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Abstract

When the underlying loss metric is α-divergence, D(α), loss introduced by siszàr
(1967), we consider stochastic and Pitman closeness domination in predictive density
estimation problems when there are restrictions given on two means, in Section 3
and 5, respectively. The underlying distributions considered are normal location-
scale models, including the distribution of the observables, the distribution of the
variable whose density is to be predicted, and the estimated predictive density which
will be taken to be of the plug-in type. The scales may be known or unknown. We

1. first introduce a general expression which derived by Chang and Strawderman
(2014) for the α-divergence loss in this set-up and show that it is a concave
monotone function of quadratic loss, and also of the variances (predicand, and
plug-in).

2. Next, we demonstrate D(α) stochastic domination (Pitman closeness) of cer-
tain plug-in predictive densities over others for the entire class of metrics si-
multaneously when ”usual” stochastic domination (Pitman closeness) holds in
the related problem of estimating the mean with respect to quadratic loss.

3. We also establishD(α) Pitman closeness results for certain generalized Bayesian
(best invariant) predictive density estimators. Examples of D(α) stochastic
(Pitman closeness) domination presented relate to the problem of estimat-
ing the predictive density of the variable with the restrictions on two normal
means.

keywords: Predictive density, α-divergence, stochastic dominance, or-
dered normal means, Pitman closeness criterion

1 Introduction

We consider stochastic and Pitman closeness domination in predictive density estimation
problems when the underlying loss metric is α-divergence {D(α)}, a loss introduced by
Csiszàr (1967).The underlying distributions considered are normal, including the distri-
bution of the observables, the distribution of the variable whose density is to be predicted,
and the estimated predictive density which will be taken to be of the plug-in type. We
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demonstrate {D(α)} stochastic and Pitman closeness domination of certain plug-in pre-
dictive densities over others for the entire class of metrics simultaneously when related
stochastic and Pitman’s closeness domination holds in the problem of estimating the
mean. We also consider {D(α)} Pitman domination of certain generalized Bayesian (best
invariant) procedures.

Examples of Pitman closeness domination presented relate to the problem of esti-
mating the predictive density of the variable with the larger mean. More precisely, let
X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) be two independent random normal variables, where

µ1 ≤ µ2. Under the above restriction we wish to predict a normal population with mean
equal to the larger mean, µ2, and variance equal to σ2, Ỹ ∼ N(µ2, σ

2). We consider
different versions of this problem, depending on whether the σ2

i , i = 1, 2 are known or are
unknown but satisfy the additional order restriction, σ2

1 ≤ σ2
2. The case of two ordered

normal means with known covariance matrix is also considered.
Kullback- Leibler (KL) loss, given by

DKL{p̂(ỹ|y), p(ỹ|ψ)} =
∫
p(ỹ|ψ) log

p(ỹ|ψ)

p̂(ỹ|y)
dỹ, (1)

where p(ỹ|ψ) is the true density to be estimated and p̂(ỹ|y) is the estimated predictive
density based on observing Y = y, where Y ∼ P (y|ψ), is the most studied among losses
for the predictive density estimation problem.

The associated KL risk is defined as

RKL =
∫
DKL{p̂(ỹ|y), p(ỹ|ψ)}p(y|ψ)dy,

where p(y|ψ) is the density of y.
As pointed out in Maruyama and Strawderman (2010) KL loss is essentially contained

in the class of α−divergence losses (Dα introduced by Csiszàr (1967)) given by

Dα{p̂(ỹ|y), p(ỹ|ψ)} =
∫
fα

(
p̂(ỹ|y)

p(ỹ|ψ)

)
p(ỹ|ψ)dỹ, (2)

where, for −1 ≤ α ≤ 1

fα(z) =


4

1−α2 (1− z(1+α)/2), |α| < 1

z log z, α = 1 (3)
− log z, α = −1.

Here KL loss corresponds to α = −1. The case α = 1 is sometimes referred to as reverse
KL loss.

Chang and Strawderman (2014) have derived the general form of Dα loss for the case
of normal models and have shown that it is a concave monotone function of quadratic
loss and is also a function of the variances (observed, predicand, and plug-in). This is
reviewed in Section 2.

An alternative criterion to evaluate the goodness of estimators was introduced by
Pitman (1937) as follows:

Let T1 and T2 be two estimators of θ. Then T1 is closer to θ than T2 (or T1 is prefered
to T2) if Pitman nearness (PN) of T1 compared to T2

PNθ(T1, T2) = P{|T1 − θ| < |T2 − θ|} > 1/2.

For the case, when the estimators are equal with positive probability, Nayak (1990) mod-
ified Pitman’s criterion as follows :
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T1 is said to be closer to θ than T2 if

P{|T1 − θ| < |T2 − θ|} >
1

2
P{T1 6= T2}.

Motived by Nayak (1990), Gupta and Singh (1992) defined the modified Pitman nearness
(MPN) of T1 compared to T2. Setting

MPNθ(T1, T2) = P{|T1 − θ| < |T2 − θ||T1 6= T2} =
P{|T1 − θ| < |T2 − θ|, T1 6= T2}

P{T1 6= T2}
,

T1 is closer to θ than T2 if MPNθ(T1, T2) > 1/2. Many works related to Pitman’s criterion
were published in the special issue of Communications in Statistics - Theory and Methods
A20 (11) in 1992 and were unified in the monograph by Keating, Mason and Sen (1993).

In Section 4 modified Pitman closeness domination results for the estimation prob-
lems of ordered means with ordered variances are reviewed, which have been previously
established by Chang and Shinozaki (2015) for a broader class of estimators. As noted
above, we apply the result of the the Dα loss metric for plug-in predictive density esti-
mates in normal models to obtain stochastic and Pitman closeness domination for plug-in
predictive density estimates in Section 3 and 5 respectively. Section 6 considers {D(α)}
Pitman closeness domination of the best invariant (generalized Bayes) predictive density
estimator.

Here is a brief review of some of the relevant literature for the problem of estimating
the mean.

Let

X̄i =
ni∑
j=1

Xij/ni, s2
i =

ni∑
j=1

(Xij − X̄i)
2/(ni − 1)

be the unbiased estimators of µi and σ2
i , respectively, based on samples of size ni from

two normal populations, X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) respectively. When the

means are equal (the common mean problem) µ1 = µ2 = µ and the variances are known,
the UMVE of µ is

µ̂ =
n1σ

2
2

n1σ2
2 + n2σ2

1

X̄1 +
n2σ

2
1

n1σ2
2 + n2σ2

1

X̄2.

When the variances are unknown, the unbiased estimator

µ̂GD =
n1s

2
2

n1s2
2 + n2s2

1

X̄1 +
n2s

2
1

n1s2
2 + n2s2

1

X̄2

was proposed by Graybill and Deal (1959) and they gave a necessary and sufficient con-
dition on n1 and n2 for µ̂GD to have a smaller variance than both X̄1 and X̄2.

When estimating the ordered means µ1 ≤ µ2, Oono and Shinozaki (2005) proposed
truncated estimators of µi, i = 1, 2,

µ̂OS1 = min{X̄1, µ̂
GD}, µ̂OS2 = max{X̄2, µ̂

GD}, (4)

and showed that µ̂OSi dominates the X̄i in terms of MSE if and only if MSE of µ̂GD is not
larger than that of X̄i to estimate µi when µ1 = µ2.

When there are order restrictions given on both means and variances, µ1 ≤ µ2, σ
2
1 ≤ σ2

2,
Chang, Oono and Shinozaki (2012) have proposed

µ̂CS1 =

 µ̂OS1 , if s2
1 ≤ s2

2

min
{
X̄1,

n1

n1+n2
X̄1 + n2

n1+n2
X̄2

}
, if s2

1 > s2
2

(5)

3



and

µ̂CS2 =

 µ̂OS2 , if s2
1 ≤ s2

2

max
{
X̄2,

n1

n1+n2
X̄1 + n2

n1+n2
X̄2

}
, if s2

1 > s2
2.

(6)

They show that µ̂CS2 stochastically dominates µ̂OS2 , but µ̂CS1 cannot dominate µ̂OS1 even
in term of MSE when µ2 − µ1 is sufficiently large. We will show that that µ̂CS2 is Pitman
closer to µ2 than µ̂OS2 in Section 3.

When considering the estimation of ordered means of a normal distribution with a
known covariance matrix, it has been recognized that the restricted MLEs do not always
behave properly for general order restrictions and covariance matrices. See, for example,
Lee (1981), Shinozaki and Chang (1999), Fernández et al. (2000) and Cohen and Sack-
rowitz (2004). Let X i = (X1i, X2i)

′, i = 1, . . . , n, be independent observations from N(µ,
Σ), where µ = (µ1, µ2)′, and

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
(7)

is a known covariance matrix. We assume that |ρ| 6= 1 and consider the estimation problem
of µi, i = 1, 2 when there is an order restriction, µ1 ≤ µ2. Using X̄i =

∑n
i=1 Xi/n, i = 1, 2,

the restricted maximum likelihood estimators (MLE) of µ1 and µ2 are given as

µ̂MLE
1 = X̄1 − β(X̄1 − X̄2)+ and µ̂MLE

2 = X̄2 + α(X̄1 − X̄2)+, (8)

where α = ω1/(ω1 + ω2) and β = ω2/(ω1 + ω2) with ω1 = σ2
2 − ρσ1σ2, ω2 = σ2

1 − ρσ1σ2.
We note that ω1 +ω2 = σ2

1 − 2ρσ1σ2 + σ2
2 > 0 although ω1 or ω2 may be negative. Hwang

and Peddada (1994) have proposed alternative estimators which are motivated by the
case when a covariance matrix is diagonal. In our two-dimensional case the proposed
estimators of µ1 and µ2 are given as

µ̂HP1 = min
(
X̄1, αX̄1 + βX̄2

)
and µ̂HP2 = max

(
X̄2, αX̄1 + βX̄2

)
. (9)

Clearly µ̂HP2 ≥ µ̂HP1 and Hwang and Peddada (1994) have shown that µ̂HPi stochastically
dominates the unrestricted MLE X̄i, i = 1, 2. Chang, Fukuda and Shinozaki (2017) have
shown that µ̂MLE

i not only stochastically dominates µ̂HPi but also dominates µ̂HPi , i = 1, 2
in the sense of Pitman closeness.

Broader reviews of statistical inference under order restrictions are given in Barlow et
al. (1972), Robertson, Wright and Dykstra (1988) and the two monographs, Silvapulle
and Sen (2004) and van Eeden (2006).

2 The Form of D(α) Loss for Normal Distributions

In this section we review the form of the {D(α)} loss when the density to be predicted
and the predictive density estimate are both normal.

The aim here is to show that when p̂(ỹ|y) and p(ỹ|ψ) are both normal distributions,
then D(α) loss can be expressed as a concave monotone function of squared error loss.

Theorem 2.1. (Chang and Strawderman (2014), Theorem 2.1.) If the true density
function of Y is N(µ, σ2) and the estimated predictive density of Y , is N(µ̂, σ̂2) then
a) for −1 < α < 1,

Dα(N(ỹ|µ̂, σ̂2), N(ỹ|µ, σ2)) =
4

1− α2

(
1− d(σ2, σ̂2)e−A(σ2,σ̂2)

(µ̂−µ)2
2

)
, (10)
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where

d(σ2, σ̂2) =
σ(α−1)/2τ

σ̂(α+1)/2
, A(σ2, σ̂2) =

(
1− α
2σ2

)(
1− (1− α)τ 2

2σ2

)
> 0,

1

τ 2
=
(

1 + α

2σ̂2
+

1− α
2σ2

)
.

Further, d(σ2, σ̂2) < 1 and A(σ2, σ̂2) > 0.

b) (Reverse KL)

D+1(N(ỹ|µ̂, σ̂2), N(ỹ|µ, σ2)) =
1

2

[(
σ̂2

σ2
− log

σ̂2

σ2
− 1

)
+

(µ̂− µ)2

σ2

]
. (11)

c) (KL)

D−1(N(ỹ|µ̂, σ̂2), N(ỹ|µ, σ2)) =
1

2

[(
σ2

σ̂2
− log

σ2

σ̂2
− 1

)
+

(µ̂− µ)2

σ̂2

]
. (12)

Note : The first part of the RHS of (11) and (12) is a form of Stein’s loss for estimating
variances and the second part is the squared error loss (µ̂−µ)2 divided by either the true
or estimated variance. Also note that in each case, the {D(α)} loss is a concave monotone
function of squared error loss |µ̂− µ|2 and is also a function of the variances.

3 Stochastic Domination under the D(α) Loss Metric

In this section we will establish stochastic domination results under the D(α) loss metric
for certain predictive density estimation problems involving two normal populations when
the means are ordered. We handle the known and unknown variance cases in separate
subsections. First we give a formal definition.

Definition 3.1. Given two predictive density estimates f̂1(ỹ|x) and f̂2(ỹ|x) of a density
f(ỹ|ψ) based on data x from a distributions X ∼ g(X|ψ), ψ ∈ Ω. f̂2(ỹ|x) stochastically
dominate f̂1(ỹ|x) with respect to the D(α) metric, denoted , f̂2 >SD(α) f̂1, if ∀ψ ∈ Ω and
d ≥ 0,

Pψ[Dα(f̂2(ỹ|x), f(ỹ|ψ)) ≤ d] ≥ Pψ[Dα(f̂1(ỹ|x), f(ỹ|ψ)) ≤ d],

with strict inequality for some d and ψ.

3.1 Results for the Known Variance Case

The data is
Xij ∼ N(µi, σ

2
i ), i = 1, 2, j = 1, . . . , ni.

with independent sufficient statistics

X̄i ∼ N(µi, σ
2
i /ni), i = 1, 2.

where µ1 ≤ µ2. The density we wish to predict is a future observation from some popu-
lation with mean equal to the larger mean µ2, i.e.

Ỹ ∼ N(µ2, σ
2),

where σ2 is known. The following result due to Chang, Oono and Shinozaki (2012) shows
stochastic dominance with respect to Euclidean metric of µ̂MLE

2 over X̄2 in estimation of
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µ2. It is proved for completeness in Theorem 3.1 of of Chang and Strawderman (2014)(Ap-
pendix A.2).

Theorem 3.1. Suppose that

µ̂MLE
i =

 X̄i, if X̄1 ≤ X̄2
n1σ2

2

n1σ2
2+n2σ2

1
X̄1 +

n2σ2
1

n1σ2
2+n2σ2

1
X̄2, if X̄1 > X̄2,

i = 1, 2.

Then

Pµ1,µ2 [|µ̂MLE
i − µi| ≤ d] ≥ Pµ1,µ2 [|X̄i − µi| ≤ d],

for all µ1 ≤ µ2 and d ≥ 0, i.e. µ̂MLE
i stochastically dominates X̄i with respective to

Euclidean metric.
We now consider comparison of plug-in estimators of the density of Ỹ ∼ N(µ2, σ

2) of
the form

f̂1(ỹ|X1, X2) ∼ N(X̄2, ν
2)

and
f̂2(ỹ|X1, X2) ∼ N(µ̂MLE

2 , ν2),

where ν2 is fixed (and not necessarily equal to σ2). See Fourdrinier el al. (2011) for a
discussion of why a choice of ν2 different from ( typically larger than ) σ2 is reasonable.

Our main result in this subsection is the following.

Theorem 3.2. f̂2(ŷ|X1, X2) ∼ N(µ̂MLE
2 , ν2) stochastically dominates f̂1(ŷ|X1, X2) ∼

N(X̄2, ν
2) with respect to the D(α) metric in estimating the predictive density f(ỹ|µ2) ∼

N(µ2, σ
2) for every α(−1 ≤ α ≤ 1) , σ2 and ν2.

Proof: In each case, Dα(f̂2(ỹ|X1, X2), f(ỹ|µ2)) is a non-negative monotone increasing of
function of (µ̂− µ)2 by Theorem 2.1. Hence stochastic Dα dominance following immedi-
ately form Theorem 3.1.

The analogous result for estimating a predictive density for a population with mean µ1

follows immediately. Hence in the case of known variances, stochastic domination holds
both for quadratic and Dα metrics for populations corresponding to either the larger or
smaller mean. This will not be so when the variances are ordered and unknown as will
be seen in the next sub-section.

3.2 The Unknown variance case

In this subsection we consider the following setup. The data is

Xij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, . . . , ni.

with independent sufficient statistics

X̄i ∼ N(µi, σ
2
i /ni), s2

i ∼ σ2
i χ

2
ni−1, i = 1, 2.

It is assumed that µ1 ≤ µ2 and also that σ2
1 ≤ σ2

2 . We wish to estimate the density of a
future observation from a normal population with mean µ2 and variance σ2 = aσ2

2, where
a is known, i.e. we wish to estimate the density

f(ỹ) ∼ N(µ2, aσ
2
2).
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The assumption σ2
1 ≤ σ2

2 is made, because to the best of our knowledge, no stochastic
domination results are known unless an order restriction is placed on σ2

1 and σ2
2. We note

however that Oono and Shinozaki(2006) and Chang, Oono and Shinozaki (2012) have
MSE domination results for both cases.

The known stochastic domination result, due to Chang , Oono and Shinozaki(2012)
compares the two estimators µ̂OS2 (4) and µ̂CS2

We will need the following lemma which follows from the proof of the main result
of Chang, Oono and Shinozaki (2012). In that paper the statement of the result claims
stochastic domination holds, but the proof actually demonstrates the stronger conditional
result, which we will require due to the form of the D(α) loss proved in Theorem 2.1.

Lemma 3.3. µ̂CS2 stochastically dominates µ̂OS2 unconditionally and conditionally, i.e.

P [|µ̂CS2 − µ2| ≤ d|X̄1 − X̄2 = e, s2
1, s

2
2] ≥ P [|µ̂OS2 − µ2| ≤ d|X̄1 − X̄2 = e, s2

1, s
2
2]

for all µ1 ≤ µ2, σ2
1 ≤ σ2

2 and d ≥ 0, strict inequality holds for e > 0, d > 0, equality holds
otherwise.

Note To the best of our knowledge, no stochastic domination result of the sort that
µ̂new stochastically dominates X̄2 is known, in the unknown variance case, when µ1 ≤ µ2

whether the variances are restricted or not.
The next result is the main result of this subsection.

Theorem 3.4. Suppose

X̄i ∼ N(µi, σ
2
i /ni), s2

i ∼ σ2
i χ

2
ni−1, i = 1, 2.

are independent, where µ1 ≤ µ2 and σ2
1 ≤ σ2

2, and it is desired to estimate the density of a
future independent variable Y ∼ N(µ2, aσ

2
2) where a > 0 is known. Then the plug-in pre-

dictive density estimate f̂2(y) ∼ N(µ̂CS2 , σ̂2) stochastically dominates f̂1(y) ∼ N(µ̂OS2 , σ̂2)
under the D(α) metric for all −1 ≤ α ≤ 1, for every σ̂2 which is a function of s2

1, s
2
2 and

X̄1 − X̄2.

Proof The proof follows immediately from Lemma 3.3 and Theorem 2.1 since by Theorem
2.1 the D(α) loss is a monotone non-decreasing function of (µ̂2 − µ2)2 for each fixed σ2

and σ̂2.

4 Results for estimation of two ordered normal means with un-

known but ordered variances under modified Pitman closeness

criterion

In this section we consider the problem of estimating the ordered means of two normal
distributions with unknown but ordered variances under modified Pitman closeness crite-
rion. We show that in estimating the mean with larger variance, the proposed estimator,
µ̂CS2 , given in (6), is closer to true mean than the usual one, µ̂OS2 , given in (4), which
ignores the order restriction on variances. However, while in estimating the mean with
smaller variance, the usual estimator, µ̂OS1 , is not improved upon by µ̂CS1 . We also discuss
simultaneous estimation of two ordered means when the unknown variances are ordered.
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First, we show that µ̂CS2 is Pitman closer to µ2 than µ̂OS2 under modified Pitman
closeness criterion. Actually, if we set

γ =
n1s

2
2

n1s2
2 + n2s2

1

(13)

in the Theorem 2 of Chang and Shinozaki (2015) then we have following.

Theorem 4.1. The estimator µ̂CS2 is closer to µ2 than µ̂OS2 , i.e., for all µ1 ≤ µ2 and
σ2

1 ≤ σ2
2,

MPNµ2(µ̂
CS
2 , µ̂OS2 ) ≥ 1/2,

with strict inequality for some µ1 ≤ µ2 and σ2
1 ≤ σ2

2.

Next we consider estimating the mean µ1, the mean with smaller variance; we show that
µ̂CS1 can not be closer to µ1 than µ̂OS1 when µ2 − µ1 is sufficiently large. Similarly, if we
set γ as (13) in the Theorem 3 of Chang and Shinozaki (2015) then we have following.

Theorem 4.2. When µ2−µ1 is sufficiently large, the estimator µ̂CS1 can not be closer to
µ1 than µ̂OS1 , i.e.,

MPNµ1(µ̂
CS
1 , µ̂OS1 ) < 1/2.

Chang and Shinozaki (2015) have obtained a broader class of results including the
above.

Although the estimator µ̂CS1 is not closer to µ1 than µ̂OS1 when µ2 − µ1 is sufficiently
large, in the simultaneous estimation problem with µ1 ≤ µ2 when the variances are also
ordered, the next theorem shows that if n1 ≥ n2 then µ̂CS = (µ̂CS1 , µ̂CS2 )′ improves upon
µ̂OS = (µ̂OS1 , µ̂OS2 )′ under Pitman closeness based on the sum of normalized squared errors

2∑
i=1

(µ̂i − µi)2/σ2
i .

Theorem 4.3. If n1 ≥ n2 then µ̂CS = (µ̂CS1 , µ̂CS2 ) is closer to (µ1, µ2) than µ̂OS =
(µ̂OS1 , µ̂OS2 ) as

MPNµ(µ̂CS, µ̂OS) =
P{∑2

i=1(µ̂CSi − µi)2/σ2
i ≤

∑2
i=1(µ̂OSi − µi)2/σ2

i , µ̂
CS 6= µ̂OS}

P{µ̂CS 6= µ̂OS}
> 1/2. (14)

5 Pitman closeness in predicting density function under the D(α)

Loss Metric

In this section we will establish Pitman closeness results under the {D(α)} loss metric
for certain predictive density estimation problems involving two normal populations when
the means are ordered. We handle the known and unknown variance cases in separate
subsections.

First we give a formal definition.

Definition 5.1. Given two predictive density estimates f̂1(ỹ|x) and f̂2(ỹ|x) of a den-
sity f(ỹ|ψ) based on data x from a distributions X ∼ g(X|ψ), ψ ∈ Ω, f̂2(ỹ|x) is closer to
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f(ỹ|ψ) than f̂1(ỹ|x) with respect to the D(α) metric under the modified Pitman closeness
criterion, if ∀ψ ∈ Ω,

Pψ{Dα(f̂2(ỹ|x), f(ỹ|ψ)) < Dα(f̂1(ỹ|x), f(ỹ|ψ))|f̂2(ỹ|x) 6= f̂1(ỹ|x)} ≥ 1/2,

with strict inequality for some ψ ∈ Ω.

We first consider the case when variances are known.

5.1 Case when variances are known

The data are
Xij ∼ N(µi, σ

2
i ), i = 1, 2, j = 1, . . . , ni (15)

with independent sufficient statistics

X̄i ∼ N(µi, σ
2
i /ni), i = 1, 2, (16)

where µ1 ≤ µ2.
First we show that the MLEs are closer to µi than the sample means under modified

Pitman closeness criterion.

Theorem 5.1. The MLE of µi is

µ̂MLE
i =

 X̄i, if X̄1 ≤ X̄2
n1σ2

2

n1σ2
2+n2σ2

1
X̄1 +

n2σ2
1

n1σ2
2+n2σ2

1
X̄2, if X̄1 > X̄2.

Then
µ̂MLE
i is Pitman closer to µi than X̄i, i.e.

Pµ1,µ2{|µ̂MLE
i − µi| < |X̄i − µi| |µ̂MLE

i 6= X̄i} ≥ 1/2

for all µ1 ≤ µ2, with strict inequality for some µ1 ≤ µ2.

We wish to predict the density of a future observation from some population with
mean equal to the larger mean µ2, i.e.

Ỹ ∼ N(µ2, σ
2),

where σ2 is known. We now consider comparison of plug-in estimators of the density of
Ỹ ∼ N(µ2, σ

2) of the form
f̂1(ỹ|X1, X2) ∼ N(X̄2, ν

2)

and
f̂2(ỹ|X1, X2) ∼ N(µ̂MLE

2 , ν2),

where ν2 is fixed ( and not necessarily equal to σ2). See Fourdrinier el al. (2011)for a
discussion of why a choice of ν2 different from ( typically larger than ) σ2 is reasonable.
Our main result in this subsection is the following.

Theorem 5.2. In estimating the predictive density f(ỹ|µi) ∼ N(µi, σ
2), the density

f̂2(ỹ|X1, X2) ∼ N(µ̂MLE
i , ν2) is Pitman closer to the predictive density f(ỹ|µi) ∼ N(µi, σ

2)
than f̂1(ỹ|X1, X2) ∼ N(X̄i, ν

2) with respect to the {D(α)}metric for every α(−1 ≤ α ≤ 1)
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, σ2 and ν2.

Hence in the case of known variances, Pitman closeness domination holds both for
mean estimation and prediction under Dα metrics for populations corresponding to either
the larger or smaller mean.

Proof. The proof follows immediately from Theorem 2.1 since

Dα(N(µ̂MLE
i , ν2), N(µi, σ

2)) < Dα(N(X̄i, ν
2), N(µi, σ

2))

⇔ (µ̂MLE
i − µi)2 < (X̄i − µi)2

⇔ |µ̂MLE
i − µi| < |X̄i − µi|.

From Theorem 5.1 we have

P{|µ̂MLE
i − µi| < |X̄i − µi| |µ̂MLE

i 6= X̄i} ≥ 1/2.

This completes the proof.
In the next section we extend the above results to two ordered means when a covariance

matrix is known.

5.2 Case when the covariance matrix is known

In this section we consider the case when two normal means are ordered and covariance
matrix defined in (7) is known. We show that plug-in predictive density with µ̂MLE

i , (8), is
Pitman closer to the true predictive density than plug-in predictive density with µ̂HPi , (9),
under Dα loss. The following result from Chang, Fukuda and Shinozaki (2017) is the
basis for our study.

Theorem 5.3. (Chang, Fukuda and Shinozaki (2017), Theorem 3.1) µ̂MLE
i is Pitman

closer to µi than µ̂HPi , i = 1, 2.

Based on the above theorem we have the following main result.

Theorem 5.4. In estimating the predictive density fi(ỹ|µi) ∼ N(µi, σ
2), the density

f̂MLE
i (ỹ|X1, X2) ∼ N(µ̂MLE

i , ν2) is Pitman closer to the true predictive density fi(ỹ|µi) ∼
N(µi, σ

2) than f̂HPi (ỹ|X1, X2) ∼ N(µ̂HPi , ν2) with respect to the {D(α)} metric for every
α(−1 ≤ α ≤ 1) , σ2 and ν2.

Proof. This follows directly from Theorem 5.3, since from Theorem 2.1, Dα(N(ỹ|µ̂, σ̂2),
N(ỹ|µ, σ2)) is monotone function of |µ̂− µ|, where µ̂ is an estimator of µ.

Next we consider the cases of unknown variances.

5.3 Case when variances are unknown and unrestricted

In this subsection we consider the same setup as (15) and (16). It is assumed that µ1 ≤ µ2

and that no restriction is given on unknown σ2
i . It is shown that plug-in predictive density

with µ̂OSi , (4), is Pitman closer to the true predictive density than plug-in predictive
density with X̄i under Dα loss.

From the result of Chang and Shinozaki (2015), we note that with respect to modified
Pitman criterion, the most critical case for µ̂OSi to be closer to µi than X̄i is the case

10



when µ1 = µ2 = µ. Surprisingly, this result reduces the dominance problem in estimating
two ordered means to that in estimating the common mean, that is µ̂OSi improves upon
X̄i under modified Pitman closeness criterion if and only if µ̂GD is closer to µ than X̄i

under Pitman closeness criterion. Kubokawa (1989) has given a sufficient condition on
ni(ni ≥ 5) so that µ̂GD is closer to µ than both X̄1 and X̄2.

As matter of fact, if we set γ = n1S
2
2/(n1S

2
2 + n2S

2
1) as (3.1) in the Theorem 1 of

Chang and Shinozaki (2015) then we have the following.

Theorem 5.5. MPNµi(µ̂
OS
i , X̄i) ≥ 1/2 for all µ1 ≤ µ2 and for all σ2

1 and σ2
2 if and only

if for all σ2
1 and σ2

2, PNµ(µ̂GD, X̄i) ≥ 1/2 when µ1 = µ2 = µ.

We wish to predict the density of a future observation from a normal population with
mean µi and unknown variance σ2, i.e. we wish to predict the density

f(ỹ) ∼ N(µi, σ
2).

Let
X̄i ∼ N(µi, σ

2
i /ni), S2

i ∼ σ2
i χ

2
ni−1, i = 1, 2 (17)

are independent, where µ1 ≤ µ2 and it is desired to predict the density of a future inde-
pendent variable Yi ∼ N(µi, aσ

2), i = 1, 2, where a > 0 is known.

Based on the above Theorem 5.5 we have the following main result.

Theorem 5.6. The plug-in predictive density estimate f̂OSi (ỹ) ∼ N(µ̂OSi , aσ̂2) is Pitman

closer to f(ỹ|µi, aσ2) than f̂ X̄ii (ỹ) ∼ N(X̄i, aσ̂2) for all µ1 ≤ µ2 and σ2
i , i = 1, 2 under

the D(α) metric for all −1 ≤ α ≤ 1 and every estimator σ̂2 if and only if µ̂GD is Pitman
closer to µ than X̄i for all σ2

1 and σ2
2 when µ1 = µ2 = µ.

5.4 Case when variances are ordered

In this subsection we consider the same setup as (17). We give Pitman closeness domi-
nation results in predictive density estimation when unknown variances σ2

1 and σ2
2 satisfy

the order restriction σ2
1 ≤ σ2

2. We note, however, that Oono and Shinozaki (2005) and
Chang, Oono and Shinozaki (2012) have MSE domination results in estimating means
when an order restriction on σ2

1 and σ2
2 is present or absent.

First we estimate the density of a future observation from a normal population with
mean µ2 and variance σ2 = aσ2

2, where a is known, i.e. we estimate the density

f(ỹ) ∼ N(µ2, aσ
2
2).

Based on the Theorem 4.1 and Theorem 2.1 we have the following.

Theorem 5.7. The plug-in predictive density estimate f̂CS(ỹ) ∼ N(µ̂CS2 , aσ̂2
2) is Pit-

man closer to f(ỹ|µ2, aσ
2
2) than f̂OS(ỹ) ∼ N(µ̂OS2 , aσ̂2

2) under the D(α) metric for all

−1 ≤ α ≤ 1 and for any estimator σ̂2
2.

Next we consider estimating the predictive density with smaller variance σ2
1, N(µ1, aσ

2
1).

Based on the Theorem 4.2 and Theorem 2.1 we have the following.
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Theorem 5.8. The plug-in predictive density estimate f̂CS(ỹ) ∼ N(µ̂CS1 , aσ̂2
1) can not

be Pitman closer to f(ỹ|µ1, aσ
2
1) than f̂OS(ỹ) ∼ N(µ̂OS1 , aσ̂2

1) when µ2 − µ1 is sufficiently

large, under the {D(α)} metric for all −1 ≤ α ≤ 1 and for any estimator σ̂2
1.

Proof. The proof follows immediately from Theorem 4.2.

Finally, we consider estimation of the predictive density function p(y|µ,Σ) = N
(
µ,Σ

)
and show that N

(
µ̂CS, Σ̂

)
dominates N

(
µ̂OS, Σ̂

)
in terms of Pitman closeness under

reverse Kullback-Leibler loss D+1, where

µ = (µ1, µ2)′, Σ =

(
σ2

1 0
0 σ2

2

)
and Σ̂ =

(
σ̂2

1 0
0 σ̂2

2

)
.

We need the following Lemma.

Lemma 5.1. The reverse Kullback-Leibler loss D+1 when we predict p(ỹ|µ,Σ) =

N
(
µ,Σ

)
by p(ỹ|µ̂, Σ̂) = N

(
µ̂, Σ̂

)
is given as

D+1

(
N
(
µ̂, Σ̂

)
, N

(
µ,Σ

))
= 1/2

[
2∑
i=1

(
σ̂2
i

σ2
i

− log
σ̂2
i

σ2
i

− 1 +
(µi − µ̂i)2

σ2
i

)]
.

Proof. Straightforward calculation.

Theorem 5.9. If n1 ≥ n2 then f̂CS(ỹ) ∼ N
(
µ̂CS, Σ̂

)
dominates f̂OS(ỹ) ∼ N

(
µ̂OS, Σ̂

)
in terms of Pitman closeness under reverse Kullback-Leibler metric.

Proof. From Lemma 5.1 and Theorem 4.3 the result follows.

6 Extension to generalized Bayesian predictive densities

In this section we discuss improving the generalized Bayesian predictive densities sug-
gested by Corcuera and Giummole (1999) under D(α) loss.

Based on the data

Xij ∼ N(µi, σ
2
i ), i = 1, 2, j = 1, · · · , ni,

we predict the density Ỹ ∼ N(µi, σ
2
i ), i = 1, 2. We denote its density function by

p(ỹ;µi, σi), where µi and σ2
i are unknown.

When −1 ≤ α < 1, Corcuera and Giummole (1999) have established that the best
invariant predictive density of p(ỹ;µi, σi) based solely on xi1, · · ·xini is

p̂α(ỹ; x̄i, σ̃i) ∝
[
1 +

1− α
2ni + 1− α

(
y − x̄i
σ̃i

)2]−(2ni−1−α)/2(1−α)

, (18)

where x̄i is the sample mean and σ̃2
i = ((ni−1)/ni)s

2
i is the sample variance. Corcuera and

Giummole (1999) have also shown that p̂α(ỹ; x̄i, σ̃i) is the generalized Bayesian predictive
density for the prior density f(µi, σi) ∝ 1/σi, 0 < σi < ∞. It is to be noted that
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p̂α(ỹ; x̄i, σ̃i) is not a normal distribution, although the plug-in density N(x̄i, s
2
i ) is the

generalized Bayes rule when α = 1.
We consider the following two cases separately where order restrictions on µi and/or

σ2
i are present,

i) Case when µ1 ≤ µ2.

ii) Case when µ1 ≤ µ2 and σ2
1 ≤ σ2

2.

We consider to improve p̂α(ỹ; x̄i, σ̃i) or p̂α(ỹ; µ̂OSi , σ̃i) by replacing x̄i with µ̂OSi or µ̂OSi
with µ̂CSi , respectively.

The next lemma is usefully for improving the generalized Bayesian predictive densities
(18). We give its proof for completeness.

Lemma 6.1. Let f(·) be the probability density function of X ∼ N(0, τ 2). Assume that
g(t) ≥ 0 is symmetric about the origin and is a strictly decreasing function of |t| such
that

∫∞
−∞ g(x)f(x)dx <∞. Then∫ ∞

−∞
g(y − x)f(y − µ)dy

is a strictly decreasing function of |x− µ|.

Proof. By making the transformation z = y − µ we see that∫ ∞
−∞

g(y − x)f(y − µ)dy =
∫ ∞
−∞

g(z − v)f(z)dz = h(v),

where v = x− µ. Then h(v) satisfies

i) h(v) = h(−v). (Since f and g are symmetric about the origin.)

ii) h(v) is a strictly decreasing function of |v|.

We prove ii) here. We need only to show that h(v)− h(v + ∆) > 0 for any v ≥ 0 and for
any ∆ > 0. We have

h(v)− h(v + ∆) =
∫ ∞
−∞

k(z; v,∆)f(z)dz,

where
k(z; v,∆) = g(z − v)− g(z − v −∆).

We notice that k(z; v,∆) satisfies

1) k(v + ∆/2; v,∆) = 0.

2) When z > v + ∆/2, k(z; v,∆) < 0.

3) When z < v + ∆/2, k(z; v,∆) > 0.

4) k(v + ∆/2 + (z − v −∆/2; v,∆) = −k(v + ∆/2− (z − v −∆/2; v,∆).
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Thus we see that h(v)− h(v + ∆) > 0.

Note: Lemma 6.1 can be generalized to p dimensional case. See Lemma (A.6) of Four-
drinier, Strawderman and Wells (2018), which is an extension of Anderson’s Theorem due
to Chou and Strawderman (1990).

Let µ̂i denote an estimator of µi, i = 1, 2 in general. Now we show that for any
1 ≤ α < 1, Dα(p̂α(ỹ; µ̂i, σ̂i), p(ỹ;µi, σi)) is a strictly increasing function of |µ̂i − µi|.

From Lemma 6.1, we see that for |α| < 1,

Dα(p̂α(ỹ; µ̂i, σ̂i), p(ỹ;µi, σi)) ∝ 1−
∫ ∞
∞

g(ỹ − µ̂i)f(ỹ − µi)dỹ

is a strictly increasing function of |µ̂i − µi|, where

g(y − x) =
[
1 +

1− α
2ni + 1− α

(
y − x
σ̂i

)2]−(2ni−1−α)(1+α)/4(1−α)

and

f(y − µ) ∝ exp
{
−(1− α)(y − µ)2

4σ2

}
.

For α = −1, in order to show that

D−1(p̂−1(ỹ; µ̂i, σ̂i), p(ỹ;µi, σi)) = −Eỹ
{

log
[
p̂−1(ỹ; µ̂i, σ̂i)

p(ỹ;µi, σi)

]}
is a strictly increasing function of |µ̂i − µi|, we need only to notice that∫ ∞

−∞
log
[
1 +

1

ni + 1

(
ỹ − µ̂i
σ̂i

)2]
exp

{
−(ỹ − µi)2

2σ2

}
dỹ

=
∫ ∞
−∞

log
[
1 +

1

ni + 1

(
z − v
σ̂i

)2]
exp

{
− z2

2σ2

}
dz

is a strictly increasing function of v = |µ̂i − µi| from Lemma 6.1.

6.1 Case when µ1 ≤ µ2

In this case we have the following result.

Theorem 6.1. The predictive density estimate p̂α(ỹ; µ̂OSi , σ̂i), i = 1, 2 is closer to the
predictive density p(ỹ;µi, σi) than p̂α(ỹ; x̄i, σ̂i), respectively, under the {D(α)} metric for
all −1 ≤ α < 1 and for every estimator σ̂i if and only if µ̂GD is Pitman closer to µ than
X̄i for all σ2

1 and σ2
2 when µ1 = µ2 = µ.

Proof. Let µ̂i denote an estimator of µi, i = 1, 2 in general. Since Dα(p̂α(ỹ; µ̂i, σ̂i),
p(ỹ;µi, σi)) is a strictly increasing function of |µ̂i − µi|, we see that

Dα(p̂α(ỹ; µ̂OSi , σ̂i), p(ỹ;µi, σi)) < Dα(p̂α(ỹ; x̄i, σ̂i), p(ỹ;µi, σi))

if and only if
|µ̂OSi − µi| < |x̄i − µi|.

Thus from Theorem 5.5 we have the desired result.
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6.2 Case when µ1 ≤ µ2 and σ2
1 ≤ σ2

2

Here we give domination results in predictive density estimation when unknown variances
σ2

1 and σ2
2 satisfy the order restriction σ2

1 ≤ σ2
2. Then we have following results.

Theorem 6.2. The predictive density estimate p̂α(ỹ; µ̂CS2 , σ̂2) is closer to the predictive
density p(ỹ;µ2, σ2) than p̂α(ỹ; µ̂OS2 , σ̂2) under the {D(α)} metric for all −1 ≤ α < 1 and
for every estimator σ̂2

2.

Theorem 6.3. The predictive density estimate p̂α(ỹ; µ̂CS1 , σ̂1) is not Pitman closer to
p(ỹ;µ1, s1) than p̂α(ỹ; µ̂OS1 , σ̂1) when µ2−µ1 is sufficiently large, under the {D(α)} metric
for all −1 ≤ α < 1 and for any estimator σ̂2

1.

Proof of Theorems 6.2 and 6.3. Since for −1 ≤ α < 1

Dα(p̂α(ỹ; µ̂CSi , σ̂i), p(ỹ;µi, σi)) < Dα(p̂α(ỹ; µ̂OSi , σ̂i), p(ỹ;µi, σi))

if and only if
|µ̂CSi − µi| < |µ̂OSi − µi|,

from Theorems 4.1 and 4.2, Theorems 6.2 and 6.3 are established, respectively.
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