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In this presentation, we will explore the recent results of scaling limit of piecewise deterministic
Markov processes for anisotropic targets. Suppose we wish to sample from

Πpdxq “ expp´Hpxqqdx

where H : Rd Ñ R is a continuously differentiable function. For the Bayesian context, this
probability distribution is the posterior distribution of interest. If we have an i.i.d. sample from
Π, we can approximate Π-integral of any function fpxq by the law of large numbers. In most
of the cases, direct i.i.d. sampling is impossible or computationally very expensive. For these
cases, the Markov chain Monte Carlo method is useful which originated with the classic paper by
Metropolis et al. (1953) almost 70 years ago. The Markov chain Monte Carlo method is designed
to construct an ergodic Markov kernel P which is Π-invariant. If a Markov chain X1, X2, . . . is
generaetd from the Markov kernel P then the law of large numbers is satisfied. The Markov
chain Monte Carlo is now a gold standard for Bayesian inference.

Recently, its continuous process version, the Markov process Monte Carlo method is of
substantial interest for Monte Carlo analysis. Known Markov process Monte Carlo methods rely
on an auxiliary variable trick which uses an auxiliary variable v with a probability density ν
on Ξ and considers the joint probability distribution µ :“ Πpdxq b νpdvq as an extended target
distribution on Z “ Rd ˆ Ξ. The original target distribution is a marginal distribution of the
extended target distribution. Since Brownian motion does not have an absolutely continuous
path, we can not simulate processes driven by Brownian motion exactly. For our Monte Carlo
analysis, exact sampling is necessary. Therefore, the Markov processes of interest should not
have a Brownian part. Known processes consist of a deterministic part and a pure jump part.
These processes are known as the piecewise deterministic Markov processes.

Here we follow Azaïs et al. (2014) for the expression of the piecewise deterministic Markov
processes. The processes are constructed by characteristics pϕ, λk, Qk : l “ 1, . . . ,Kq. The flow
ϕ : Z ˆ R Ñ Z is continuous, ϕp¨, tq is a homeomorphism for each t P R and ϕpϕp¨, sq, tq “

ϕp¨, s` tq. For each k “ 1, . . . ,K, the jump rate λk : Z Ñ R` determines the jump time of pure
jump processes, and Qk is a Markov kernel on Z. Let Λkpz, tq “

şt

0
λkpϕpz, sqqds.

The Markov process is defined by the following way. Suppose zp0q “ pxp0q, tp0qq P Z. Let
T1, . . . , TK be independent processes with PpTk ě tq “ expp´Λkpz, tqq. Let T˚ “ mink“1,...,K Tk.
If Tk “ T˚, then Z is generated from Qkpϕpz, T˚q, ¨q and set

Xptq “

"

ϕpzp0q, tq for t ă T˚

Z for t “ T˚.

After T˚, the process evolves in the same way with starting value Z. There are several choices
of characteristics. Two popular piecewise deterministic Markov processes use the same flow ϕ
defined by x1ptq “ vptq and v1ptq “ 0. The Zig-Zag sampler proposed by Bierkens et al. (2019)
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uses d Markov kernels Q1, . . . , Qd with d jump rates λ1, . . . , λd. For each i “ 1, . . . , d, the Markov
kernel is a deterministic kernel Qi defined by a map px, vq ÞÑ px, Fipvqq where Fi is an operator
that flips the i-th coordinate of x. The jump rate is defined by λippx, vqq “ maxt0, BiHpxqviu.

The bouncy particle sampler proposed by Peters and de With (2012), Bouchard-Côté
et al. (2018) uses two Markov kernels Qbounce and Qref with corresponding jump rates λbounce

and λref . The kernel Qbounce is a deterministic kernel defined by a map px, vq ÞÑ px, κpx, vqq:

κpx, vq “ v ´ 2
x∇Hpxq, vy

}∇Hpxq}2
∇Hpxq

and λbouncepx, vq “ maxt0, x∇Hpxq, vyu. The jump rate λref is a positive constant, and Qref is a µ-
invariant Markov kernel. For our analysis, for simplicity, we assume Qrefppx, vq,dpy, wqq “ νpdwq.

We have several critical findings. For the Zig-Zag algorithm, its performance is intricately
linked to the orientation of the target’s anisotropy; specific alignments with the algorithm’s
operational axes lead to enhanced efficiency, while others can hinder its effectiveness. The BPS
algorithm, on the other hand, exhibits a deterministic dynamical behaviour in its limiting form
with a better rate of convergence.

This is joint work with Joris Bierkens (TU Delft) and Gareth O. Roberts (Warwick). See our
paper on arxiv https://arxiv.org/abs/2305.00694 for the detail.
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