = (t1/2a − t−1/2
a )X


a 
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for a, b, c ∈ Z>0, where

β1 = t1/2a t
1/2
b − t1/2a t

−1/2
b + t−1/2

a t
1/2
b − t−1/2

a t
−1/2
b ,

β2 = −t
1/2
b t1/2c − t

1/2
b t−1/2

c + t
−1/2
b t1/2c + t

−1/2
b t−1/2

c ,

β3 = t1/2a t−1/2
c − t−1/2

a t1/2c ,

β4 = −t1/2a t
−1/2
b + t−1/2

a t
1/2
b − t1/2a t

−1/2
b t−1

c + t−1/2
a t

1/2
b tc,

β5 = −tat
1/2
b t−1/2

c + t−1
a t

−1/2
b t1/2c − t

1/2
b t−1/2

c + t
−1/2
b t1/2c ,

β6 = tat
−1
c − t−1

a tc.

By the definition of X(L, ρ), we have

X

( j )
=

〈
j

〉
=

1

t
1/2
j − t

−1/2
j

.

By Proposition 4.9, we have

X(L, ρ) = 0

for any split link L. Then, by [15, Theorem 7.2], we have

∆L(t1, . . . , tr) = X(L).

Therefore, we have

∆T̂ (t1, . . . , tr) = X(T̂ ) =

∏r
i=1 t

rot(D(Ki))+wr(D;Ki)

2
i ⟨(D, ρ)⟩

t
1/2
j − t

−1/2
j

.

6 The quandle twisted Alexander invariant

In this section, we recall an equivalence relation on triples of matrices and
their row and column relation matrices, and see how to obtain the triples
from an oriented link and its quandle representation. For details, we refer
the reader to [7].

Let R be a unital ring. We denote by R× the group of units of R.
We denote by M(m,n;R) the set of m × n matrices over R and denote
by GL(n;R) the set of n × n invertible matrices over R. For A = (aij) ∈
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M(m,n;R), i = (i1, . . . , is) and j = (j1, . . . , jt), we define

Ai,j :=


ai1j1 ai1j2 · · · ai1jt
ai2j1 ai2j2 · · · ai2jt
...

...
. . .

...
aisj1 aisj2 · · · aisjt

 .

Let Sn be the symmetric group on {1, . . . , n}. We denote by sgn σ the sign
of σ ∈ Sn. Put n := (1, . . . , n). For σ ∈ Sn, we set

σ(i1, . . . , is) := (σ(i1), . . . , σ(is)),

(i1, . . . , is) + k := (i1 + k, . . . , is + k).

Let A ∈ M(d +m, d + n;R), where d,m, n > 0. We call B ∈ M(m, d +
m;R) a row relation matrix of A if BA = O. A row relation matrix B ∈
M(m, d+m;R) is regular if Bm,σ(m) is invertible for some σ ∈ Sd+m. We call
C ∈ M(d + n, n;R) a column relation matrix of A if AC = O. A column
relation matrix C ∈ M(d+ n, n;R) is regular if Cτ(n),n is invertible for some
τ ∈ Sd+n. We define Pij, Eij(r), Ei(u) ∈ GL(n;R) by

Pij = (e1, . . . , ei−1, ej, ei+1, . . . , ej−1, ei, ej+1, . . . , en),

Eij(r) = (e1, . . . , ej−1, ej + rei, ej+1, . . . , en) (i ̸= j),

Ei(u) = (e1, . . . , ei−1, uei, ei+1, . . . , en)

for r ∈ R and u ∈ R×, where ei is the unit column vector whose components
are all 0, except the ith component that equals 1. We write (B,A,C) ∼
(B′, A′, C ′) if they are related by a finite sequence of the following transfor-
mations:

• (B,A,C) ↔ (BEij(r)
−1, Eij(r)A,C) (r ∈ R),

• (B,A,C) ↔ (B,AEij(r), Eij(r)
−1C) (r ∈ R),

• (B,A,C) ↔ (BEi(u), Ei(u)
−1AEj(u), Ej(u)

−1C) (u ∈ R×),

• (B,A,C) ↔
((

B 0
)
,

(
A 0
0 1

)
,

(
C
0

))
.

Let R be a field. Let A ∈ M(d+m, d+n;R). Let B ∈ M(m, d+m;R) be
a regular row relation matrix of A, and let C ∈ M(d + n, n;R) be a regular
column relation matrix of A. We choose σ ∈ Sd+m and τ ∈ Sd+n so that
Bm,σ(m) and Cτ(n),n are invertible. We then define

∆(B,A,C) :=
sgn σ sgn τ detAσ(d+m),τ(d+n)

detBm,σ(m) detCτ(n),n

,
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xici

→
ui

vi

wici

Figure 6:

which is an invariant of the equivalence class of (B,A,C).
Let Q be a quandle and R a unital ring. Let (f1, f2) be an Alexander

pair of maps f1, f2 : Q × Q → R. Let L = K1 ∪ · · · ∪ Kr be an oriented
r-component link, and let ρ : Q(L) → Q be a quandle representation. Let
D be a diagram of L such that every component has an undercrossing. Let
c1, . . . , cn be the crossings of D. We denote by xi the arc starting from a
crossing ci for each i (see the left picture of Figure 6). We denote by ui, wi

and vi the under-arcs and over-arc, respectively, of a crossing ci such that
the normal orientation of vi points from ui to wi (see the right picture of
Figure 6).

We define A(D, ρ; f1, f2) as the n×n matrix whose (i, j)-entry aij is given
by

aij = δ(ui, xj)f1(ai, bi) + δ(vi, xj)f2(ai, bi)− δ(wi, xj),

where ai = ρ(ui), bi = ρ(vi), and

δ(x, y) :=

{
1 if x = y,

0 otherwise.

We denote by C+(D) and C−(D) the sets of positive and negative crossings
of D, respectively. We denote by #S the number of elements of a set S. We
fix ω1, . . . , ωr ∈ R× so that ωi = f1(ρ(α), ρ(α)) for some α ∈ A(D;Ki). We
define

Ã(D, ρ; f1, f2) :=

(
A(D, ρ; f1, f2) 0

0 cor(D, ρ; f1, f2)
−1

)
,

where

cor(D, ρ; f1, f2) = (−1)#C+(D)

r∏
i=1

ω
rot(D(Ki))+wr(D(Ki))+1

2
i

∏
c∈C−(D)

f1(ρ(uc), ρ(vc)).

For column relation maps fcol,1, . . . , fcol,m : Q → R, we define

Rcol(D, ρ; fcol,1, . . . , fcol,m) :=

fcol,1(ρ(x1)) · · · fcol,m(ρ(x1))
...

. . .
...

fcol,1(ρ(xn)) · · · fcol,m(ρ(xn))

 .
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→
↑ui

vi

wi

ri

ci

sgn(ci) = 1

→
↓ui

vi

wi

ri

ci

sgn(ci) = −1

Figure 7:

We denote Rcol(D, ρ; fcol,1, . . . , fcol,m) by Rcol(D, ρ;fcol) for short. We define

R̃col(D, ρ;fcol) :=

(
Rcol(D, ρ;fcol)

0

)
.

We define ri := r(α(wi; ci)), where α(wi; ci) is the semi-arc that originates
from the arc wi and is incident to the crossing ci (see Figure 7). For row
relation maps frow,1, . . . , frow,m : AsQ×Q → R, we define

Rrow(D, ρ; frow,1, . . . , frow,m)

:=

 sgn(c1)frow,1(ρ̃(r1), ρ(w1)) · · · sgn(cn)frow,1(ρ̃(rn), ρ(wn))
...

. . .
...

sgn(c1)frow,m(ρ̃(r1), ρ(w1)) · · · sgn(cn)frow,m(ρ̃(rn), ρ(wn))

 .

We denote Rrow(D, ρ; frow,1, . . . , frow,m) by Rrow(D, ρ;frow) for short. We
define

R̃row(D, ρ;frow) :=
(
Rrow(D, ρ;frow) 0

)
.

Definition 6.1. Let a1, . . . , am ∈ R. Let fcol,i : Q → R be the column
relation map defined by fcol,i(x) = f2(x◁

−1ai, ai). Let Y be the Q-set Q×R×

with (y, z) ◁ a := (y ◁ a, f1(y, a)z). Let frow : Y ×Q → R be the row relation
map defined by frow((y, z), a) = z−1f1(y, a)

−1f2(y, a). Let frow,i : AsQ×Q →
R be the row relation map defined by frow,i(y, x) = frow(φai(y), x) is a row
relation map, where φc : AsQ → Y is the Q-set homomorphism satisfying
φc(1) = (c, 1). We then define

∆(L, ρ; f1, f2; a1, . . . , am)

:= ∆(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol)).
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ci

xi

ci

xi

yi

xi xj

yi (= yj)

ci (= cj)

Figure 8:

7 Matrices of a diagram with vertices

In this section, we extend the definition of A(D, ρ; f1, f2) to a diagram D
with vertices and show that its determinant gives the bracket polynomial.

Let Q be a quandle, and let R be a commutative ring. Let (f1, f2) be an
Alexander pair of f1, f2 : Q × Q → R. Let D be a diagram of an oriented
1, 2, 3-valent (n, n)-tangle T , and let ρ : A(D) → Q be a map. Suppose that
every component of D has an undercrossing or a vertex. Let x1, . . . , xn be
the arcs of D. We denote by ci the initial point of xi, which is a crossing
or a vertex. We denote by yi the arc whose terminal point is ci. See the
left picture of Figure 6 and Figure 8. We define A•(D, ρ; f1, f2) as the n× n
matrix whose (i, j)-entry a•ij is given by

a•ij =



−δ(ui, xj)f1(ai, bi)− δ(vi, xj)f2(ai, bi) + δ(wi, xj)
if ci is a positive crossings,

δ(ui, xj) + δ(vi, xj)f1(ai, bi)
−1f2(ai, bi)− δ(wi, xj)f1(ai, bi)

−1

if ci is a negative crossings,
δ(xi, xj)− δ(yi, xj) if ci is a bivalent or trivalent vertex,
δ(xi, xj) if ci is a monovalent vertex,

where ai = ρ(ui), bi = ρ(vi).

Lemma 7.1. Let R be a commutative ring. Let a1, . . . , al ∈ R, A(1), . . . , A(l) ∈
M(n, n;R), B,C ∈ M(m,n;R), D ∈ M(m,m− n;R). If

l∑
k=1

αk = 0 and
l∑

k=1

αk

∣∣∣A(k)
(i1,...,id),(j1,...,jd)

∣∣∣ = 0

for any d ∈ {1, . . . , n} and any i1, . . . , id, j1, . . . , jd ∈ {1, . . . , n} such that
1 ≤ i1 < · · · < id ≤ n and 1 ≤ j1 < · · · < jd ≤ n, we have

l∑
k=1

αk

∣∣∣∣En −A(k) O
B C D

∣∣∣∣ = 0,

where En is an identity matrix of size n and O is a zero matrix.
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We note that
∑l

k=1 αkA
(k) = O if and only if

∑l
k=1 αk

∣∣∣A(k)
(i1),(j1)

∣∣∣ = 0

(1 ≤ i1, j1 ≤ n), since
∣∣∣A(k)

(i1),(j1)

∣∣∣ coincides with the (i1, j1)-entry a
(k)
i1,j1

of the

matrix A(k).

Proof. We have

l∑
k=1

αk

∣∣∣∣En −A(k) O
B C D

∣∣∣∣ = l∑
k=1

αk

∣∣∣∣En −A(k) O
O C +BA(k) D

∣∣∣∣
=

l∑
k=1

αk

∣∣C +BA(k) D
∣∣ .

Setting
(
c1 · · · cn

)
:= C and

(
b1 · · · bn

)
:= B, we have

l∑
k=1

αk

∣∣∣∣∣∣∣
(
c1 · · · cn

)
+
(
b1 · · · bn

)a
(k)
11 · · · a

(k)
1n

...
. . .

...

a
(k)
n1 · · · a

(k)
nn

 D

∣∣∣∣∣∣∣
=

l∑
k=1

αk

∣∣∣c1 +∑n
i=1 bia

(k)
i1 · · · cn +

∑n
i=1 bia

(k)
in D

∣∣∣
=

l∑
k=1

αk

n∑
d=0

∑
1≤j1<···<jd≤n

(−1)j1+···+jd− d(d+1)
2

·
∣∣∣∑n

i=1 bia
(k)
ij1

· · ·
∑n

i=1 bia
(k)
ijd

C ̂j1,...,jd
D
∣∣∣ ,

where C ̂j1,...,jd
is the submatrix of C obtained by removing j1, . . . , jd-th col-

umn vectors of C. We then have

l∑
k=1

αk

∣∣∣∣En −A(k) O
B C D

∣∣∣∣ = 0

from the equalities

l∑
k=1

αk

∣∣∣∑n
i=1 bia

(k)
ij1

· · ·
∑n

i=1 bia
(k)
ijd

C ̂j1,...,jd
D
∣∣∣

=
∑

1≤i1<···<id≤n

l∑
k=1

αk

∣∣∣A(k)
(i1,...,id),(j1,...,jd)

∣∣∣ ∣∣bi1 · · · bid C ̂j1,...,jd
D
∣∣ = 0,

where we note that
∣∣∣A(k)

(i1,...,id),(j1,...,jd)

∣∣∣ = 1 if d = 0.
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Proposition 7.2. Let Q be a quandle, and let R be a commutative ring.
Let (f1, f2) be an Alexander pair of f1, f2 : Q × Q → R satisfying f1(a, b) +
f2(a, b) = 1 for any a, b ∈ Q. Let D be a diagram of an oriented 1, 2, 3-valent
(n, n)-tangle T , and let ρ : A(D) → Q be a map. Suppose that every compo-
nent of D has an undercrossing or a vertex. Let ⟨(D, ρ)⟩ be the bracket poly-
nomial defined in Definition 4.1. Then we have ⟨(D, ρ)⟩ = |A•(D, ρ; f1, f2)|.

Proof. We set [(D, ρ)] := |A•(D, ρ; f1, f2)|.
We have the local relation

xi1 xi2 xi3

xi4

xi5  =


xi1 xi2 xi3

xi4

xi5 
from

i1 i2 i3 i4 i5
i1
i2
i3
i4

∣∣∣∣∣∣∣∣
1 0 0 −1 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 −1

∣∣∣∣∣∣∣∣
=

i1 i2 i3 i4 i5
i1
i2
i3
i4

∣∣∣∣∣∣∣∣
1 0 0 0 −1
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 −1

∣∣∣∣∣∣∣∣
=

i1 i2 i3 i4 i5
i1
i2
i3
i4

∣∣∣∣∣∣∣∣
1 0 0 0 −1
0 1 0 −1 0
0 0 1 −1 0
0 0 0 1 −1

∣∣∣∣∣∣∣∣
,

where we omit common rows and columns. The index ij (j = 1, . . . , 5) above
the determinant indicates the ij-th column of the whole matrix and the index
ij (j = 1, . . . , 4) to the left of the determinant indicates the ij-th row of the
whole matrix. In a similar manner, we have

 =


 ,


 =


 =


 =


 ,


 =


 =


 =


 .

Let D be an oriented (n, n)-tangle diagram without crossings. If D con-
tains

cixi , cixi , ci
xi xj or ci

xi xj

locally, we have [(D, ρ)] = 0, since the i-th row of A•(D, ρ; f1, f2) is the zero
vector.
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(i) Suppose that D is a diagram of a cyclic tangle. Since D can be trans-
formed into a diagram containing a loop by using the above local rela-
tions, we have [(D, ρ)] = 0.

(ii) Suppose that D is a diagram of an acyclic tangle. By using the above
local relations, D can be transformed into a collection of simple edges,
each of which consists of one edge and two monovalent vertices. We
then have

[(D, ρ)] = |A•(D, ρ; f1, f2)| = |E| = 1,

where E is an identity matrix.

Therefore, for an oriented (n, n)-tangle diagram D without crossings, we have

[(D, ρ)] =

{
1 if D is a diagram of an acyclic tangle,

0 if D is a diagram of a cyclic tangle.

The equality[
a b

b c
xi1xi2

xi3xi4 ]
= −f1(a, b)

[
a b

b c
xi1xi2

xi3xi4 ]
+

[
a b

b c
xi1xi2

xi3xi4 ]
+ f1(a, b)

[
a b

b c
xi1xi2

xi3xi4 ]
follows from

i1 i2 i3 i4
i1
i2

∣∣∣∣1 0 −1 + f1(a, b) −f1(a, b)
0 1 −1 0

∣∣∣∣
= −f1(a, b)

∣∣∣∣1 0 −1 0
0 1 0 −1

∣∣∣∣+ ∣∣∣∣1 0 −1 0
0 1 −1 0

∣∣∣∣+ f1(a, b)

∣∣∣∣1 0 0 −1
0 1 0 −1

∣∣∣∣ ,
where we omit common rows and columns. By Lemma 7.1, we have this
equality from(

1− f1(a, b) f1(a, b)
1 0

)
= −f1(a, b)

(
1 0
0 1

)
+

(
1 0
1 0

)
+ f1(a, b)

(
0 1
0 1

)
and

1 = −f1(a, b) + 1 + f1(a, b),

−f1(a, b) = −f1(a, b) · 1 + 1 · 0 + f1(a, b) · 0.

In a similar manner, we have the equality[
a b

b c

xi1xi2

xi3xi4 ]
= −f1(a, b)

−1

[
a b

b c

xi1xi2

xi3xi4 ]
+ f1(a, b)

−1

[
a b

b c

xi1xi2

xi3xi4 ]
+

[
a b

b c

xi1xi2

xi3xi4 ]
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→ →

Figure 9: D → D•

from

i1 i2 i3 i4
i1
i2

∣∣∣∣1 0 0 −1
0 1 −f1(a, b)

−1 −1 + f1(a, b)
−1

∣∣∣∣
= −f1(a, b)

−1

∣∣∣∣1 0 −1 0
0 1 0 −1

∣∣∣∣+ f1(a, b)
−1

∣∣∣∣1 0 −1 0
0 1 −1 0

∣∣∣∣+ ∣∣∣∣1 0 0 −1
0 1 0 −1

∣∣∣∣ .
Since [(D, ρ)] satisfies the defining relations of ⟨(D, ρ)⟩, we have ⟨(D, ρ)⟩ =

|A•(D, ρ; f1, f2)|.

Let L = K1∪· · ·∪Kr be an oriented r-component link, and let ρ : Q(L) →
Q be a quandle representation. Let D be a diagram of L such that every
component has an undercrossing. We set

Ã•(D, ρ; f1, f2) :=

A•(D, ρ; f1, f2) 0

0

(∏r
i=1 ω

rot(D(Ki))+wr(D(Ki))+1

2
i

)−1

 ,

R̃•
row(D, ρ;frow) :=

(
R•

row(D, ρ;frow) 0
)
,

where

R•
row(D, ρ;frow)

:=

−frow,1(ρ̃(r(x1)), ρ(x1)) · · · −frow,1(ρ̃(r(xn)), ρ(xn))
...

. . .
...

−frow,m(ρ̃(r(x1)), ρ(x1)) · · · −frow,m(ρ̃(r(xn)), ρ(xn))

 .

Let D• the diagram obtained from D by adding a bivalent vertex at every
crossing as shown in Figure 9. As we see in [8], we have

(R̃row(D, ρ;frow), Ã(D, ρ; f1, f2), R̃col(D, ρ;fcol))

∼ (R̃•
row(D, ρ;frow), Ã•(D, ρ; f1, f2), R̃col(D, ρ;fcol))

∼ (R̃•
row(D•, ρ;frow), Ã•(D•, ρ; f1, f2), R̃col(D•, ρ;fcol)). (7)
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Here, we remark that, by using derivatives introduced in [6], we obtain the

matrices Ã(D, ρ; f1, f2), Ã•(D, ρ; f1, f2), Ã•(D•, ρ; f1, f2) from the presenta-
tions

⟨x1, . . . , xn | u1 ◁ v1 = w1, . . . , un ◁ vn = wn⟩,
⟨x1, . . . , xn | x1 = y1 ◁

sgn(c1) v1, . . . , xn = yn ◁
sgn(cn) vn⟩,

⟨x1, . . . , x2n | x1 = y1 ◁
sgn(c1) v1, . . . , x2n = y2n ◁

sgn(c2n) v2n⟩

of the fundamental quandle Q(L), where sgn(c) := 0 for a bivalent vertex c
and a ◁0 b := a even if b does not exist.

8 The proof of Theorem 1.6

Let p be an odd prime number, and let F := Q(
√
−1)[t]/(tp−1+· · ·+1), which

is isomorphic to a cyclotomic field obtained by adjoining a primitive 4pth root
of unity to Q. We set a1 := 0, a2 := 1 ∈ F . Let (f1, f2) be an Alexander pair
of maps f1, f2 : Rp×Rp → F defined by f1(a, b) = −tb−a and f2(a, b) = tb−a+
1. Let Y = Rp ×F× be the Rp-set defined with (y, z) ◁ a = (2a− y,−ta−yz).
We then have the column relation map fcol,1, fcol,2 : Rp → F defined by
fcol,i(x) = tx−ai + 1 and the row relation map frow,1, frow,2 : AsQ × Q → F
defined by frow,i(y, x) = frow(φai(y), x), where frow : Y × Q → F is the row
relation map defined by frow((y, z), x) = −z−1(ty−x + 1) and φc : AsQ → Y
is the Q-set homomorphism satisfying φc(1) = (c, 1). Let L = K1 ∪ · · · ∪Kr

be an oriented r-component link, and let ρ : Q(L) → Rp be a quandle
representation.

Let D be a diagram of an oriented classical (n, n)-tangle T whose closure
is L. By Proposition 4.2,

(−1)−
rot(D)+wr(D)

2 ⟨(D, ρ)⟩

is invariant under the colored Reidemeister moves.
From the local relations〈

a a

a a

〉
=

〈
a a

a a

〉
+

〈
a a

a a

〉
−
〈
a a

a a

〉
,〈

a a

a a

〉
=

〈
a a

a a

〉
−
〈
a a

a a

〉
+

〈
a a

a a

〉
,

we have

∆p

(
a a

a a

)
−∆p

(
a a

a a

)
= 2(−1)−1/2∆p

(
a a

a a

)
. (8)
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T

D•

→ T

(c,1) (2a−c,−ta−c)

ab

x1

x2

D̂•

Figure 10: D̂•

Suppose ρ is trivial. Setting X(L, ρ) := (−1)r−1∆p(L, ρ), we have

X

( a )
= 1, X

(
a a

a a

)
−X

(
a a

a a

)
= 2(−1)1/2X

(
a a

a a

)
from (8). Hence we have X(L, ρ) = ∆L(−1), which implies ∆p(L, ρ) =
(−1)r−1∆L(−1).

Suppose ρ is nontrivial. Let D be a diagram of an oriented classical (2, 2)-
tangle T whose closure is L such that the images of ρ on the top endpoints
of D are distinct elements a, b ∈ Rp. Suppose that every component of D
has an undercrossing. Let D• be the diagram obtained from D by adding a
bivalent vertex at every crossing as shown in Figure 9. We denote by D̂• the
diagram depicted in Figure 10. We note that the diagram obtained from D̂•
by removing all bivalent vertices represents L. By (7), we have

∆(L, ρ; f1, f2; 0, 1) =
det Ã•(D̂•, ρ; f1, f2)2̂,2̂

det R̃•
row(D̂•, ρ;frow)2,2 det R̃

•
col(D̂•, ρ;fcol)2,2

,

where

Ã•(D̂•, ρ; f1, f2)2̂,2̂ =

(
A•(D•, ρ; f1, f2) 0

0
∏r

i=1(−1)−
rot(D̂•(Ki))+wr(D̂•(Ki))+1

2

)
,

R̃•
row(D̂•, ρ;frow)2,2 =

(
t−a + 1 −ta−b − t−a

t1−a + 1 −ta−b − t1−a

)
,

R̃•
col(D̂•, ρ;fcol)2,2 =

(
ta + 1 ta−1 + 1
tb + 1 tb−1 + 1

)
.

By Proposition 7.2, we have

detA•(D•, ρ; f1, f2) = ⟨(D•, ρ)⟩ = ⟨(D, ρ)⟩.
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Since
r∑

i=1

rot(D̂•(Ki)) = rot(D̂•) = rot(D) + 2,

r∑
i=1

wr(D̂•(Ki)) = wr(D̂•)− 2 lk(L) = wr(D)− 2 lk(L),

we have

∆(L, ρ; f1, f2; 0, 1) =
(−1)−

rot(D)+2+wr(D)−2 lk(L)+r
2 ⟨(D, ρ)⟩

(1− t)(t−a − t−b)(1− t−1)(ta − tb)

=
∆p(L, ρ)

(−1)r/2+lk(L)(t− 2 + t−1)
.

9 The Rp-twisted Alexander invariant

In this section, we focus on the Rp-twisted Alexander invariant and show its
properties.

Lemma 9.1. For any oriented classical (1, 1)-tangles T1, T2, we have

∆p

(
T1 T2

a a )
= 0

for a ∈ Rp.

Proof. From the skein relation (8), we have

2(−1)−1/2∆p

(
T1 T2

a a )
= ∆p

(
T1 T2

a a )
−∆p

(
T1 T2

a a )
= 0.

Lemma 9.2. We have〈 a b

an an+1

}
n

〉
= t(b−a)n

〈 a b

an an+1

〉
+

1− t(b−a)n

1− tb−a

〈 a b

an an+1

〉

− tb−a1− t(b−a)n

1− tb−a

〈 a b

an an+1

〉
,〈a a

a a

}
n

〉
=

〈
a a

a a

〉
+ n

〈
a a

a a

〉
− n

〈
a a

a a

〉
for n ∈ Z and any distinct elements a, b ∈ Rp, where an = nb− (n− 1)a.
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Proof. It is sufficient to show〈a b}
n

〉
= xn

〈
a b

〉
+ yn

〈
a b

〉
+ zn

〈
a b

〉

for any n ∈ Z and a, b ∈ Rp, where xn = t(b−a)n and

yn =


∑n−1

i=0 t(b−a)i if n > 0,

0 if n = 0,

−
∑−1

i=n t
(b−a)i if n < 0,

zn =


−
∑n

i=1 t
(b−a)i if n > 0,

0 if n = 0,∑0
i=n+1 t

(b−a)i if n < 0.

We have the equality by induction on n from the equalities〈 a b

an+1 an+2

}
n+ 1

〉

= xn

〈 a b

an an+1

an+1 an+2

〉
+ yn

〈 a b

an an+1

an+1 an+2

〉
+ zn

〈 a b

an an+1

an+1 an+2

〉

= tb−axn

〈
a b

〉
+ (yn + xn)

〈
a b

〉
+ (zn − tb−axn)

〈
a b

〉
= xn+1

〈
a b

〉
+ yn+1

〈
a b

〉
+ zn+1

〈
a b

〉
for n ≥ 0 and the equalities〈 a b

an−1 an

}
n− 1

〉
=

〈 a b

an−1 anan−1 an

}
− n+ 1

〉

= xn

〈 a b

an an+1

an−1 an

〉
+ yn

〈 a b

an an+1

an−1 an

〉
+ zn

〈 a b

an an+1

an−1 an

〉

= ta−bxn

〈
a b

〉
+ (yn − ta−bxn)

〈
a b

〉
+ (zn + xn)

〈
a b

〉
= xn−1

〈
a b

〉
+ yn−1

〈
a b

〉
+ zn−1

〈
a b

〉
for n ≤ 0.
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Proof of Proposition 1.7. By Lemma 9.2, we have〈a b

a b

}
p

〉
=

〈a b

a b

〉
,

〈a a

a a

}
n

〉
= n

〈
a a

a a

〉
+ (1− n)

〈
a a

a a

〉
,

which imply the skein relations.
By the definition of ∆p(L, ρ), we have

∆p

( a )
=

〈
a

〉
= 1,

∆p

( a b )
=

1

(ta − tb)(t−a − t−b)

〈
a b

〉
=

1

(ta − tb)(t−a − t−b)

for any distinct elements a, b ∈ Rp. By Lemma 9.1, we have

∆p

( a a )
= 0, ∆p

( a1 ar )
= 0

for any r ≥ 3 and a, a1 . . . , ar ∈ Rp such that a1 = a2. Suppose a1 ̸= a2. We
have

∆p

( a1 a2 ar )
= ∆p


a1 a2

a′1

a3 ar


= ∆p


a2

a′1

a3 ar


= ∆p


a2 a′1

a′2

a3 ar


= ∆p

( a2 a′1 ar )
,
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where a′1 = 2a2 − a1 and a′2 = 3a2 − 2a1. Repeating this procedure, we have
the colors

a1, a2, 2a2 − a1, 3a2 − 2a1, . . . , (p− 1)a2 − (p− 2)a1.

Since these elements are mutually distinct, one of them coincides with a3.
Hence, we have

∆p

( a1 ar )
= 0

for any r ≥ 3 and a1, . . . , ar ∈ Rp.
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