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Abstract

We modify the recently proposed forecasting model of high-dimensional covariance

matrices (HDCM) of asset returns using high-dimensional principal component analy-

sis (PCA). It is well-known that when the sample size is smaller than the dimension,

eigenvalues estimated by classical PCA have a bias. In particular, a very small number of

eigenvalues are extremely large and they are called spiked eigenvalues. High-dimensional

PCA gives eigenvalues which correct the biases of the spiked eigenvalues. This situation

also happens in the financial field, especially in situations where high-frequency and high-

dimensional data are handled. The research aims to estimate the HDCM of asset returns

using high-dimensional PCA for the realized covariance matrix using the Nikkei 225 data,

it estimates 5- and 10-minute intraday asset-returns intervals. We construct time-series

models for eigenvalues which are estimated by each PCA, and forecast HDCM. Our sim-

ulation analysis shows that the high-dimensional PCA has better estimation performance

than classical PCA for the estimating integrated covariance matrix. In our empirical

analysis, we show that we will be able to improve the forecasting performance using the

high-dimensional PCA and make a portfolio with smaller variance.

Keywords: covariance forecasting; high-dimensional covariance; principal component analysis;

high-frequency data; time series

1 Introduction

Modeling and forecasting covariance matrices of asset returns have an essential role in portfolio

allocations and risk management. For estimating and forecasting covariance matrix, a lot of

papers are published on both low- and high-frequency data. Concerning the low-frequency data,

the multivariate GARCH models [1], for example, BEKK-GARCH [2] and DCC-GARCH [3, 4],

are usually used to estimate and forecast the covariance matrix as latent. On the other hand,

the availability of high-frequency data recently enabled the direct estimation of the covariance
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matrix, for example, the realized covariance matrix estimator [5], and the multivariate realized

kernel estimator [6]. Additionally, some forecasting models such as the multivariate HAR [7],

conditional autoregressive Wishart (CAW) [8], and realized DCC [9] models, use these covariance

estimators to forecast them. However, when the dimensions increase, these covariance estimators

and forecasting models have less accurate performance and suffer from an increase in the number

of estimated parameters because of various reasons, such as the curse of dimensionality.

To solve these problems, the DCC-NL model which can overcome the curse of dimension-

ality using nonlinear shrinkage estimation is proposed [10]. To analyze the conditional high-

dimensional covariance matrix (HDCM), recent studies using some multivariate GARCH models

use the DCC-NL model instead of Tse and Tsui’s and Engle’s DCC-GARCH models [11, 12,

13, 14]. Then, to solve the curse of dimensionality, many studies assume that the covariance

matrix process or the price process follows a factor structure. Wang and Zou [15] propose a

covariance estimator assuming that the integrated covariance matrix is sparse. Considering a

sparse covariance matrix allows only important elements to remain and also reduces the number

of elements to be estimated. In addition, Tao et al. [16] introduce a covariance estimator which

uses the matrix factor structure for an HDCM. We can obtain not only a consistent estimator

of an HDCM but also a forecasted value using the vector autoregressive (VAR) model for a low-

dimensional factor covariance matrix. Kim et al. [17] propose a threshold covariance estimator

to regularize some realized covariance measures under the same assumption as [15]. Shen et

al. [18] apply the method proposed by [16] to a realized covariance matrix and consider the

CAW model instead of the VAR model for the factors. However, these studies assume sparsity

in the integrated covariance matrix itself, which represents the target to be estimated. If there

are some common factors across asset returns, the assumption that the integrated covariance is

sparse becomes unrealistic because there are correlations among all pairs of assets through the

common factors [19, 20, 21, 22].

Fan et al. [19] propose the principal orthogonal complement thresholding (POET) method

which assumes sparsity, not for the covariance matrix itself, but for the covariance matrix of

the residual process, and estimates the latent factor using principal component analysis (PCA)

to solve some problems. For high-frequency data, Fan et al. [20] assume the observable factor

structure inspired by [23], and propose the covariance estimator under the assumption that the

covariance matrix of the residual process is sparse. To estimate the latent factor structure,

Aı̈t-Sahalia and Xiu [24] impose sparsity on the residual covariance matrix and apply POET to

high-frequency data using PCA to estimate an HDCM. They show that even when the factor is

latent, if the residual covariance matrix is sufficiently sparse, the factor part can be estimated by

PCA on the consistent estimator of the integrated covariance matrix, like the realized covariance

matrix. In addition, they show that their estimator is a consistent estimator even if the interval

of intraday return is ∆ → 0 and the dimension is d → ∞. In addition, Dai et al. [25] also

propose an estimation method of the sparse residual covariance matrix using thresholding, and

a high-dimensional covariance estimator using the POET estimator. The difference between [24]

and [25] is the sparse structure. While Aı̈t-Sahalia and Xiu [24] assume the block-diagonalize
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structure instead of thresholding, Dai et al. [25] do not assume the block-diagonalize structure

but set a more general assumption, and use soft-, hard-, and adaptive-lasso (AL) [26], and

smoothly clipped absolute deviation (SCAD) [27] thresholding. For the sparse estimation of the

residual covariance matrix, Cai and Liu [28] propose the adaptive and hard thresholding method,

but this method cannot guarantee the positive definiteness under the finite sample [29], and also

has less performance than [25]. Brownlees et al. [21] propose the realized network estimator

using the graphical lasso to estimate the precision matrix. Jian et al. [29] build time-series

models for estimated eigenvalues based on the estimator of [24], and forecast the HDCM. In

addition, they propose the regularized method to guarantee the positive definiteness.

The classical PCA, which is used by these models, creates a bias under d > M ; d is the

dimension of a covariance matrix and M is the sample size [15, 30, 24, 31]. Wang and Fan

[31] characterize the asymptotic distribution of empirical eigenvalues under the i.i.d setting and

d > M . They also propose the shrinkage POET (SPOET) method based on their asymptotic

distribution. The SPOET method corrects the biases of eigenvalues estimated by classical PCA.

In this paper, we estimate the HDCM under the factor structure for the high-frequency data,

and create the forecasting models using its eigenvalues. It is well-known that the realized

covariance matrix is a consistent estimator of the integrated covariance matrix when the number

of intraday observations M goes to ∞. However, in the empirical situation, we consider the

microstructure noise, and often use the realized covariance matrix which is estimated using 5-

or 10-minute interval intraday returns. In this case, since the Japanese stock market opens from

9 a.m. to 3 p.m. with an hour break, the sample sizes are 60 and 30 per day. Under such a

situation, although we want to consider a large portfolio including 100 or 200 stocks, the matrix

dimension is larger than the sample size, d > M . Therefore, we apply spoet corresponding

to d > M to the realized covariance matrix, rather than the POET using PCA as considered

in [24, 25]. Additionally, we construct the forecasting models similar to [29], by deriving the

eigenvalues of the realized covariance matrix estimated using SPOET.

There are two contributions to the literature. First, this paper shows through a simulation

study that SPOET considered in the i.i.d. setting has excellent performance for estimating the

integrated covariance matrix under the assumption of continuous Itô semi-martingale. Second,

our empirical analysis shows that the forecasting models using SPOET are more accurate co-

variance matrix than the models using the POET. Hence, using our proposed models gives us

a more accurate covariance estimator under the high-dimensional setting that results in bad

performance and unreliable results. This point is the largest difference between [29] and this

paper. Although Jian et al. [29] do not consider the relationship between the dimension of the

covariance matrix and the sample size of intraday, we focus on the relationship and make these

models forecast more accurately than their models.

The paper is organized as follows: Section 2 explains the factor model, the sparse estimations,

and the principal component analysis to estimate the factor part. Section 3 introduces the

forecasting model of estimated eigenvalues by PCA used in the empirical analysis.
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2 Factor Model and PCA

2.1 Factor Structure

We assume that the log-price Y follows a continuous-time factor model,

Yt = βXt + Zt, (1)

where Yt is a d-dimensional vector process, Xt is a r-dimensional latent common factor process,

Zt is the d-dimensional idiosyncratic component, and β is a d×r constant-factor loading matrix.

In addition, Xt and Zt are independent. In this paper, the number of factors r is unknown.

Here, we assume that Xt and Zt are continuous Itô semi-martingale, as with [24, 25] as follows:

Xt =

∫ t

0

hsds+

∫ t

0

ηsdWs, Zt =

∫ t

0

fsds+

∫ t

0

γsdBs.

Then, the integrated covariance matrices of Xt, Zt, and Yt are defined under Assumptions 1,

2, and 3, and the sparsity assumption of [25] as follows:

ΣXt =

∫ t

0

ηsη
′
sds, ΣZt =

∫ t

0

γsγ
′
sds,

ΣYt = βΣXtβ
′ +ΣZt . (2)

Although Jian et al. [29] consider the factor model following Assumption 1, 2, 3, 4, and 5 of

[24], we assume more general sparsity of [25] and we do not assume that idiosyncratic component

is block diagonal.

2.2 Sparsity

To estimate an HDCM, a certain condition of sparsity is necessary for dimension reduction and

factor model. However, the sparsity assumption of the covariance matrix itself is inappropriate

from the viewpoint of the factor model. To solve this problem, we assume that the covariance

matrix of the idiosyncratic component ΣZ is sparse, and then the form of Equation (2) becomes

a low-rank plus sparse structure. A low-rank plus sparsity structure of the residual covariance

matrix turns out to be a good match for asset high-frequency data [24] and guarantees a well-

conditioned estimator as well as its precision matrix [25].

We use four types of thresholding functions, hard-, soft-, adaptive lasso (AL) and smoothly

clipped absolute deviation (SCAD) threshold, for ΣZ as following:

sHard
λ (z) = z1(|z| > λ), sSoftλ (z) = sign(z)(|z| − λ)+, sAL

λ (z) = sign(z)(|z| − λη+1|z|−η)+,

sSCAD
λ (z) =


sign(z)(|z| − λ)+, |z| ≤ 2λ;
(a−1)z−sign(z)aλ

a−2 , 2λ < |z| ≤ aλ;

z, aλ < |z|.
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where we set a = 3.7 and η = 1 same as [32]. We adopt these thresholding functions and

estimate the residual covariance matrix as follows:

Σ̃S
Zt,ij =

{
Σ̂Zt,ij , i = j;

sλij (Σ̂Zt,ij), i ̸= j.

Dai et al. [25] denote that despite these estimations lead to the same convergence rate from their

analysis, the results of finite sample performance of the covariance matrix in their simulation

study and empirical analysis are quite different.

2.2.1 Thresholding Method

Following [25], the thresholding λij in sparse functions is estimated as follows:

λij = τ

√
Σ̂Zt,iiΣ̂Zt,jj ,

where τ is a constant to be determined. Under the finite sample, we use a grid search to guarantee

positive semi-definite. We divide into K pieces in τ ∈ [0, 1] and gradually increase τ until the

final high-dimensional covariance matrix becomes positive semi-definite. As τ becomes larger,

the degree of sparsity of the residual covariance increases, and, finally, the matrix becomes a

diagonal matrix [25]. Thus, an estimated HDCM always becomes positive semi-definite.

2.2.2 The Number of Factors

If the log-price is observed by latent common factors, we have to estimate the number of

factors. The consistent estimator of the number of latent factors is proposed by [24] under

the continuous-time setting without random matrix theory. We adopt their estimator, which

minimizes the penalized function using an estimator of the integrated covariance matrix Σ̂t:

r̂t = arg min
1≤j≤rmax

(
λj(Σ̂Yt)

d
+ j × g(M,d)

)
− 1, (3)

where rmax is 20. In theory, the choice of rmax is not important. This is simply used to avoid

making economically meaningless choice of r in finite samples [24]. The function g(n, d) is

defined as follows:

g(M,d) = 0.02× λ̂t
min( d

2 ,
M
2 )

(Σ̂Yt)

(
log d

M

) 1
4

. (4)

2.3 PCA for High-Frequency Data

To estimate an HDCM, we show the PCA for the realized covariance matrix estimated by

high-frequency data following [29]. Here, yj,t is the j-th intraday log-return observed on day t.

The realized covariance matrix is defined as follows:

Σ̂Yt =

M∑
j=1

yj,ty
′
j,t.

We assume d > M ; thus, the realized covariance matrix is estimated under this assumption.
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2.3.1 POET Method

The eigenvalues of the realized covariance matrix Σ̂Yt are λ̂
t
1 > λ̂t

2 > · · · > λ̂t
d, and ξ̂t1, ξ̂

t
2, . . . , ξ̂

t
d

denote the corresponding eigenvectors. If r̂ is the estimator of r, which is the number of factors,

Σ̂Yt has a spectral decomposition as follows:

Σ̂Yt =

r̂∑
j=1

λ̂t
j ξ̂

t
j ξ̂

t′
j + Σ̂Zt

, (5)

where Σ̂Zt
is the covariance matrix of the residual process, which is calculated by Σ̂Zt

=∑d
j=r̂+1 λ̂

t
j ξ̂

t
j ξ̂

t′
j . Here, even if the common factor Xt is an unobservable process, if ΣZ is suffi-

ciently sparse, βΣXtβ
′ in Equation (2) can be estimated using the eigenvalues and eigenvectors

of Σ̂Yt [24]. Therefore, we estimate the sparse residual covariance matrix, and then estimate a

high-dimensional covariance matrix Σ̂S
Yt

as follows:

Σ̂S
Yt

=

r̂∑
j=1

λ̂t
j ξ̂

t
j ξ̂

t′
j + Σ̂S

Zt
, (6)

where Σ̂S
Zt

is the estimated sparse residual covariance matrix. This high-dimensional covariance

estimator consists of the POET for low-frequency data of [19] and the PCA approach adopted

in [24, 25] for high-frequency data.

2.3.2 Shrinkage POET Method

The PCA which is used in Equation (5) is effective, when dimension d is fixed and the sample

size (the number of observations in a day) is sufficiently large. However, it is well-known that in

situations where d > M , the eigenvalues and eigenvectors of the realized covariance matrix are

not consistent estimators in the sense that they are quite far from the true values [16]. To deal

with this problem, we use shrinkage POET (SPOET), proposed by [31], which corrects biases

of empirical eigenvalues and estimates an HDCM as follows:

Σ̃S
Yt

=

r∑
j=1

λ̃t
j ξ̂

t
j ξ̂

t′

j + Σ̂S
Zt
,

where λ̃t
j = max{λ̂t

j − cd/M, 0}. In addition, as c is unknown, we have to estimate it. In this

paper, we follow [31] to estimate as follows:

ĉ = (tr(Σ̂t
Y )−

r∑
j=1

λ̂j)/(d− r − dr/M). (7)

3 Forecasting Models

In this section, in order to forecast an HDCM, we introduce forecasting models based on the

PCA. We denote the eigenvalues as:

σt
f = [λt

1, . . . , λ
t
r]

′.
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Since these eigenvalues are the variances of factors, we can consider models similar to the

time-series model of the realized variance of asset returns [29]. To model the eigenvalues, we use

the exponentially weighted moving average (EWMA), (Vector) HAR, and (Vector) AR models,

the same as [29]. All models except the EWMA model can be easily estimated using OLS.

3.1 EWMA Model

In this paper, we use the EWMA model developed by [33] as a benchmark model, as follows:

σ
t+1|t
f = aσ

t|t−1
f + (1− a)σt,

where a is the decaying parameter that determines the weight of the observed value 1 period

before the forecast, and we set a = 0.94 following the framework of a RiskMetrics approach [33].

As this model is easy to implement to forecast volatility and covariance, a lot of studies use it

in practice.

3.2 VAR Model

We introduce the AR(1) and VAR models based on high-frequency factor model as:

λt
i = a0,i + a1,iλ

t−1
i + εti, i = 1, . . . , r, (8)

σt
f = A0 +A1σ

t−1
f + εtf , (9)

where ak,i, Ak, k = 0, 1 are scalar parameters and parameter matrices, respectively. εti denotes

the innovation term.

Andersen et al. [34] pointed out that the logarithmic standard deviations are closer to a normal

distribution in general compared to the realized variance itself, and modeling and forecasting

log volatility guarantee that the fitted and forecasted volatility are non-negative without any

constrains. Therefore, we also apply the logarithmic eigenvalues to these models.

3.3 V-HAR Model

In this subsection, we introduce the HAR model and V-HAR model which are proposed

by [7, 35], respectively. These models are usually applied to forecasting both univariate and

multivariate realized volatility. The HAR model is advantaged for approximating the long

memory properties using daily, weekly and monthly volatility. Also, given the multivariate

framework, the impact of the short- and long-term volatility of another asset can be included

in a forecast of the volatility of one asset. To use these models, we calculate the weekly and

monthly eigenvalues as follows:
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λt
i,W =

1

5

4∑
j=0

λt−j
i , (10)

λt
i,M =

1

22

21∑
j=0

λt−j
i . (11)

In addition, we define that σt
f.W = [λt

1,W , . . . , λt
r,W ]′ and σt

f.M = [λt
1,M , . . . , λt

r,M ]′. We con-

struct the HAR and V-HAR models using daily, weekly, and monthly eigenvalues as follows:

λt
i = a0,i + a1,iλ

t−1
i + a2,iλ

t−1
i,W + a3,iλ

t−1
i,M + εti, i = 1, . . . , r, (12)

σt
f = A0 +A1σ

t−1
f +A2σ

t−1
f,W +A3σ

t−1
f,M + εtf . (13)

where ak,i, Ak, k = 0, . . . , 3 are scalar parameters and parameter matrices, respectively. Similar

to AR and VAR models, these models are transformed into logarithmic models.

Using these models, we can obtain the forecasted HDCM, Ŝt+1, as follows:

Ŝt+1 =

r̂∑
j=1

λ̌t+1
j ξ̂tj ξ̂

t′

j + Σ̂S
Zt
, (14)

where λ̌t+1
j denotes the forecasted j-th eigenvalues at t+1, ξ̂j is the eigenvectors corresponding

to the forecasted eigenvalues, and Σ̂S
Zt

is the sparse residual covariance matrix at t. Hence, in

this model, we use the eigenvectors and sparse residual covariance matrix at t and the forecasted

eigenvalues at t+ 1 to forecast an HDCM.
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