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1 Introduction

Cluster analysis can be divided into two types: hierarchical and partitional. Hierarchical
clustering groups data into dendrograms based on their cluster similarities determined by
a preset linkage function. A dendrogram enables the observation of the process of merg-
ing or dividing clusters. For discussions on hierarchical cluster analyses, see the works of
Everitt et al. [6] and Hastie et al. [8], among others. Partitional clustering, as its name
suggests, divides data into a pre-determined number of clusters. K-means can be given on
behalf of partitional clustering. Notably, k-means has been approved as a useful tool for
analyzing microarray gene expression data. A characteristic of such data is that the num-
ber of variables was considerably larger than the sample size, giving high-dimensional,
low-sample-size (HDLSS) scenarios. Substantial work on HDLSS asymptotic clustering
has been performed in recent years. For example, Liu et al. [10] proposed a two-way
split statistical-significance-of-clustering (SigClust) method for HDLSS data. Ahn et al.
[1] proposed hierarchical divisive clustering for high-dimensional asymptotics. Huang et
al. [7] modified SigClust using a soft thresholding approach. Kimes et al. [9] proposed
a method for sequentially testing the statistical significance of hierarchical clustering by
controlling the family-wise error rate in HDLSS settings. Yata and Aoshima [14] presented
the consistency properties of sample principal component scores and applied them to clus-
tering in high-dimensional settings. Nakayama et al. [12] investigated HDLSS clustering
using kernel principal component analysis. Borysov et al. [3] studied the behaviors of
hierarchical clustering under several asymptotic settings from a moderate dimension for
HDLSS; however, the theoretical assumptions were considered to be strict for HDLSS data
owing to several simultaneous asymptotic settings. Egashira et al. [5] explores practical
assumptions to indicate the behavior of hierarchical clustering and obtained theoretical
results in multiclass settings. Given this background, asymptotic properties of k-means in
the HDLSS settings seems to have not been studied sufficiently.

In this talk, we investigate k-means when both the dimension and sample size approach
infinity at first. Then, we explores kernel k-means in the HDLSS context theoretically.
Especially, we mension kernel k-means with gaussian kernel function and compare perfor-
mance of it to conventional k-means in the multiclass HDLSS context.



2 Introduction of k-means

In this section, we introduce k-means. The k-means algorithm is a clustering method used
to divide a dataset into distinct clusters. It aims to minimize the within-cluster variance,
which is a measure of how similar the data points within each cluster are to each other.

The k-means algorithm applied to a given dataset X can be formulated as the follow-
ing optimization problem, using a pre-defined number of clusters k. The mathematical
formulation of k-means is given by

{Ĉ1, ..., Ĉk} = argmin
C1,...,Ck

k∑
i=1

∑
x∈Ci

∥x−Ci∥2

subject to ∪k
i=1 Ci = X, Ci ∩Cj = ∅ (i ̸= j).

where Ci = and ∥ · ∥is Euclidean norm. {Ĉ1, ..., Ĉk} is given as the result of clustering
by k-means.

The optimization problem above is generally solved by the following k-means algorithm
using k initial centroids.

Here is a step-by-step explanation of the k-means algorithm:

Initialize: Set k initial centroids ci (∈ X), i = 1, ..., k.

Assign: For each given data point x ∈ X, assign it to Ci if i = argminkj=1 ∥x− cj∥2.
Repeat this process for all data points to construct sets Ci, i = 1, ..., k.

Update: Treat the arithmetic mean of the data points within each Ci as the new initial
value, and execute Step 2 to update sets Ci, i = 1, ..., k. Repeat this step until
the sets from the previous step match the updated sets.

Terminate: Define the converged sets from Step 3 as Ĉi, i = 1, ..., k which is the result of
the k-means algorithm.

The final result of the k-means algorithm is a set of k clusters, each represented by its
centroid. The algorithm strives to minimize the sum of squared distances between the data
points and their assigned centroids. It’s important to note that the k-means algorithm can
be sensitive to the initial placement of the centroids and may converge to a suboptimal
solution. To mitigate this, it is common to run the algorithm multiple times with differ-
ent initializations and choose the clustering result with the lowest overall within-cluster
variance. We acknowledge the importance of considering computational complexity and
convergence speed while primarily focusing on investigating the theoretical properties of
k-means and kernel k-means in high dimensional settings. In the next section, we show
asymptotic properties of k-means under HDLSS settings.



3 Asymptotic Behaviors of k-means for binary class

Suppose we have q independent and d-variate populations, Πi, with an unknown mean
vector µi, and an unknown covariance matrix, Σi for i = 1, ..., q. We suppose that

tr(Σi) ≤ tr(Σj)

for i < j without loss of generality. We have independent and identically distributed
observations, xi1, . . . ,xini from Πi for i = 1, ..., q. LetNq =

∑q
i=1 ni, Xi = {xi1, . . . ,xini},

Ki = Var[∥xij − µi∥2] for i = 1, ..., q, ∆Σ,ij = |tr(Σi) − tr(Σj)|, ∆ij = ∥µi − µj∥2 for
i, j = 1, ..., q.

In this section, we consider asymptotic properties in binary setting, q = 2 as d →
∞ when N2 is fixed. Suppose two class situation, q = 2. We introduce the following
assumptions:

(A-i): tr(Σ2
i )/∆

2
12 → 0, i = 1, 2, as d → ∞;

(A-ii): Ki/∆
2
12 → 0, i = 1, 2, as d → ∞.

Note that Ki = 2tr(Σ2
i ) when Πi is Gaussian; thus, (A-i) and (A-ii) are equivalent when

Πi, i = 1, 2 are Gaussian. These assumptions are fairly common in HDLSS settings. See
the works of Aoshima and Yata [2], Nakayama et al. [11], and Egashira et al. [4, 5].

Theorem 3.1. Suppose q = 2 and initial observation, ci ∈ Xi for i = 1, 2. Assume (A-i),
(A-ii) and some regularity conditions. When

lim sup
d→∞

∆Σ,12

∆12
< 1

holds, the probability, P ({Ĉ1, Ĉ2} = {X1,X2}) → 1 as d → ∞ when N2 is fixed.
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