
Feature learning via mean-�eld neural networks and

anisotropic features

Taiji Suzuki1,2

Joint work with Denny Wu3, Atsushi Nitanda2,4, Kazusato Oko1,2

1Graduate School of Information Science and Technology, the University of Tokyo,
2RIKEN Center for Advanced Intelligence Project,
3Center for Data Science, New York University,

4Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology.

Abstract

Neural network in the mean-�eld regime is known to be capable of feature learning, unlike
the kernel (NTK) counterpart. Recent works have shown that mean-�eld neural networks
can be globally optimized by a noisy gradient descent update termed the mean-�eld Langevin
dynamics (MFLD). However, all existing guarantees for MFLD only considered the optimiza-
tion e�ciency, and it is unclear if this algorithm leads to improved generalization and sample
complexity due to the presence of feature learning. To �ll this gap, in this work we study the
statistical and computational complexity of MFLD in learning a class of binary classi�cation
problems. Unlike existing margin bounds for neural networks, we avoid the typical norm con-
trol via the perspective that MFLD optimizes the distribution of parameters rather than the
parameter itself; this leads to an improved analysis of the sample complexity and convergence
rate. We apply our general framework to the learning of k-sparse parity functions, where we
prove that unlike kernel methods, two-layer neural networks optimized by MFLD achieves
a sample complexity where the degree k is �decoupled� from the exponent in the dimension
dependence.

In addition to that, we consider a setting where the input feature has anisotropic property,
that is, it has a covariance that is not the identity matrix. Then, we show that such an
anisotropic property helps reduce generalization error and computational complexity for the
MFLD. This implies that the anisotropic property of the real world dataset would help the
training of neural network in terms of both statistical and computational performances.

1 Introduction

Mean-�eld Langevin dynamics. The optimization dynamics of two-layer neural networks
in the mean-�eld regime can be described by a nonlinear partial di�erential equation of the
distribution of parameters (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018;
Rotsko� and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020). Such a description has
multiple advantages: (i) global convergence guarantees can be obtained by exploiting convexity of
the loss function, and (ii) the parameters are allowed to evolve away from initialization and learn
informative features, in contrast to the neural tangent kernel (�lazy�) regime (Jacot et al., 2018).

Among the gradient-based optimization algorithms for mean-�eld neural networks, the mean-
�eld Langevin dynamics (MFLD) (Mei et al., 2018; Hu et al., 2019) is particularly attractive due to
the recently established quantitative optimization guarantees. MFLD arises from a noisy gradient
descent update on the parameters, where Gaussian noise is injected to the gradient to encourage
�exploration�. It has been shown that MFLD globally optimizes an entropy-regularized convex
functional in the space of measures, and for the in�nite-width and continuous-time dynamics,
the convergence rate is exponential under suitable isoperimetric conditions (Nitanda et al., 2022;
Chizat, 2022). Furthermore, uniform-in-time estimates of the particle discretization error have also
been established (Suzuki et al., 2023a; Chen et al., 2022), meaning that optimization guarantees
for the in�nite-dimensional problem can be e�ectively translated to a �nite-width neural network.
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However, existing analyses of MFLD only considered the optimization of neural networks; this
alone does not demonstrate the bene�t of mean-�eld regime nor the presence of feature learning.
Therefore, an important problem is to characterize the generalization of the learned models, and
prove e�cient sample complexity guarantees. The goal of this work is to address the following
question.

Can we show that neural network + simple noisy gradient descent (MFLD) e�ciently learns an
interesting class of functions, with a better rate of convergence compared to the �lazy� regime?

Learning sparse parity functions. One particularly relevant learning task is the k-sparse
parity problem, where the response y is given by the sign of the product of k coordinates of the
input (on hypercube); as a special case, setting k = 2 recovers the classical XOR problem. When
k ≪ d, this target function is low-dimensional, and hence we expect feature learning to be bene�cial
in that it can �zoom in� to relevant subspace. In contrast, for kernel methods (including neural
networks in the lazy regime) which cannot adapt to such structure, it has been shown that a sample
complexity of n = Ω(dk) is unavoidable (Ghorbani et al., 2019; Hsu; Abbe et al., 2022).

For the XOR case (k = 2), recent works have shown that neural networks in the mean-�eld
regime can achieve a sample complexity of n = O(d/ϵ) (Wei et al., 2019; Chizat and Bach, 2020;
Telgarsky, 2023), which indeed improves upon the NTK complexity (Ji and Telgarsky, 2019). How-
ever, all these results directly assumed convergence of the dynamics (t → ∞) with no iteration
complexity. Moreover, Wei et al. (2019); Chizat and Bach (2020) directly analyzed the in�nite-
width limit, and while Telgarsky (2023) provided a �nite-width characterization, the dynamics is
restricted to the low-rotation regime, and a very large number of particles N = O(dd) is required.
Lastly, these analyses are specialized to XOR, and do not directly generalize to the k-parity setting.

1.1 Our Contributions

In this work, we bridge the aforementioned gap by presenting a simple and general framework to
establish sample complexity of MFLD in learning binary classi�cation problems. We then apply
this framework to the sparse k-parity problem, and obtain improved rate of convergence for the
fully time- and space-discretized algorithm. More speci�cally, our contributions can be summarized
as follows.
• We present a general framework to analyze MFLD in the learning of binary classi�cation tasks.
Our framework has two main ingredients: (i) an annealing procedure that applies to common
classi�cation losses that removes the exponential dependence on regularization parameters in
the logarithmic Sobolev inequality, and (ii) a novel local Rademacher complexity analysis for the
distribution of parameters optimized by MFLD. As a result, we can obtain learning guarantees
for the mean-�eld neural network in discrete-time and �nite-width settings.

• We apply our general framework to the k-sparse parity problem, and derived learning guarantees
with improved rate of convergence and dimension dependence. Specially, in the n ≍ d2 regime
we obtain exponentially converging classi�cation error, whereas in the n ≍ d regime we achieve
linear dimension dependence. Note that this improves upon the NTK analysis (which gives a
sample complexity of n = Ω(dk)) in that it �decouples� the degree k from the exponent in the
dimension dependence. Our theoretical results are supported by empirical �ndings.

2 Problem Setting

Throughout this paper, we consider a classi�cation problem given by the following model:

Y = 1A(Z)− 1Ac(Z) ∈ {±1}

where Z = (Z1, . . . , Zd) is the input random variable on Rd and 1A is the indicator function
corresponding to a measurable set A ∈ B(Rd), i.e., 1A(Z) = 1 if Z ∈ A and 1A(Z) = 0 if Z ̸∈ A.
Let PZ be the distribution of Z. We are given input-output pairs Dn = (zi, yi)

n
i=1 independently

identically distributed from this model as training data. Then, we construct a binary classi�er
that predicts the label for the test input data as accurate as possible. To achieve this, we learn a
two-layer neural network model in the mean-�eld regime via the mean-�eld Langevin dynamics.
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One important problem setting for our analysis is the k-sparse parity problem de�ned as follows.

Example 1 (k-sparse parity problem). PZ is the uniform distribution on the grid {±1/
√
d}d and

A = {ζ = (ζ1, . . . , ζd) ∈ {±1/
√
d}d | ζ1 · · · ζk > 0}1.

As a special case, k = 2 (XOR) has been extensively studied (Wei et al., 2019; Telgarsky, 2023).

Mean-�eld two-layer network. Given input z, let hx(z) be one neuron in a two-layer neural
network with parameter x = (x1, x2, x3) ∈ Rd+1+1 de�ned as

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3,

where R̄ ∈ R is a hyper-parameter determining the scale of the network. We place an extra tanh
activation for the bias term x3 ∈ R because the boundedness of hx is required in the convergence
analysis. Let P be the set of probability measures on (Rd̄,B(Rd̄)) where d̄ = d + 2 and B(Rd̄)
is the Borel σ-algebra on Rd̄ and Pp be the subset of P such that its p-th moment is bounded:
Eµ[∥X∥p] <∞ (µ ∈ P). The mean-�eld neural network is de�ned as an integral over neurons hx,

fµ(·) =
∫
hx(·)µ(dx),

for µ ∈ P. To evaluate the performance of fµ, we de�ne the empirical risk and the population risk
as

L(µ) := 1
n

∑n
i=1 ℓ(yifµ(zi)), L̄(µ) := E[ℓ(Y fµ(Z))],

respectively, where ℓ : R → R≥0 is a convex loss function. In particular, we consider the logistic
loss ℓ(f, y) = log(1 + exp(−yf)) for y ∈ {±1} and f ∈ R. To avoid over�tting, we consider a
regularized empirical risk F (µ) := L(µ) + λEX∼µ[λ1∥X∥2], where λ, λ1 ≥ 0 are regularization
parameters. One advantage of this mean-�eld de�nition is that fµ is a linear with respect to µ,
and hence the functional L(µ) becomes a convex functional.

Mean-�eld Langevin dynamics. We optimize the training objective via MFLD, which is given
by the following stochastic di�erential equation:

dXt = −∇δF (µt)

δµ
(Xt)dt+

√
2λdWt, µt = Law(Xt), (1)

where X0 ∼ µ0, Law(X) denotes the distribution of the random variable X and (Wt)t≥0 is the d-
dimensional standard Brownian motion. Readers may refer to Theorem 3.3 of Huang et al. (2021)
for the existence and uniqueness of the solution. Here, δF (µt)

δµ is the �rst variation of F .

De�nition 1. For a functional G : P → R, the �rst-variation δG
δµ (µ) at µ ∈ P is a continuous

functional P × Rd → R satisfying lim
ϵ→0

G(ϵν+(1−ϵ)µ)
ϵ =

∫
δG
δµ (µ)(x)d(ν − µ) for any ν ∈ P.

In our setting, we have δF (µ)
δµ (x) = 1

n

∑n
i=1 ℓ

′(yifµ(zi))yihx(zi) + λ(λ1∥x∥2). It is known that

the Fokker-Planck equation of the SDE (1) is given by2

∂tµt = λ∆µt +∇ ·
[
µt∇ δF (µt)

δν

]
= ∇ ·

[
µt∇

(
λ log(µt) +

δF (µt)
δν

)]
. (2)

Then, we can verify that this is equivalent to the Wasserstein gradient �ow to optimize the following
entropy regularized risk (Mei et al., 2018; Hu et al., 2019):

L(µ) = F (µ) + λEnt(µ) = L(µ) + λKL(ν, µ) + (const.) (3)

where KL(ν, µ) =
∫
log(µ/ν)dµ is the KL divergence between ν and µ, and ν is the Gaussian

distribution with mean 0 and variance I/(2λ1), i.e., ν = N (0, I/(2λ1)).

1We present the axis-aligned setting for conciseness, but the same result holds under orthogonal transforms.
2This should be interpreted in a weak sense, that is, for any continuously di�erentiable function ϕ with a compact

support,
∫
ϕdµt −

∫
ϕdµs = −

∫ t
s

∫
∇ϕ · (∇ log(µt)−∇ δF (µt)

δν
)dµτdτ .
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For a practical algorithm, we need to consider a space- and time-discretized version of the
MFLD, that is, we approximate the solution µt by an empirical measure µX = 1

N

∑N
i=1 δXi

corresponding to a set of �nite particles X = (Xi)Ni=1 ⊂ Rd̄. Let Xτ = (Xi
τ )

N
i=1 ⊂ Rd̄ be

N particles at the τ -th update (τ ∈ {0, 1, 2, . . . }), and de�ne µτ = µXτ
as a �nite particle

approximation of the population counterpart. Then, the discretized MFLD is de�ned as follows:
Xi

0 ∼ µ0, and Xτ is updated as

Xi
τ+1 = Xi

τ − η∇δF (µτ )

δµ
(Xi

τ ) +
√

2ληξiτ , (4)

where η > 0 is the step size, and ξiτ ∼i.i.d. N(0, I). This is the Euler-Maruyama approximation
of the MFLD with a discretized measure; we present the discretization error bounds in the next
section.

3 Main Assumptions and Theoretical Tools

In this section, we introduce the basic assumptions and technical tools for our analysis.

Condition on the loss function To derive the convergence of the classi�cation error, we assume
that the loss function satis�es the following condition.

Assumption 1. The convex loss function ℓ : R → R≥0 satis�es the following conditions:
• ℓ is �rst order di�erentiable, its derivative is Lipschitz continuous and its derivative is bounded
by 1: |ℓ′(x)− ℓ′(x′)| ≤ C|x− x′| and supx |ℓ′(x)| ≤ 1.

• ℓ is monotonically decreasing, and is classi�cation calibrated: ℓ′(0) < 0 (Bartlett et al., 2006).

• ψ(u)−1 := ℓ(0)− (ℓ(u)− uℓ′(u)) > 0 for any u > 0.

This standard assumption is satis�ed by several loss functions such as the logistic loss. We
remark that the �rst assumption is used to show the well-de�nedness of the mean-�eld Langevin
dynamics and derive its discretization error, and also to obtain a uniform generalization error bound
through the classical contraction argument (Boucheron et al., 2013; Ledoux and Talagrand, 1991).
The second and third assumptions are used to show the convergence of classi�cation error of our
estimator.

Logarithmic Sobolev inequality. Nitanda et al. (2022); Chizat (2022) showed that the con-
vergence of MFLD crucially relies on properties of the proximal Gibbs distribution whose density

is given by pµ(X) ∝ exp
(
− 1

λ
δF (µ)
δµ (X)

)
, where µ ∈ P. By the smoothness of the loss function

(Assumption 1) and the tanh activation, we can show that the objective L has a unique solution
µ∗ which is also a proximal Gibbs measure of itself (Proposition 2.5 of Hu et al. (2019)). The
next question is how fast the solution µt converges to the optimal solution µ∗. As we will see, the
convergence of MFLD heavily depends on a logarithmic Sobolev inequality (LSI) on pµ.

De�nition 2 (Logarithmic Sobolev inequality). Let µ be a probability measure on (Rd,B(Rd)). µ
satis�es the LSI with constant α > 0 if for any smooth function ϕ : Rd → R with Eµ[ϕ

2] < ∞,
Eµ[ϕ

2 log(ϕ2)]− Eµ[ϕ
2] log(Eµ[ϕ

2]) ≤ 2
αEµ[∥∇ϕ∥22].

This is equivalent to the condition that the KL divergence from µ is bounded by the Fisher di-
vergence:

∫
log(dν/dµ)dν ≤ 2

α

∫
∥∇ log(dν/dµ)∥2dµ, for any ν ∈ P which is absolutely continuous

with respect to µ. The LSI of proximal Gibbs measure can be established via standard perturba-
tion criteria. For L(µ) with bounded �rst-variation, we may apply the classical Bakry-Emery and
Holley-Stroock arguments (Bakry and Émery, 1985; Holley and Stroock, 1987) (Corollary 5.7.2
and 5.1.7 of Bakry et al. (2014)): If ∥ δL(µ)

δµ ∥∞ ≤ B is satis�ed for any µ ∈ P2, then µ∗ and pX

satisfy the LSI with

α ≥ λ1 exp (−4B/λ) . (5)

With the LSI condition on the proximal Gibbs distribution, it is known that the MFLD converges
to the optimal solution in an exponential order by using a so-called Entropy sandwich technique.
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Proposition 1 (Entropy sandwich (Nitanda et al., 2022; Chizat, 2022)). Suppose that µ0 satis�es
L(µ0) < ∞ and the proximal Gibbs measure pµt

corresponding to the solution µt has the LSI
constant α for all t ≥ 0, then the solution µt of MFLD satis�es

λKL(µ∗, µt) ≤ L(µt)− L(µ∗) ≤ exp(−2αλt)(L(µ0)− L(µ∗)),

where µ∗ = argminµ∈P L(µ).

Hence we know that time horizon T = O( 1
λα log(1/ϵ̃)) is su�cient to achieve ϵ̃ > 0 accuracy.

Convergence of the discretized algorithm. While Proposition 1 only established the conver-
gence rate of the continuous dynamics, similar guarantee can be shown for the discretized setting.
Let

LN (µ(N)) = NEX ∼µ(N) [F (µX )] + λEnt(µ(N)),

where µ(N) is a distribution of N particles X = (Xi)Ni=1 ⊂ Rd̄. Let µ(N)
τ be the distribution of the

particles Xτ = (Xi
τ )

N
i=1 at the τ -th iteration. Suzuki et al. (2023b) showed that, if λαη ≤ 1/4 and

η ≤ 1/4, then for B̄2 := E[∥Xi
0∥2]+ 1

λλ1

[(
1
4 + 1

λλ1

)
R̄2+λd

]
= O(d+λ−2) and δη := C1L̄

2(η2+λη),

where L̄ = 2R̄+ λλ1 = O(1) and C1 = 8(R̄2 + λλ1B̄
2 + d) = O(d+ λ−1),

1

N
E[LN (µ(N)

τ )]−L(µ∗)≤exp
(
−λαητ

2

)(
E[LN (µ

(N)
0 )]

N −L(µ∗)

)
+

4

λα
L̄2C1

(
λη + η2

)
+

4Cλ

λαN
,

where Cλ is a constant depending on λ. In particular, for a given ϵ̃ > 0, the right hand side

can be bounded by ϵ̃+ 4Cλ

λαN after T = O
(

L̄2C1

αϵ̃ + L̄
√
C1√

λαϵ̃

)
1
λα log(1/ϵ̃) iterations with the step size

η = O
((

L̄2C1

αϵ̃ + L̄
√
C1√

λαϵ̃

)−1)
. Furthermore, the convergence of the loss function can be connected to

the convergence of the function value of the neural network as follows,

E
Xτ∼µ

(N)
k

[
sup

z∈supp(PZ)

(fµXτ
(z)− fµ∗(z))2

]

≤ 4L̄2

λα

(
LN (µ(N)

τ )
N − L(µ∗)

)
+ 2EX∗∼(µ∗)⊗N

[
sup

z∈supp(PZ)

(
1
N

∑N
i=1 hXi

∗
(z)−

∫
hx(z)dµ

∗(z)
)2

]
.

Here the second term in the right hand side can be bounded by 32R̄2

N

[
1 + 2

(
2R̄2

(λλ1)2
+ d̄

λ1

)]
, if

∥z∥ ≤ 1 for any z ∈ supp(PZ) as in the k-sparse parity problem. Hence, by taking the number of
particles as N = ϵ−2[(λα)−2 + (λλ1)

−2 + d/λ1] and letting ϵ̃ = λαϵ2 with the choice of T and η as
described above, we have supz∈supp(PZ) |fµXT

(z)− fµ∗(z)| = Op(ϵ).

Assumptions on the model speci�cation. We restrict ourselves to the situation where a
perfect classi�er with margin c0 is included in our model class, stated in the following assumption.

Assumption 2. There exists c0 > 0 and R > 0 such that the following conditions are satis�ed:
• For some R̄, there exists µ∗ ∈ P such that KL(ν, µ∗) ≤ R and L(µ∗) ≤ ℓ(0)− c0.

• For any λ < c0/R, the regularized expected risk minimizer µ[λ] := argminL(µ) + λKL(ν, µ)
satis�es Y fµ[λ]

(X) ≥ c0 almost surely.

Importantly, we can apply the same general analysis for di�erent classi�cation problems, as
long as Assumption 2 is veri�ed. The advantage of this generality is that we do not need to tailor
our convergence proof for individual learning problems. Note that the convergence rate of MFLD
is strongly a�ected by the values of R̄ and R; therefore, it is crucial to establish this condition
using the smallest possible values of R̄ and R, in order to obtain a tight bound of the classi�cation
error. As an illustrative example, we now show that the k-sparse parity estimation satis�es the
above assumption.
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Example: k-sparse parity estimation. In the k-sparse parity setting (Example 1), Assump-
tion 2 is satis�ed with constants speci�ed in the following propositions.

Proposition 2 (k-sparse parity). Under Assumption 1 and for R̄ = k, there exists µ∗ ∈ P such
that

KL(ν, µ∗) ≤ c1k log(k)
2d (= R),

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.

Proposition 3. Under Assumption 1 and the settings of R and R̄ given in Proposition 2, if
λ < c2/(2R), then µ[λ] satis�es

max{L̄(µ[λ]), L(µ[λ])} ≤ ℓ(0)− c2 + λR < ℓ(0)− c2
2 ,

and fµ[λ]
is a perfect classi�er with margin c2, i.e., Y fµ[λ]

(X) ≥ c2
2 .

In other words, Assumption 2 is achieved with R = O(k log(k)2d), R̄ = k and c0 = c2/2. By
substituting these values of R and R̄ to our general results presented below, we can easily derive
a bound for the classi�cation error of the MFLD estimator.

4 Main Result

4.1 Generalization Error Analysis

We utilize the local Rademacher complexity (Mendelson, 2002; Bartlett et al., 2005; Koltchinskii,
2006; Giné and Koltchinskii, 2006) to obtain a faster generalization error rate. For the function
class of mean-�eld neural networks, we introduce F := {fµ | µ ∈ P}, and the KL-constrained
model class FM (µ◦) := {fµ | µ ∈ P, KL(µ◦, µ) ≤ M} for µ◦ ∈ P and M > 0. The Rademacher
complexity of a function class F̃ is de�ned as

Rad(F̃) := Eεi,zi

[
supf∈F̃

1
n

∑n
i=1 ϵif(zi)

]
,

where (zi)ni=1 are i.i.d. observations from PZ and (εi)
n
i=1 is an i.i.d. Rademacher sequence (P (εi =

1) = P (εi = −1) = 1/2)). We have the following bound on the Rademacher complexity of the
function class FM (µ◦).

Lemma 1 (Local Rademacher complexity of FM (µ◦), Chen et al. (2020) adapted). For any �xed

µ◦ ∈ P and M > 0, it holds that Rad(FM (µ◦)) ≤ 2R̄
√

M
n .

Combining this local Rademacher complexity bound with the peeling device argument
(van de Geer, 2000), we can roughly obtain the following estaimte (note that this is an informal
derivation):

L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ︸ ︷︷ ︸
(II)

+λKL(µ∗, µ̂)︸ ︷︷ ︸
(I)

≲
√

KL(µ∗, µ̂)

n
≲ 1

nλ
+ λKL(µ∗, µ̂), (6)

with high probability, where µ̂ = argminµ∈P L(µ), µ∗ = argminµ∈P L̄(µ) + λKL(ν, µ), R and R̄
are regarded as constants, and the last inequality is by the AM-GM relation. Observe that on
the left hand side, we have two non-negative terms (I) and (II). Corresponding to each term, we
obtain di�erent types of classi�cation error bounds (Type I and Type II in the following subsection,
respectively). Note that there appears a O(1/n) factor in the right hand side, which cannot be
obtained by a vanilla Rademacher complexity evaluation because it only yields an O(1/

√
n) bound.

In other words, localization is essential to obtain our fast convergence rate.
We remark that a local Rademacher complexity technique is also utilized by Telgarsky (2023)

to derive a O(1/n) rate. They adapted a technique developed for a smooth loss function by
Srebro et al. (2010), which requires the training loss L(µ̂) to be su�ciently small, that is, of order
L(µ̂) = O(1/n). In our setting, to achieve such a small training loss, we need to take large R̄ such
as R̄ = Ω(log(n)). Unfortunately, such a large R̄ induces exponentially small log-Sobolev constant
like α ≲ exp(−cd log(n)) = n−cd. In contrast, our analysis focuses on the local Rademacher
complexity around µ∗, and hence we do not require the training loss to be close to 0; instead, it
su�ces to have a training loss that is close to or smaller than that of µ∗.
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Type I: Perfect Classi�cation with Exponentially Decaying Error In the regime of
n = Ω(1/λ(K)2), we can prove that the MFLD estimator attains a perfect classi�cation with
an exponentially converging probability by evaluating the term (I). From Eq. (6) we can estab-
lish KL(µ∗, µ̂) ≤ Op(1/(nλ

(K)2)); this KL divergence bound can be used to control the L∞-norm
between fµ̂ and fµ∗ . Indeed, we can show that ∥fµ̂ − fµ∗∥2∞ ≤ 2R̄2KL(µ∗, µ̂) (see the proof of
Theorem 1). Then, under the margin assumption of fµ∗ (Assumption 2), we have that fµ̂ also
yields a Bayes optimal classi�er. More precisely, we have the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let M0 = (ϵ∗ + 2(R̄ + 1))/λ(K). Moreover,
suppose that λ(K) < c0/R and

Q := c20 −
4R̄2

nλ(K)2

[
λ(K)

(
4R̄+

λ(K)

32R̄2n

)
+ 8R̄2(4 + log log2(8n

2M0R̄)) + nλ(K)ϵ∗
]
> 0,

then fµ̂ yields perfect classi�cation, i.e., P (Y fµ̂(Z) > 0) = 1, with probability 1− exp(−nλ(K)2

32R̄4 Q).

Type II: Polynomial Order Classi�cation Error Next we evaluate the classi�cation error
bound from term (II) in Eq. (6). In this case, we do not require an L∞-norm bound as in the
Type I analysis above; this results in a milder dependency on λ(K) and hence a better sample
complexity.

Theorem 2. Suppose Assumptions 1 and 2 hold. Let λ(K) < c0/R and M0 = (ϵ∗+2(R̄+1))/λ(K).
Then, with probability 1− exp(−t), the classi�cation error of fµ(K) is bounded as

P (Y fµ(K)(Z) ≤ 0) ≤ 2ψ(c0)

[
8R̄2

nλ(K)

(
4 + t+ log log2(8n

2M0R̄)
)
+

1

n

(
4R̄+

λ(K)

32R̄2n

)
+ ϵ∗

]
.

We notice that the right hand side scales with O(1/(nλ(K))), which is better than O(1/(nλ(K)2))
in Theorem 1; this implies that a sample size linear in the dimensionality is su�cient to achieve
small classi�cation error. The reason for such improvement in the λK-dependence is that the
stronger L∞-norm convergence is not used in the proof; instead, only the convergence of the loss
is utilized. On the other hand, this analysis does not guarantee a perfect classi�cation.

4.1.1 Computational Complexity of MFLD

From the general result in Section ??, we can evaluate the computational complexity to achieve the
statistical bounds derived above. In both cases (Theorems 1 and 2), we may set the optimization
error ϵ∗ = O(1/(nλ(K))). Then, the total number of iteration can be∑K

κ=1
Tκ ≤ O

(
(d+ λ(K)−1)n exp(16cLR̄(R+ 2)) log(nλ(K))

)
.

The width N (the number of particles) can be taken as N = O((ϵ∗λ(K)α)−2) = O(n2α−2) =
O
(
n2 exp(16cLR̄(R+ 2))

)
.

Corollary 1 (k-sparse parity setting). In the k-sparse parity setting, we may take R =
O(k log(k)2d), R̄ = k and λ(K) = O(1/R) = O(1/(k log(k)2d)). Therefore, the classi�cation
error is bounded by

P (Y fµ(K) < 0) ≤ O

(
k2 log(k)2d

n
(log(1/δ) + log log(n))

)
,

with probability 1− δ. Moreover, if n = Ω(k6 log(k)4d2), then P (Y fµ(K) > 0) = 1 with probability

1− exp(−Ω(nk6 log(k)4/d2)).

As for the computational complexity, we require O(k log(k)2dn log(nd) exp[O(k2 log(k)2d)]) itera-
tions, and the number of particles is O(exp(O(k2 log(k)2d)))).
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Comparison with prior results. In the 2-sparse parity setting, neural network in the ker-
nel (NTK) regime achieves only O(d2/n) convergence in the classi�cation error, as shown in
Ji and Telgarsky (2019) and Telgarsky (2023, Theorem 2.3), whereas we demonstrate that mean-
�eld neural network can improve the rate to O(d/n) via feature learning. Telgarsky (2023) also
analyzed the learning of 2-sparse parity problem beyond the kernel regime, and showed that 2-
layer ReLU neural network can achieve the best known classi�cation error O(d/n). However, their
analysis considered a low-rotation dynamics and assumed convergence at t → ∞, whereas our
framework also provides a concrete estimate of the computational complexity. Indeed, the num-
ber of iterations can be bounded as O(dn log(nd) exp[O(d)]). In addition, while we still require
exponential width N = O(n2 exp(O(d))), such a condition is an improvement over N = O(dd) in
Telgarsky (2023).

Barak et al. (2022) considered a learning method in which one-step gradient descent is per-
formed for the purpose of feature learning, and then a network with randomly re-initialized bias
units is used to �t the data. For the k-sparse parity problem, they derived a classi�cation error
bound of O(d(k+1)/2/

√
n). In contrast, our analysis yields a much better statistical complexity of

O(k2 log(k)2d/n ∧ exp(−Ω(nk6 log(k)4/d2))), which �decouples� the degree k in the exponent of
the dimension dependence.

5 Conclusion and Discussion

We provided a general framework to evaluate the classi�cation error of a two-layer neural network
trained by the mean-�eld Langevin dynamics. Thanks to the generality of our framework, an error
bound for speci�c settings can be derived by directly specifying the parameters in Assumption 2
such as R, R̄, and c0. We also proposed an annealing procedure to alleviate the exponential
dependencies in the LSI constant. As a special (but important) example, we investigated the
k-sparse parity problem, for which we obtained more general and better sample complexity than
existing works.
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