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Abstract. We propose a Langevin-type Monte Carlo algorithm for approximate sampling
from distributions whose potentials are non-convex and non-smooth. We show the
sampling complexity of the algorithm to iterate samples whose distributions are close
to target distributions in 2-Wasserstein distance. The key tools to analyze the com-
plexity are (i) mollification of the potentials of target distributions, (ii) tractability of
random sampling from a distribution with its density equal to a mollifier, and (ii) the
Liptser–Shiryeav approach for change of measures.
Keywords: diffusion processes; discrete observations; misspecified models; online gradi-
ent descent; simultaneous ergodicity; stochastic differential equations; stochastic mirror
descent

1. Introduction

We consider the problem of sampling from a Gibbs distribution π(dx) ∝ exp(−U(x))dx
on (Rd,B(Rd)), where U : Rd → [0,∞) is a non-negative potential function. One of the
extensively used types of algorithms for the sampling is the Langevin type motivated by
the Langevin dynamics, the solution of the following d-dimensional stochastic differential
equation (SDE):

dXt = −∇U (Xt) dt+
√
2dBt, X0 = ξ,(1.1)

where {Bt}t≥0 is a d-dimensional Brownian motion and ξ is a d-dimensional random
vector with |ξ| < ∞ almost surely. Since the 2-Wasserstein or total variation distance
between π and the law of Xt is convergent under mild conditions, we expect that the
laws of Langevin-type algorithms inspired by Xt should converge to π. However, most of
the theoretical guarantees for such algorithms are based on the convexity of U , the twice
continuous differentiability of U , or the Lipschitz continuity of the gradient ∇U , which do
not hold in some modelling in statistics and machine learning. The main interest of this
study is proposal of a Langevin-type algorithm whose convergence can be given under
minimal assumptions.

To see what difficulties we need to deal with, we review a typical analysis [23] based on
the smoothness of U , that is, the twice continuous differentiability of U and the Lipschitz
continuity of ∇U . Firstly, the twice continuous differentiability simplifies discussions or
plays significant roles in studies of functional inequalities such as Poincaré inequalities
and logarithmic Sobolev inequalities [e.g., 2, 7]. Since the functional inequalities for π
are essential in analysis of Langevin algorithms, the assumption that U is of class C2
frequently appears in previous studies. In the second place, the Lipschitz continuity
combined with weak conditions ensures the representation of the likelihood ratio between
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{Xt} and {Yt}, which is critical when we bound the Kullback–Leibler divergence. Liptser
and Shiryaev [17] exhibit much weaker conditions than Novikov’s or Kazamaki’s condition
for the explicit representation if (1.1) has the unique strong solution. Since the Lipschitz
continuity of ∇U is sufficient for the existence and the uniqueness of the strong solution
of (1.1), the framework of Liptser and Shiryaev [17] is applicable.

Our approaches to overcome the non-smoothness of U are mollification, a classical
approach to dealing with non-smoothness in differential equations, and the ‘misuse’ of
moduli of continuity for possibly discontinuous functions. We consider the convolution
Ūr := U ∗ ρr on U with a weak gradient, and some sufficiently smooth non-negative
function ρr with compact support in a ball of centre 0 and radius r ∈ (0, 1]. We can
let Ūr be of class C2 and obtain bounds for the constant of Poincaré inequalities for
π̄r(dx) ∝ exp(−Ūr(x))dx, which suffice to show the convergence of the law of the mollified
dynamics {X̄r

t } defined by the SDE

dX̄r
t = −∇Ūr

(
X̄r

t

)
dt+

√
2dBt, X̄

r
0 = ξ

to the corresponding Gibbs distribution π̄r in 2-Wasserstein distance owing to Bakry
et al. [2], Liu [18], and Lehec [16]. Since the convolution ∇Ūr is Lipschitz continuous
if the modulus of continuity of a representative ∇U is finite (the convergence to zero
is unnecessary), a concise representation of the likelihood ratios between the mollified
dynamics {X̄r

t } and {Yt} is available, and we can evaluate the Kullback–Leibler divergence
under weak assumptions.

As our analysis relies on mollification, the bias–variance decomposition in estimation of
∇Ūr rather than ∇U is crucial. This decomposition enables us to propose new algorithms
for U without continuous differentiability. Concretely speaking, we propose a new al-
gorithm named the spherically smoothed Langevin Monte Carlo (SS-LMC) algorithm,
whose errors can be arbitrarily small under the dissipativity of U and the boundedness of
the modulus of continuity of weak gradients. In addition, we argue zeroth-order versions
of these algorithms which are naturally obtained via integration by parts.

1.1. Related works. Non-asymptotic analysis of Langevin-based algorithms under con-
vex potentials has been one of the subjects of much attention and intense research
[10, 11, 12], and one without convexity has also gathered keen interest [23, 25, 14]. Whilst
most previous studies are based on the Lipschitz continuity of the gradients of poten-
tials, several studies extend the settings to those without global Lipschitz continuity. We
can classify the settings of potentials in those studies into three types: (1) potentials
with convexity but without smoothness [22, 8, 16]; (2) potentials with Hölder continuous
gradients and degenerate convexity at infinity or outside a ball [13, 21, 9]; and (3) poten-
tials with local Lipschitz gradients [6, 26]. We review the results (1) and (2) as our study
gives the error estimate of a Langevin-type algorithm with gradients whose discontinuity
is uniformly bounded.

Pereyra [22], Chatterji et al. [8], and Lehec [16] study Langevin-type algorithms un-
der the convexity and the non-smoothness of potentials. Pereyra [22] presents proximal
Langevin-type algorithms for potentials with convexity but without smoothness, which
use the Moreau approximations and proximity mappings instead of the gradients. The
algorithms are stable in the sense that they have exponential ergodicity for arbitrary step
sizes. Chatterji et al. [8] propose the perturbed Langevin Monte Carlo algorithm for non-
smooth potential functions and show its performance to approximate Gibbs distributions.
The difference between perturbed LMC and ordinary LMC is the inputs of the gradients;
we need to add Gaussian noises not only to the gradients but also to their inputs. The
main idea of the algorithm is to use Gaussian smoothing of potential functions studied
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in Nesterov and Spokoiny [20]; the expectation of non-smooth convex potentials with in-
puts perturbed by Gaussian random vectors is smoother than the potentials themselves.
Lehec [16] investigates the projected LMC for potentials with convexity, global Lipschitz
continuity and discontinuous bounded gradients. The analysis is based on convexity
and estimate for local times of diffusion processes with reflecting boundaries. The study
also generalizes the result to potentials with local Lipschitz by considering a ball as the
support of the algorithm and letting the radius diverge.

Erdogdu and Hosseinzadeh [13], Chewi et al. [9], and Nguyen [21] estimate the er-
ror of LMC under non-convex potentials with degenerate convexity, weak smoothness,
and weak-dissipativity. Erdogdu and Hosseinzadeh [13] show convergence guarantees of
LMC under the degenerate convexity at infinity and weak dissipativity of potentials with
Hölder continuous gradients, which are the assumptions for modified logarithmic Sobolev
inequalities. Nguyen [21] relaxes the condition of Erdogdu and Hosseinzadeh [13] by con-
sidering the degenerate convexity outside a large ball and the mixture weak smoothness
of potential functions. Chewi et al. [9] analyse the convergence with respect to the Rényi
divergence under either Latała–Oleszkiewics inequalities or modified logarithmic Sobolev
inequalities.

Note that our proof of the results uses approaches similar to the smoothing of Chatterji
et al. [8] and the control of the radius of Lehec [16], whilst our motivations and settings
are close to those of the studies under non-convexity.

1.2. Contributions. Theorem 4.1, the main theoretical result of this paper, gives an up-
per bound for the 2-Wasserstein distance between the law of an algorithm we propose and
the target distribution π under weak conditions without the convexity, continuous differ-
entiability, or bounded gradients of U . The proposed algorithms are useful for sampling
from posterior distributions for some modelling in statistics and machine learning whose
potentials are dissipative and weakly differentiable but neither convex nor continuously
differentiable (e.g., some losses with elastic net regularization in nonlinear regression and
robust regression). Furthermore, we can use the zeroth-order versions of them inspired
by the recent study of Roy et al. [24] for black-box sampling with guaranteed accuracy
from distributions whose potentials are not convex or smooth.

2. Notations and assumptions

We give some notation and assumptions before the main result.

2.1. Compact polynomial mollifier. We consider a compact polynomial mollifier [1]
ρ : Rd → [0,∞) of class C1 as follows:

ρ(x) =


(

πd/2(d/2,3)
Γ(d/2)

)−1

(1− |x|2)2 if |x| ≤ 1,

0 otherwise,
(2.1)

where (·, ·) is the beta function and Γ(·) is the gamma function. Note that ∇ρ has an
explicit L1-bound, which is the reason to adopt ρ as the mollifier in our analysis. Let
ρr(x) = r−dρ(x/r) with r > 0.

2.2. Assumptions on potentials. Let us set the following assumptions on U .
(C1) U ∈ W 1,∞

loc (Rd), that is, U is a locally Lipschitz continuous function.
(C2) |∇U(0)| <∞ and the modulus of continuity of ∇U is bounded, that is,

ω∇U(r) := sup
x,y∈Rd:|x−y|≤r

|U(x)− U(y)| <∞

for some r ∈ (0, 1].
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(C3) There exist m, b > 0 such that for all x ∈ Rd,

⟨x,∇U (x)⟩ ≥ m |x|2 − b.

2.2.1. Concrete class of potentials functions with the regularity conditions. We show a
simple class of potential functions satisfying (C1)–(C3) and some examples in Bayesian
inference; assume = 1 for simplicity of interpretation. Let us consider a possibly non-
convex loss with elastic net regularization such that

U (x) = L (x) +
λ1√
d
R1 (x) + λ2R2 (x) ,

where L : Rd → [0,∞) is in W 1,∞
loc (Rd) with a weak gradient ∇L satisfying ∥∇L∥∞ <∞,

λ1 ≥ 0, λ2 > 0, R1(x) =
∑d

i=1 |x(i)| with x(i) indicating the i-th component of x, and
R2(x) = |x|2. Fix a weak gradient of R1 as ∇R1(x) = (sgn(x(1)), . . . , sgn(x(d))); then
ω∇U(1) ≤ 2(∥∇L∥∞ + λ1 + λ2) < ∞ and ⟨x,∇U(x)⟩ ≥ λ2|x|2 − ∥∇L∥2∞/4λ2 since
⟨x,∇R1(x)⟩ ≥ 0 for all x ∈ Rd. Note that regularization corresponds to the potentials
of prior distributions in Bayesian inference; for instance, letting λ1 = 0 is equivalent to
choosing a Gaussian prior N(0, (2λ2)−1Id) on x.

Non-convex losses with bounded weak gradients often appear in nonlinear and robust
regression. We first examine a squared loss for nonlinear regression (or equivalently
nonlinear regression with Gaussian errors) such that

LNLR(x) =
1

2σ2

N∑
ℓ=1

(yℓ − ϕℓ (x))
2 ,

where N ∈ N, σ > 0 is fixed, yℓ ∈ R, and ϕℓ ∈ W 1,∞
loc (Rd) with ∥ϕℓ∥∞ + ∥∇ϕℓ∥∞ <∞ for

some ∇ϕℓ; for example, a two-layer neural network with clipped ReLU activation such
that

ϕℓ(x) =
1

W

W∑
w=1

awφ[0,c](⟨xw, fℓ⟩),

where φ[0,c](t) = (0 ∨ t) ∧ c with t ∈ R, aw ∈ {−1, 1} and c > 0 are fixed, fℓ ∈ RF ,
x = (x1, . . . , xW ) ∈ RFW , F,W ∈ N, and d = FW . This LNLR indeed satisfies

∥∇LNLR∥∞ ≤
1

σ2

N∑
ℓ=1

(|yℓ|+ ∥ϕℓ∥∞)∥∇ϕℓ∥∞ <∞.

Another example is a Cauchy loss for robust linear regression (or equivalently linear
regression with Cauchy errors) such that

LRLR(x) =
N∑
ℓ=1

log(1 + |yℓ − ⟨fℓ, x⟩|2/σ2)

, where N ∈ N, σ > 0 is fixed, yℓ ∈ R, and fℓ ∈ Rd. The fact | d
dt log(1 + t2/σ2)| =

|2t/(t2 + σ2)| ≤ 1/σ for all t ∈ R yields ∥∇LRLR∥∞ ≤
∑N

ℓ=1 |fℓ|/σ <∞.

3. Spherically smoothed Langevin Monte Carlo (SS-LMC) algorithm

We propose an algorithm named spherically smoothed Langevin Monte Carlo.
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3.1. Basic idea. The core idea of the algorithm is approximate sampling from distribu-
tions with smoother potentials than the target distribution π rather than direct approx-
imate sampling from π. Concretely speaking, we approximate π(dx) ∝ exp(−U(x))dx
with π̄r(dx) ∝ exp(−Ūr(x))dx, where Ūr(x) := (ρr ∗ U)(x). This π̄r has the properties
such that π ≈ π̄r for sufficiently small r and π̄r has a smooth potential Ūr ∈ C2 for all
r > 0 if U ∈ W 1,∞

loc . Therefore, we expect that sampling from π̄r must be easier than
sampling from π itself and it approximates π if r ≪ 1.

Whilst the standard LMC algorithm aims at the Euler–Maruyama discretization of the
solution (Langevin dynamics) of the SDE such as

dXt = −∇U (Xt) dt+
√
2dBt,

we propose an algorithm being a discretization of the solution of the following mollified
SDE:

dX̄r
t = −∇Ūr

(
X̄r

t

)
dt+

√
2dBt.

Under mild conditions, D(L(X̄r
t )∥π̄r)→ 0 as t→∞.

If we knew ∇Ūr, the following Langevin-type Monte Carlo algorithm would work:
ŷri+1 = ŷri − η∇Ūr(ŷ

r
i ) +

√
2ηzi, ŷ

r
0 = ξ, i = 0, . . . , k − 1,

where k ∈ N is the number of iteration, η ∈ (0, 1] is the stepsize, r ∈ (0, 1] is the radius
of mollification, and zi ∼i.i.d. N(0, Id). However, the computation of ∇Ūr is another
integration problem and we do not know its explicit representation except for some special
cases such as U(x) = |x|2.

Alternatively, we consider a Monte Carlo approximation of the integral ∇Ūr. Note
that the mollifier ρ is also the probability density function of a random variable ζ =
τ1
√
τ2, where τ1 ∼ Unif(Sd−1) and τ2 ∼ Beta(d/2, 3) are independent random variables.

Therefore, we can consider spherical smoothing with the random variables whose density
is ρr as an analogue to Gaussian smoothing of Chatterji et al. [8]. A Monte Carlo
approximation of ∇Ūr can be given as

(3.1) G(x, {ζj}) :=
1

NB

NB∑
j=1

∇U (x+ rζj) ,

where NB ∈ N is the minibatch size of the Monte Carlo approximation and ζj ∼i.i.d. ρ.
Under Assumptions (C1) and (C2), it holds that for all x ∈ Rd,

E [G(x, {ζj})] = ∇Ūr(x), E
[∣∣G (x, {ζj})−∇Ūr(x)

∣∣2] ≤ (2ω∇U(r))
2

NB

.(3.2)

Hence we can approximate ∇Ūr if NB is sufficiently large.
Based on these analyses, we propose the spherically smoothed Langevin Monte Carlo

algorithm (Algorithm 1) using G as an approximation of ∇Ūr.

4. Convergence analysis of SS-LMC

We give a convergence analysis of the proposed algorithm. We first assume the warm
start of the algorithm as follows.

(A0) The initial value ξ has the law µ0(dx) = (
∫

Rd exp(−Ψ(x))dx)−1 exp(−Ψ(x))dx
with Ψ : Rd → [0,∞) and ψ0, ψ2 > 0 such that (2∨(|∇U(0)|+ω∇U(1)))|x|2−ψ0 ≤
Ψ(x) ≤ ψ2|x|2 + ψ0 for all x ∈ Rd.

The following theorem gives an error estimate of the SS-LMC algorithm. Let µiη denote
the law of yi.
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Algorithm 1 SS-LMC algorithm [19]
Input: k, n ∈ N, η, r > 0, y0 = ξ

1: i← 0
2: while i < k do
3: j ← 0
4: G← 0
5: while j < n do
6: ζj ∼ ρ
7: G← G+ n−1∇U(yi + rζj)
8: j ← j + 1
9: end while

10: zi ∼ N(0, Id)
11: yi+1 ← yi − ηG+

√
2ηzi

12: i← i+ 1
13: end while
Output: {yi : i = 1, . . . , k}

Theorem 4.1 (error estimate of SS-LMC, [19]). Under (C1)–(C3) and (A0), there exists
a constant C ≥ 1 independent of NB, r, k, η, d, cP such that for all k ∈ N, η ∈ (0, 1 ∧
(m/(4(ω∇U(1))

2))], r ∈ (0, 1], and NB ∈ N with (d2(ω∇U(r)/r)η + (ω∇U(r))
2/NB)kη +

rω∇U(r) ≤ 1,

W2 (µkη, π) ≤ C
√
d 4

√(
d2
ω∇U(r)

r
η +

(ω∇U(r))2

NB

)
kη + rω∇U(r) + eCd exp

(
− kη

CcP

)
,

where cP is the Poincaré constant of π.

4.1. The sampling complexity of SS-LMC. We analyse the behaviour of SS-LMC;
to see that the convergence ω∇U(r) ↓ 0 is unnecessary, we consider a rough version of the
upper bound by replacing ω∇U(r) with the constant ω∇U(1).

Corollary 4.2. Under (C1)–(C3) and (A0), there exists a constant C ≥ 1 independent
of NB, r, k, η, d, cP such that for all NB ∈ N, k ∈ N, η ∈ (0, 1 ∧ (m/(4(ω∇U(1))

2))], and
r ∈ (0, 1] with

(
d2r−1η +N−1

B

)
kη + r ≤ 1,

W2 (µkη, π) ≤ C
√
d 4

√(
d2r−1η +N−1

B

)
kη + r + eCd exp

(
− kη

CcP

)
.

We yield the following estimate of the sampling complexity.

Proposition 4.3. Assume (C1)–(C3) and (A0) and fix ϵ ∈ (0, 1]. If r = ϵ4/48C4d2,
NB ≥ 48C4d2(CcP(log(2/ϵ) + Cd) + 1)/ϵ4, and η satisfies

η ≤ 1 ∧ m

4 (ω∇U(1))
2 ∧

rϵ4

48C4d4(CcP(log(2/ϵ) + Cd) + 1)
,

then W2 (µkη, π) ≤ ϵ for k = ⌈CcP(log(2/ϵ) + Cd)/η⌉.

Since the complexities of NB and k are given as NB = O(d2cP(log ϵ−1 + d)/ϵ4) and
k = O(d6c2P(log ϵ−1 + d)2/ϵ8), we obtain the sampling complexity of SS-LMC as NBk =

O(d8c3P(log ϵ−1 + d)3/ϵ12) or NBk = Õ(d11c3P/ϵ12), where Õ ignores logarithmic factors.



SAMPLING FROM NON-LOG-CONCAVE NON-SMOOTH DISTRIBUTIONS 7

4.2. Bounds for Poincaré constants. Whilst we give the sampling complexity in terms
of d, ϵ, and cP, it is difficult to obtain dimension-free estimates for cP in general. If we
set only Assumptions (C1)–(C3), we obtain cP = O(exp(O(d))) ([23, 19]) and it is quite
loose in the dimension d. We introduce some known assumptions on potentials to give
tighter bounds on the constants.

4.2.1. Bounded perturbation of potentials. The following result of the perturbation theory
[3] is fundamental and essential: if µ(dx) ∝ exp(−V (x))dx has a finite Poincaré constant
cP, then distributions µF (dx) ∝ exp(−F (x) − V (x))dx with ∥F∥L∞ < ∞ have Poincaré
constants cP(µF ) such that
(4.1) cP(µF ) ≤ exp(ess supF − ess infF )cP(µ).

For instance，we consider U(x) = F̄∧F (x)+|x|2/2, where |x|2/2 is the potential function of
the d-dimensional standard Gaussian distribution, a nonnegative loss function F ∈ W 1,∞

loc
and a clipping constant F̄ > 0. Since the Poincaré constant of thed-dimensional standard
Gaussian distribution is 1, a Poincaré constant cP of the distribution π with this potential
U satisfies
(4.2) cP ≤ exp

(
F̄
)
.

If F satisfies supx∈X |∇F (x)| <∞ with the sublevel set X := {x ∈ Rd : F (x) ≤ F̄}, the
following estimate holds by regarding F̄ as a constant:
(4.3) nk = Õ

(
d11ϵ−12

)
.

4.2.2. Miclo’s trick. If a distribution satisfies a logarithmic Sobolev inequality with a
constant cLS, then the distribution satisfies a Poincaé inequality with a constant cP(≤ cLS).
Using this fact, we give an estimate via the Miclo’s trick ([4]). Assume that the potential
U has a representation U = Uc + Ul, where Uc ∈ C2(Rd) satisfies ∇2Uc ≥ λId, λ > 0 and
Ul is M -Lipschitz. Then it holds that

(4.4) cP ≤ cLS ≤
4

λ
exp

(
4M2
√
2d

λ
√
π

)
For instance, by setting Uc = |x|2/2 as the potential of a prior distribution and a Lipschitz
continuous function as the potential of a likelihood function, we obtain (C1)–(C3) since
Lipschitz continuous functions have bounded weak gradient [15]. Therefore, under this
setting, we obtain the following complexity estimate:

(4.5) nk = Õ
(

exp
(
O
(√

d
))

ϵ−12
)

Whilst it diverges faster than any polynomial functions of d, it improves the order in
comparison to that given only by Assumptions (C1)–(C3).

5. Remark on a zeroth-order version of the algorithm

First-order algorithms are sometimes prohibitive when gradients are not available or
their derivation is computationally expensive; hence it motivates us to consider zeroth-
order (or gradient-free) sampling algorithms. Let us consider a zeroth-order version of
SS-LMC as an analogue to Roy et al. [24] with the following G0, an estimator of ∇Ūr,
under (C1)–(C3) and the assumption |U(x)| <∞ for all x ∈ Rd:

G0(x, {ζj}) :=
1

NB

NB∑
j=1

U (x+ rζj)− U (x)

r

4ζj
(1− |ζj|2)

,
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where NB ∈ N, r ∈ (0, 1], and {ζj} is an i.i.d. sequence of random variables with the
density ρ. The fact that

U (x+ rζj)− U (x)

r

4ζj
(1− |ζj|2)

=
U (x+ rζj)− U (x)

r

−∇ρ (ζj)
ρ (ζj)

,

the symmetricity of ρ, and approximation of ρ ∈ C10(Rd) ∩W 1,∞(Rd) yield that for all
x ∈ Rd,

E [G0(x, {ζj})] =
∫

Rd

U (x+ rz)− U (x)

r

−∇ρ (z)
ρ (z)

ρ (z) dz

= −
∫

Rd

U (x+ rz)− U (x)

r
∇ρ (z) dz

= −
∫

Rd

(U (x+ y)− U (x))

(
1

(r)d+1
∇ρ
(y
r

))
dy

=

∫
Rd

∇U (x+ y) ρr (y) dy

= ∇Ūr (x) .

Therefore, G0(x, {ζj}) also gives an unbiased estimation of ∇Ūr(x). By evaluating the
variance of G0(x, {ζj}), we can obtain the result thatW2(µkη, π) ≤ ϵ with arbitrary ϵ > 0
for the zeroth-order algorithm adopting this G0 as the estimator of ∇Ūr. Note that the
complexity deteriorates by a factor of O(d3) in comparison to SS-LMC; this is a worse
cost than O(d) which is the deterioration of the zeroth-order algorithm proposed by Roy
et al. [24] with respect to the Langevin Monte Carlo algorithm.

6. Sketch of the proof of Theorem 4.1

Let us review the proof of Theorem 4.1 briefly. We decompose the 2-Wasserstein
distance as follows:

W2(µkη, π) ≤ W2(µkη, ν̄
r
kη) +W2(ν̄

r
kη, π̄

r) +W2(π̄
r, π),

where ν̄r is the law of X̄r
t . If kη is sufficiently large, then the second term on the right-

hand side converges to zero by the exponential decay of entropy and the Talagrand’s
inequality. The third term also converges to zero as r → 0 due to the convergence of the
Kullback–Leibler divergence. Hence the key term in the analysis is the first term on the
right-hand side.

We can reduce the problem to an estimate of the Kullback–Leibler divergence of µkη

from ν̄rkη owing to Bolley and Villani [5]. The Liptser–Shiryaev approach [17] plays a
significant role in the estimate of the divergence. It gives an explicit representation of
the likelihood ratio of the solutions of SDEs given that one of the SDEs has a unique
strong solution and the other one has a unique weak solution; for details, see Chapter
7 of [17]. Roughly speaking, they use a Brownian motion of the weak solution as the
driving process of the SDE with a unique strong solution after a change of measures; it
is possible because the unique strong solution can exist for any Brownian motion.

We obtain the following estimate via a slight change of the discussion of [17].

Lemma 6.1 ([19]). For some C ≥ 1, for any k ∈ N and η ∈ (0, 1/C], it holds true that

D(µkη∥ν̄rkη) ≤ C

(
d2
ω∇U(r)

r
η +

ω∇U(r)
2

NB

)
kη.

Using this estimate, we can bound the 2-Wasserstein distance.
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