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Program

Friday, 3, September

Reception 13:00-13:15

Opening 13:15-13:20 Junichi HIRUKAWA (Niigata University)

Afternoon Session I (in Japanese) 13:20-14:45

Chair BH B— (&R KT)

1. 13:20-14:00 X7IfE BEXK

TS =TATA4—=FTRT Y

ERETEHETVONIRES TAZ ) T~D ) A RfgE Lk 7 v 27— 2475 EOFI A
2. 14:05-14:45 2|EE2 (Qingfeng Liu)

/NERERE RS (Otaru University of Commerce)

Machine Collaboration
Coffee Break 14:45-15:00

Afternoon Session II (in English) 15:00-17:10

Chair Hiroshi Shiraishi (Keio University)

3. 15:00-15:40 3R5L5R (Chang Yuan-Tsung)

HHKF (Mejiro University)

Simultaneous estimation of multiplicative Poisson means in two-way contingency tables

4. 15:45-16:25 Rtfi K& (Daisuke Kurisu)

HIR T KRT (Tokyo Institute of Technology)

FETEH 72 BER ST — & OfEaH 2T (Statistical analysis of nonstationary functional time series)
5. 16:30-17:10 BAF #B& (Fumiya Akashi)

Faculty of Economics, University of Tokyo

Statistical inference for nonstationary heavy-tailed time series models by L1 approach



Saturday, 4, September

Morning Session (in Japanese) 9:20-11:30

Chair Muneya Matsui (Nanzan University)

6. 9:20-10:00 BEIRF ZEE ' - & OeEl L Pl 22 - wiE AR 2
VOB R R B LA 70 R

2 HORERL R BRI

N Rz W T2 BRI T D REOHEE

7. 10:05-10:45 k3 B

PRURY: BB WIIERE

ERICMEART — 22 B1T 2 2B EHIEAEE T L TR Z AV HEE S
8. 10:50-11:30 BAI&RH&5A

TEBUR: B3

Cauchy B34 O Hiflize EM 712U X AIZDWNT

Lunch 11:30-13:20

Afternoon Session I (in Japanese) 13:20-14:00

Chair FI&EB#&REA (TEBUKE)

9. 13:20-14:00 #2# Rt (Muneya Matsui)

A I K% (Nanzan University)

T U LT 4=V RIZBIT 5 O L4551 (Distance covariance for random fields)

Coffee Break 14:00-15:00



Afternoon Session II (in English) 15:00-16:25
Chair Fumiya Akashi (University of Tokyo)
10. 15:00-15:40 A HOKES (Shibuki Ryotaro) , HAt %1% (Nakamura Tomoshige) , BR 1&
(Shiraishi Hiroshi)
B EFRB R FHE T A 98F (Graduate School of Science and Technology, Keio University),
B FEFR BB T2 (Faculty of Science and Technology, Keio University),
BEHEZE B K P T4 (Faculty of Science and Technology, Keio University)
T U BT x VA N FOTERERSISLRIENF (Time Series Quantile Regressions by using Random
Forest)
11. 15:45-16:25 A 8 (Tsutomu T. TAKEUCHI)
i BRI

(Division of Particle and Astrophysical Science, Nagoya University, Japan)
EHRICHE AT D IFIEIC K 2RI D5~ > 7 Ofifhr

(Analysis of Spatially Resolved Spectral Map of a Galaxy by the High-Dimensional Statistical
Method)
Coffee Break 16:25-16:40

Afternoon Session III (Guest speakers session) 16:40-18:10
Chair Junichi Hirukawa (Niigata University)

12. 16:40-17:20 Ngai Hang Chan

The Chinese University of Hong Kong

Statistical Inference for Glaucoma Detection

13. 17:30-18:10 Konstantinos Fokianos

University of Cyprus

Mixtures of Nonlinear Poisson Autoregressions



Sunday, 5, September

Morning Session (in Japanese) 10:00-11:25

Chair FI&EB#&REA (TABUKREE)

14. 10:00-10:40 =H E—

B o S N S 7

TV VHERIZBIT 5T 2 —=0 I RT7 A—F—DBRFITONT
15. 10:45-11:25 By {548 - BI AH L - Shill 7%

JeiEEZE R BLIRED) - ALimEZE KT (IR - BRI bETERT
3 I FNIFAT I T D et E PSR E DR FH R DWW T

Closing 11:25-11:30 Junichi HTIRUKAWA (Niigata University)
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Machine Collaboration®

Qingfeng Liu and Yang Feng!
August 2, 2021

Ensemble learning has emerged and been extensively studied by many in the past few decades.
In general, the idea of ensemble learning is to combine the predictions obtained from different learn-
ing methods (hereafter, base machines), or predictions based on different subsamples to improve
prediction performance. Bagging, stacking, and boosting are three prominent examples. In bagging
(Breiman, 1996)/stacking, base machines first run in parallel and independently, and then the final
prediction is constructed as a simple/weighted average of the predictions from these base machines.
In boosting (Schapire et al., 1998), the base machines work jointly in a top-down manner. In the
aforementioned algorithms, the output from each base machine is fixed after being calculated. Like
human collaboration, an idea that may yield potential improvement is to let the base machines com-
municate with each other and update their outputs after observing the predictions of the other base
machines. Based on this idea, we propose the Machine Collaboration or MaC learning framework.
Compared with bagging, stacking, and boosting, MaC has the following desirable features. Figure
1 provides the schematic for bagging, stacking, boosting, and MaC. As illustrated, bagging and
stacking are parallel & independent, boosting is sequential & top-down, while MaC is circular &
interactive. For MaC, pieces of information are passed repeatedly between base machines around a
“round table, but not one-way or top-down. In this type of scheme, the base machines update their
structures and/or parameters according to the information received from the other machines. We
demonstrate that MaC can deliver competitive performance when compared with the base machines
or the other ensemble methods.

Parallel & Independent Sequential & Top-down Circular & Interactive

Bagging/Stacking Boosting Collaboration

Figure 1: Bagging, boosting, and machine collaboration

The main contributions of this work are fourfold. First, we propose a new type of ensemble

*The authors gratefully acknowledge the support of the Japan Society for the Promotion of Science through
KAKENHI Grant No. JP19K01582 (Liu), the Nomura Foundation for Social Science Grant No. N21-3-E30-010 (Liu)
and a National Science Foundation CA-REER Grant No. DMS-1554804 (Feng).

TCorresponding author. Department of Economics, Otaru University of Commerce, Otaru City, Hokkaido, Japan.
Email: qliu@res.otaru-uc.ac.jp.

¥School of Global Public Health at New York University, NY, NY, USA. Email: yang.feng@nyu.edu.



learning framework, MaC, which is circular & interactive. The circular & interactive aspect could
be a potential direction for exploring new methods of ensemble learning. Second, we present some
desirable finite statistical properties of MaC. Third, we demonstrate via extensive simulations that
MaC performs better than all individual base machines and the ensemble methods SL and LS-
Boost. Lastly, in the analysis of real data, we compare MaC with the competing methods on 119
benchmark datasets in the Penn Machine Learning Benchmarks (PMLB) (Olson et al., 2017) for
evaluating and comparing machine learning algorithms. The results of this analysis demonstrate the
notable advantages of MaC for most datasets.
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Simultaneous estimation of multiplicative Poisson means in two-way contingency
tables

Yuan-Tsung Chang (Mejiro University), Shinozaki Nobuo (Keio University)

Abstract

Shrinkage estimation of Poisson means is considered when observations are given in the form of a two-way con-
tingency table. Assuming a multiplicative Poisson model, estimators which shrink to the specified values or an
order statistic in one dimension and in two dimensions are considered and are shown to dominate the maximum
likelihood estimator (MLE) under normalized squared error loss.

1 Introduction

We consider two-way multiplicative model where z;;, ¢ =1,...,1I, j =1,...,J, are independent random Poisson
random variables with means

Aij:Aaiﬂja ’L':L...,I,j:l,...,,],

where a; > 0 and 3; > 0 satisfy Zle a; = 1 and Z]‘-]:l B; = 1, respectively. We denote the one-dimensional
frequencies and the total frequency by

J I I J
Tip = E Zij,iil,...,I,Z+j: E Zij,jil,...,J,.’B_;,__i_: E E Lij-
j=1 i=1

i=1 j=1

As discussed in Hara and Takemura (2006) complete sufficient statistics are &1 = (z14,...,274+) and 3 =
(®41,...,247). The MLE of \;; is

ij T+

L it Tty if 2y, #0

They have given a class of improved estimators which shrink the MLE toward the origin under the normalized
squared error loss. The simple one is

i ; d . .
gHT = TitThi g codi=1,...,0, 5=1,...,J
! Tyt Ty +d

Next section we consider one-dimensional shrinkage to an order statistic or a specified point.

2 One-dimensional shrinkage to an order statistic or a specified point

First, we consider one-dimensional shrinkage to an order statistic.
Let z(y)4 be the (-th smallest observation among z1,...,z7+. We assume that I > ¢+ 2 and consider the
following estimator which shrinks z;, toward x(s)+ when z;4 > x4

) - +
P PR et (O LA SRR T ST
ij T4 Lit+ <)0( ) W +d y ) y Ly ] ) y ¢y

where W = Zz'[:1($i+ —24+) T, a™ = max(0,a) and d is a positive constant. Then we have the following.

Theorem 2.1. Suppose that (W) is a non-decreasing function satisfying 0 < (W) < 2(I — ¢ — 1) and thatd >
sup ¢(W)/2. Then 58),1' =1,...,I improves upon the MLE )\%L,i —1,...,T under the loss function Zf:l(j‘ij _
Nij)?/Nij forany j=1,...,J.

Next we consider the estimators shrink 5\5\]4 L to a specified non-negative values, b;.



Let b; > 0,i = 1,...,I be given numbers and we propose the following shrinkage estimator which shrinks z;
to b; when z;4 > b;:

7 _b’i+
(2iy )) } i=1,....0,5=1,...,J

@) _ T+ ). L/
O = {CUH (N, W) W+ d(N

where W = Zle(xH_ —b;)" and N = #{i|z;4+ > b;}. Then we have the following.

Theorem 2.2. Suppose that ¢(NN, W) is a non-decreasing function of W and satisfies 0 < (N, W) < 2(N —1)*
for any 0 < N < I. Suppose that d(N) > supy, ¢(N,W)/2. Then 55?),2' = 1,...,I improves upon the MLE

S\f\;fL,i =1,...,I under the loss function 21'1:1(5‘@' —Xij)?/Nij forany j=1,...,J.
It may be noticed that the shrinkage is made only when N > 2.

Remark Theorems 2.1 and 2.2 can be generalized directly to the case of Poisson multiplicative model for a
multi-way contingency tables.

Next section we also consider two-dimensional shrinkage to order statistics or to a specified point.

3 Two-dimensional shrinkage to order statistics.

Let z(y)4+ and x4 (,,,) be the (-th and m-th smallest observation among x14,...,2xry and w41, ..., T4 s, respectively.
We assume that I > ¢+ 2 and J > m + 2 and consider the estimator which shrinks x;; toward T(o)+ when
Tit = T(p4 in the first dimension and shrinks z,; toward z(,,) when xy; > z () in the second dimension

simultaneously. To improve upon the MLE 5\?]4 L we propose the following estimator :

1 (@ir —z0)4)" (@4j — T4(m))*
P P 7 (W J
T ©1(W1) Wit di Ty — p2(W2) Wo T dy :

i=1,....1,j=1,....J, (24)

where Wy = Zle(‘r” —zp4)T and W = ijl(:zzﬂ- — Z4(m))t and d; and dy are positive constants. Then we
have the following.

Theorem 3.1. Suppose that @1 (W7) and o(Ws) are non-decreasing functions satisfying 0 < ¢ (W7) < I—¢—1 and
0 < o (Wa) < J—m—1, respectively. If dy > (I—£—1)/(I—£)sup p1(W7) and dy > (J—m—1)/(J—m) sup pa(W3).
Then 6%3),1' =1,...,1,5=1,...,J improves upon the MLE :\%L under the loss function Zle Z;I:l(j\ij*&jy/)\iy

Next, we consider Two-dimensional shrinkage to a specified point.
Let b; >0,i=1,...,7and ¢; > 0,5 =1,...,J be given numbers. Assuming that I, J > 2, we shrink x;, to b;
when z;; > b; and x4 to ¢; when 2 ; > ¢;. To improve upon the MLE A}/, we propose the following estimator

1 (i — b)) T (z4; —c;)*
5B = — i — o1 (Ny, W)t — 2 = o (Nog, W)~ T
ij Tor {IE+ ©1(Ny, 1)”,1_|_d1(N1) T i — p2(Na, 2)11’2+d2(N2) )

i=1,...,0,j=1,...,J, (25)

where W1 = Ele(am_ — bi)+,W2 = Zj:1(1‘+j — Cj)+, N1 = #{Z|l‘l+ > bi,i = 1,...,[} and N2 = #{]|$+J >
¢i,j =1,...,J}. Although it may be natural to put the condition Zi]:l b; = Zj:l ¢j, we do not need it in the
following.

Theorem 3.2. Suppose that ¢;(N;, W;) is a non-decreasing function of W; and satisfies 0 < o;(V;, W;) < (N;— 1)
for any N; > 0, and that d;(N;) > (N; — 1)7/N; supyy, @i (Ng, W;), for any Ny > 0, i = 1,2. Then 55;1) improves
upon the MLE 5\%“ under the loss function 25:1 ijl(j\ij — Xij)%/ Nij

It may be noticed that the shrinkage in the i—th dimension is made only when N; > 2.



Statistical analysis of nonstationary functional time series

Daisuke Kurisu

Tokyo Institute of Technology

1 Introduction

In this study, we develop an asymptotic theory for estimating the time-varying characteristics of a
locally stationary functional time series. The notion of a locally stationary functional time series is an
extension of that of a locally stationary process introduced by Dahlhaus (1997). For some probability
space (2, A, P) and for p > 1, let LP(Q, A, P) denote the space of real-valued random variables such that
X, = (E[|X|P])/P < co. Let D C RY be a compact set and let L? = L?(D) denote a Hilbert space
with inner product (-,-) defined by

(x,y) = /DJ;(t)y(t)dt, z,y€ H=L"

Further, let LY, = LY (Q, A, P) denote the space of H-valued random functions X such that

(/ XQ(t)dt)p/Q] ) " < 0.

(BIXIPD? = <E

2 Settings
2.1 local stationarity

The definition of an H-valued locally stationary process is as follows: The H-valued stochastic process
{Xir} in L% is locally stationary if for each rescaled time point u € [0, 1], there exists an associated

H-valued process {Xt(u)} in L¥, with the following properties:
(i) {X™ 1}z, is strictly stationary.
(ii) It holds that

u t 1 u
[ Xe,r — Xt( )” < (‘T - U’ + T) Ut(,T) a.s.,

u)

for all 1 < ¢ < T where { Ut(}})} is a process of positive variables satisfying E [(Ut(j)ﬂ] < C for some
p >0, C' < oo that is independent of u,t, and T'.

This definition is a natural extension of the notion of local stationarity for real-valued time series intro-

duced in Dahlhaus (1997).

2.2 dependence structure

For each u € [0,1], we assume that {Xt(u)} is LP-m-approximable, that is, Xt(u) € LY, is of the form

Xt(u) = fu(Et,Et—laEtf% T )7

where ¢; are i.i.d. elements taking values in a measurable space S, and f, is a measurable function

fu : 9% — H. Note that Xt(u) is strictly stationary. We also assume that if {ayz)} is an independent



copy of {&;} defined on the same probability space, then letting

(u) _ (m) (m)
Xm,t - fu(€t7 Et—1y-++3Et—m+1, Et,tfmﬂ Et,t—m—h e ),

we have

Z vp(Xt(u) - Xr(:,)t) < 0.

m>1
We can show that a wide class of functional time series (e.g., functional AR(1) process and functional
ARCH(1) process) is LP-m-approximable under some regularity conditions. See Hérmann and Kokoszka
(2010) and Horvath and Kokoszka (2012) for details on the properties of LP-m-approximable random

functions.

3 Results

We introduce a kernel-based method to estimate the time-varying covariance operator and the time-
varying mean function of a locally stationary functional time series. Subsequently, we derive the conver-
gence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions.
We also establish a central limit theorem for the kernel-based locally weighted sample mean. As applica-
tions of our results, we discuss the prediction of locally stationary functional time series and methods for
testing the equality of time-varying mean functions in two functional samples. We also discuss a problem
to estimate the number of principal components to be used. To the best of our knowledge, this is the first
paper that develops an asymptotic theory of estimating time-varying characteristics of locally stationary

functional time series based on kernel methods.
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Statistical inference for nonstationary heavy-tailed

time series models by L1 approach

Fumiya Akashi (University of Tokyo)*

Abstract

This talk proposes a robust Li-estimation methods for a time-varying autore-
gressive (AR) model. First, we construct a robust local linear estimator based on
the self-weighting approach (Ling (2005, Journal of the Royal Statistical Society,
Series B)), and show the asymptotic normality of the proposed estimator. Second,
the generalized empirical likelihood statistic is proposed to test the hypothesis of

the coefficients of the model. The simulation experiments are given in the talk.

1 The model and self-weighted statistics

Suppose that an observed stretch {Y; 7, ..., Y; 7} is generated by the following time-varying

autoregressive (AR) model
Yir = Bt/T) X jr +e, (1)

where 8(u) = (B1(u), ..., B,(u)) " is a function [0, 1] — RP, X;_; 7 is a p-dimensional vector
defined as X; 17 := (Yi_17, ..., Yip7) ", and {¢ : t € Z} is a sequence of i.i.d. zero-median
random variables. We assume some conditions for {¢; : ¢ € Z}. In particular, the tail
distribution of €; is assumed to satisfy x*P(e; > z) — ¢C and x*P(e; < —z) — (1 — q)C
as r — oo with some a > 0, ¢ € [0, 1] and C > 0. In particular, ¢ do not have the infinite
variance when a < 2.

We define the self-weighed local linear L; estimator for 5(ug) (up € [0, 1]) as

et—l,T(ﬁa /7) ‘7

T
S . t—t
(B(uo),7) := arg min > K( Th°> W17

t=p+1

*This talk is partially based on a joint work with Junichi Hirukawa (Niigata University) and Kon-

stantinos Fokianos (University of Cyprus).



where K is a kernel function, h is a bandwidth parameter which goes to zero as T — oo,

to is an integer satisfying [to/T — uo| < 1/T, 7y is a nuisance parameter and

T
et—l,T(BKY) = Y;S,T - |:B + (% — Uo) ’)/:| Xt—l,T (6,*7 € Rp)

In particular, wy_17 (t = p+1,...,T) is called the self-weight, which is a measurable
function of X; ;7. The self-weighting approach for time series model was originally
proposed by Ling (2005) for a stationary AR-model.

The limit distribution of the proposed estimator is given in the following theorem.

Theorem 1. Under some regularity conditions, we have

VTh | B(uo) — ﬁ(uo)] 4N (op, ﬁz(uo)lg(uo)z(%w) (T — o0),

where Y(ug) and Q(ug) are nonsingular matrices.

Another important issue in statistical inference for infinite variance process is hy-
pothesis testing for the coefficients of the model (1). Let us consider the hypothesis
H : B(u) = Bo(u) (Vu € [0,1]), and we apply the generalized empirical likelihood (GEL)

test statistic. Let us define the self-weighted moment function
ge.r(D) == wi—y psign (Y;S,T - bTXt—l,T) Xioir (beRP)

and the self-weighted GEL test statistic as

T

re(B(-) =2 swp Y p{ATar(B(H/T))},

XeAr(B() t=p+1
where p is a score function whose domain is V, (C R), and
Ar(B()) == {A: A eRP and AT g, +(B(t/T)) € V, for all t € {1,..., T} }.
Then, we get the following theorem.
Theorem 2. Under some reqularity conditions, we have rp(By(+)) = X; as T — oco.

Remarkably, the proposed statistics always converge to pivotal limit distributions re-
gardless of whether the model has finite or infinite variance. Finite sample performance

of the proposed statistics is also illustrated by some simulation experiments.

References

Ling, S. (2005). Self-weighted least absolute deviation estimation for infinite variance
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RAXEZRAWVEREIRICBITAREDHRE
Bl B B NE! )z’ EE AR

' RREMAERF R BTEMER
PRRIERAS BT

2 L EIR DT TILE, (TR I ZER OB QAR E 2 AW THN D & DR b 0RE 2 5. HEEARE
WX, Bl 21X, Cramér fREL (Cramér, 1946) R ED3H 5. —J5 7T, 1T FID[E LoD & 72 % IE77 0 EIR O @
T, 1T e OB O D D MFRED & DR D DR Z#I 5. Tomizawa et al. (1998) 1 power
divergence (%7213, diversity index) % FH\WT, MFMED 5 DR D ORRE 2 24 R REZIRE L 2.

DEIRIZBIF2 ZNHOREIEINHRDOLAEROBEK L LTRENEDT, REDHEIFRAMDEZES.
ZD1OREOHE X, EALREHWEZRED S Z 74 YHEEVHVWOLNS. 2 TIAEBT3ITH 5
L& EARRDO S S 74 VHERIGGEMUNMEHEER 725, LA L, Y TP TR WEER, #EER
DNA 7 AR T3 A (MSE) DRELSR-oTLES.

Tomizawa et al. (2007) i¥, NA T RADEHRDA — X —ZFBHL, N 7 AMIEZITS T TREDHER
ZRR L. 2O DR TIIEEERZ VT, ABREHEERIIERLEBDO S 7 74 VHEER I D BEHIR
EOEMIZIO TeARENTe. LA LRBA S, WRARHEEEIZIZ WL O OMER,A D 5. 22, > 7
NN WGETHRRBAMHEERIIANA 7 RAZ/NELLTETWVWSED, MSE /NX L TE S EEFRL RN, X
HIT, RAHEE B OE & RE OESD R 2 A[REMES H 5. il 21, Tomizawa et al. (1998) D R DK
WO E1ID T TH 20, AEEHEEREOMEBIZ O E 1M TEZBITWS. $72, 20 X5 RGE, dEAHH
FEfz W REOHEE & D EMXHEOBIIIES T3,

ARFHETIE, XA ZEEHCT, 0832 Td A4 An7e TH AL 7 A% MSE /N2 T&E 3 REDHE
ERZRRE L.

2ICT X c PEIREEZD. WEREBARZ Pl n = (n11,n10,. .., Nie, N2ty - ., Npe) | (EZZTEDT M (n, p)
WS &35, 22T, n= Ei’j nij, pij (& (4,7) BVIER, p = (p11,p12s - - - P1c, P21s - - - ve) T, T R
BERT.

CILERNRY L p BT 4V 7 LVERID

[(rca) H o1

p(p’a) = (F(O{))Tc o ng

WS &2, p DERFHILTDOLSITRS.

P = 5 ) 5 BT

22l

) _ Mgt

i n 4+ reca
THH, T()BAY~HEBETHS. 22T, a=00D 2%, HHRFEE p) 1IHEALE p =n"'n THELT
w5,



B f() ZREIROREL T2, 22T, f()EplBWTARL b 4RO AETH D T3, RE
f(p) DR, f(p) ICBWT p % pICESHRMAMER f(p) EHVTHETES. £/, f(p) KBWTp %
P ICBERAHEER f(P)) THET LI L BARETH 5. ABETIE, T4 V7L RFA—X a &R
T5HED 128 LT, f(p¥) ® MSE 28/ML T3 a 2EZ 7. 20720, f(p(™)) ® MSE &ML
flissZeT, f(P®) D MSE Z2H/MbT 2 a ZEH L. ThbE, LTOXSRT 4 VIR X —R0DHE

Hz1To 7.
& = argmin lim nzMSE[f(ﬁ(a))]

o n—oo

#HEEE f(pl@)) @ MSE &

1
MSE[f(p')] = (A1a® — 2A50) + (the terms independent of a) + o(n™?)

&b, 2T

op )\ op
ta =510 () or (S22 (o) — )|
+re tr Kagif)) <8£€) ) (diag(p) — ppT)}

ror[(U2) (rep 1,07 (gp@g’ﬁ) (@io(p) - pp7)|.

A, —tr Kc‘?f(p)> <3f(p)) (rep — 1,0)(rep — 1@1 ’

1. B3ETOEEN 1D rex 1 X7 b, diag(p) 1ZFRARDOEED p ONAITHITH 5. LoT, f(p))
D MSE Z2E/MET BT 4 V7L 5 X—R ald

A
% = argmin lim n®MSE[f(p(®))] = =2
« arginmnl_{gon SE[f(p*")] A,

(1)

¥725. PlbEXD, REE f(1) OfftERE LT f(p'D) 2R

AFHETIE, BIEERBRZ HOTIREMEEDLZ  DGHICBWTEARLRD 75 74 UHEERPWRAMHEE
HEIDDBANALTZAPLMSE Z/NELTELZ 2Rl 61T, T4 V7L RTRX=FIZ a = 1(—FRFERFTT
i) % a = 1/2(Jeffreys FH17310) Z Wz D, Fienberg and Holland (1973) DA TER L2714 U 7 L%
FIRX=RZHVI) LEBERBI2ERIEEHD T 774 VHERLID S, R FHER Lo TERIN S T 4
VI LRI RA=B2HOWTGEIZB I 2H B EHDOT 5 74 VHERDTH, N4 7 AP MSE Z/NX < TZ
52O oI, Fi, BHLIT A VLRI X=ZE2HVWSEZ T, REOGHRXMEZE Y T HhL
BYIal—YaYITKDMATRETH B e /R L.
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LYY 22 B

m%®ﬁmf@ﬁimt$m DHBY

rank(A) < k OIRFLTDIERDHEETE

o ZERMFEIRET VY = 1,0/ + AE+E
Y; n x p BRERATHI
1,; 128 n 85 A 72BN 2 F v
; p RILRHAINRY b
i nox kaBtRERATS
k x p REUTHI
n x paAZETTHI
8 p=1; FMKEFL
A'1,=0;, 03k RITD 0 RZ Fov, E[E]=0,0,,
Cov[vec(€)]|=2®1I,, rank(X)=p (K5I
V22 R(pE)S (Y 1,4~ AS)S (Y14 AE)}
HEE argmin, = R(p, E) 42

[

R7E

HEER 1= Y'1,/n, A/AE = A'Y Dff
o (1,8) = arg min, = R(p
— rank(A) = k B HIEE = (A'A)'AY

rank(A) = k DRITESH
ADn x kA1T51)

o KIEDHEErank(A) = k < n BMRES LTS

IS n < kDIRMT, IR TELRHET 200 7?

= rank(A) < kD ¥ D= OHEEE

n>ke:

o EXOUVMEAR T —& (I s T 7 — &) 1ISHS (iv) — R T51% )| T Hi
AWFFRDK FE 227 HIY 514 BERLEFTA (e.g., Srivastava, 2002, A.6)
rank(A) < kDL EDEOMELEOME | 5720 | AT oL Y TN BHEEEDIE 6/2¢

o rank(A) < k TD E OIEROHEE
@ n <k TOHEEIE
SIS HEE IR
il Lasso /! (Katayama & Imori, 2014), Ridge /{! (Yanagihara &
Satoh, 2010), elastic net ! (Lasso + Ridge) 7 &
ZHGEIN (Oda & Yanagihara, 2021) LT HHEE
o A DFIKL (k) Z WSS
TR IHT R T2 HHEE
® A %R IRICHEE
i ARSI (Fujiwara, Minamidani, Nagai & Wakaki, 2013)

R BT R

HEF 2L Y 22 B

LY =14 +AB+E - A= (A,
o ADFENTHIELTE = (8),..., S’,)'

o Ainx kAT, 1<r <k
i ki x p {151 (RAD)
f)E rank(A;) = k (i=1,..., r)

—Y = 1,1u’+ZA7H,+£
i=1

V27 R(p,E,...,2) %Y

T T ’
tr{ Y-l,u-) AE; »-1 ( L=y A,»E) }

i=1

HE 5

2 /NN

HZT 22710 Y 27 BN

B DRDIRE; (i # j) DEERHE
o BIiLED 2
o Ei,.. B AUORT 2 ETHD K L iHIassL
RER DR, R (p, &, ..., E,) ZEHET 2 L,
B CBE T 2IE=5; (i £ j) BEENDTE
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= ST 2 =5 (i < j) R A Eh K
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Bt . > max(ky, .. .
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(1/3)
B 200V, Mb s 2 B
—2tr(A)Y S7'E) + tr(AEXEA))
2> tr(AEXTEA))

£l

ALAE, = (

E, = (AA) A (

ZAH) (=1,...,r)
i#l
ZA_,),

i>1

ALY AE, = A (Y —AE Y A,é,-).
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éf DIEFY (2/3) LARE
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A2<In*PAl)A2=2:A2( w— Pa,) Y*Z AYE,>

i>2

Z 2T, Py = M(M'M)"' M. .

rank((I, — PAI)AQ) =k ZRETS L,

= {A',z(In 7PA1)A2}_1A',2(I71 *PAI) Y*Z A,é)
i>2

= rank((In Py, — Py, | PAI)AQ)A:i):/’f:s HIRET S L,

= {A4(I, — Pa, — Py, p,)a,)As} "%

- Al—'7

o

Juk

AL, —Pa,—P, p,)a,)
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1) % SR8 AR
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J>i
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=D FREERBE SN £ PA-(h Al E-(= o =Y LT
— ! = N 2 - N = Sy, Sy
Note E[Y] =1, + AZ QTWE%E“’M 9 BE]=(QQ)'QE|Y - D AF | & HL R DB <, LT AR B A ek
Note E%ﬁéﬁ@@ég}*’gﬁ P, - i o HHIBL(r) BAE < FHUL, BIHEAHE B 75 D RERITHE
Y| o TR, EE OFBRRR T CRETRLEILEMD 2024 o [EEEEAL T, ORI RONE 212
B E ik

St DR
1.
2.

3.

r (A DFER) o EIOHEDFER
rank(A) < k TOE @TF Hew B OB ES:
J+1

(FHDELWEE) n > ZA Tn< Zk DE>57%

nﬁam—%@$ﬁﬁig®%%
PR AHEL D TDITn > k= Y1 Ky AIURE?
o BBREDOEART, P & TOMEIEERFFOHETE S
TERVR?

- SR HEE R O

o rank(A) < kT PMSE %Z & h/h& < 3 2 HEE W3 ER
B ?

'L (GMANOVA EF V) 72 ¥ ADIEER

22/24

1. Fujiwara, M., Minamidani, T., Nagai, |. and Wakaki, H.
(2013). Principal components regression by using
generalized principal components analysis. J. Jpn. Stat.
Soc., 43, 57-78.

2. Katayama, S. & Imori, S. (2014) Lasso penalized model

selection criteria for high-dimensional multivariate linear

regression analysis. J. Multivariate Anal., 132, 138-150.

3. Oda, R. & Yanagihara, H. (2021) A consistent
likelihood-based variable selection method in normal
multivariate linear regression. Smart Systems and loT:
Innovations in Computing, (in press).

4. Srivastava, M. S. (2002) Methods of Multivariate
Statistics, Wiley-Interscience.

5. Yanagihara, H. and Satoh, K. (2010). A unbiased C,
criterion for multivariate ridge regression. J. Multivariate
Anal., 101, 1226-1238. 23/24

~

= N
D

24 /24




Cauchy #9HADEHMAEM 7L XALIZDWT

TRBURZ: R
(R TIN

WG DIERIFRME & U T, Azzalini (1985) (287 % % skew-symmetric 3R < H ST W
5. ZNDFEITDOWTIX, Azzalini (2005) X Azzalini & Capitanio (1999) IZE & H SN TV S.
Lin et al. (2007) TIIMERKRHZIEH LU CEEHSAOEM 7L IV XL %252 TW5. ZOEIE
WD DL ERAII N DDEDHPRESI N TS A, Sahu et al. (2003) D% 2 BB MDA IZ
DWTOHOEM 7))L 3Y XL Lin (2009) I2& D 52650 TW5.

Lin et al. (2007) ¥ Lin (2009) iZ &% EM 7L 3V XA TIE, skew /85 A —ZIZxHd 2 #EE R
DBHIR T 720728, BUE TR BB L 72 5. 2R LT, Abe et al. (2021) Tl&, EBIEMO A
DIERFBLIZ overparameter ZE AT B2 LI1IZL D, EM 7TV XA LDGHRIFZEHL, X5
IZ, Chen et al. (2014) &L, #EETFEE L TENTWS Z & 2R U7z, BERDMIIKRL LR
WHE D H B — 5T, BIEF 4 D Fisher information matrix 1% skew /87 A — X0 DJF b T,
FRRAZ R 2 0 ThH 5 Z DRI ST W5 (Azzalini, 2013; Hallin & Ley, 2014).

Z OFEE T, EITHDITFRZ Cauchy BLAAED EM 7V 3 XL &SR TE X,
HMUZETMZOWTE EM 70V 3V XL %2525 X Cauchy 246 IZHEDE WS4 D —HITH
D, ZOHFPOHS MR E 51T, Z 13 Cauchy DAFIZHED & 1T X = exp(Z) D3XEK Cauchy 7
RS . W # Cauchy 7377 1%, Cauchy 7347 &[RRI —HID (FEHH) E— A > MAERKIZZR D,
UIX UIEFIEE IZHE D ETE W4 (super-heavy tailed distribution) & T#15. R Cauchy 734 D /X
T A—=RZHEEIZEA LT, BEARD HARNEE & 5725 OO hIfilE, p DBENZ N fEEREICR D, 1
KO ERNEE & 5728 OO F2E1d o DN MafEERIZR S, W Cauchy 274 13,
AR E 72 I 3RED T ET 2 L5 b 2O B EYEOEEE X -V DET IV
BIZHWS Z e TES. il UTIE, & MERE T A IV ADBEGED S FIE F TORFDZET S
ns.

EELD Cauchy 246 & [FFRIZ U C, BERBOIE,» S t SO EM 7V T Y ALE5 2T K.
Liu & Rubin (1995) TH t A OMHERKED S EM 7V T XLDGHREZERLTE D, 5
DEDEZH OB DEDTH BN, M-step TOFEIAERIZHSDEDEHUUEDEEHT 5.

ETRARZEBIEBDAHIIZ N ORDFEDH D5, t SAEDESFLIZDOVTEREL R E DN
REXINTWS. skew-symmetric 24D pdf IZDOWTIXEHRE D TIRD & 5 RREID D 5 (see
Azzalini, 2005): £3, G % =000 THIRRDMAD cdf & U, fo % x =0 DD THFRZLS
HDpdf £ §5. ZDE E, skew-symmetric 734 D pdf

2G(Az) fo(x)

t0(55)0(52)

& 7425, Azzalini & Capitanio (2003) T, IEH24H1Z scale mixture 2925 Z £ IZ X D | pdf #°

facsr(ziv) = %FT (Ax;M\/(x _Z);r/(ljz T Lv+ 1) Ir <x;M;V> (1)

BT P rgzy,
g




TH D skew-t MEEHLTWSE. ZZT, fr, Fr i 3ZNZh, HHE v > 0D t 94D pdf & cdf
1 2\ Lo [
X
V)= ——— [ 14+ = Fr(z; == —:v|dt 2
fT(fE,V) \/;B (%7%) ( + ) 5 T(:L',O',I/) U/_OOfT (O"V) ( )
THY, B(-,-) IXBeta BT H 5.
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Distance covariance for random fields

Nanzan University Muneya Matsui
Abstract

We study an independence test based on distance correlation for random fields (X, Y).
We consider the situations when (X, Y) is observed on a lattice with equidistant grid
sizes and when (X, Y) is observed at random locations. We provide asymptotic theory
for the sample distance correlation in both situations and show bootstrap consistency.
The latter fact allows one to build a test for independence of X and Y based on the con-
sidered discretizations of these fields. We illustrate the performance of the bootstrap
test in a simulation study involving fractional Brownian and infinite variance stable
fields. The independence test is applied to Japanese meteorological data, which are
observed over the entire area of Japan.

Introduction
It is well known that two g- and r-dimensional random vectors X and Y, respectively, are indepen-
dent if and only if their joint characteristic function factorizes, i.e.,

ox.y(s,t) = E[exp(is' X +it"Y)] = E[ exp(is' X)] E[ exp(it"Y)] = ox(s) py(t), s € R?,t e R".

Since this identity should hold with any (s,t) € R? X R", in general it is recommended to use a
weighted [*-distance between ex.y and ¢x @y for the test of independence.

We specifically call the weighted L>-distance as distance covariance between X and Y if the
weight function is given as

Tp(X,Y) = c e, f lox (s, t) — ex(©)ey O s @B ds dt, B € (0,2),
Rq-H

where the constants ¢, for d > 1 are chosen such that ¢4 fRd(l — cos(s'x)) [x|"@Pdx = |s|f . The
quantity 7g(X, Y) is finite under suitable moment conditions on X, Y. The corresponding distance
correlation is given by
) T5(X.Y)

VX X) T5(Y,Y)
Of course, X and Y are independent if and only if Rg(X, Y) = T(X,Y) = 0. Thanks to the choice

of the weight function, Tg(X, Y) has an explicit form: assuming that (X;,Y;), i = 1,2,..., are iid
copies of (X,Y), we have

Ry(X,Y)

T(X,Y) = E[IX; - XoF|Y; - Yol'] + E[IX; - XoPIE[Y; - Y2F] - 2E[IX; - XoF Y - Y5,

and Rg(cX, cY) = Rg(X,Y) for c € R, i.e., Rg is scale-invariant.

With the final form, the distance covariance for vectors is easily extended into that for ran-
dom fields. Let (X,Y) be a pair of random fields on B C R? and define the norm || fl, =
(B! fB f2(u)du)1/ 2. The distance covariance Tp(X,Y), B € (0,2), between two random fields

X, Y on some bounded Borel set B ¢ R? of finite positive Lebesgue measure is defined by
Tg(X. Y) = E[IX) = X2l6 Y1 = V2If] + E[IX) -~ XaIB] E[|[Y: — Yalf]
- 2E[IX, - X2IB1IY1 - Y3lf51,

where (X;,Y;),i=1,2,..., are iid copies of (X, Y), and the distance correlation Rg(X, Y) is defined
correspondingly. We apply the statistic Rg(X, Y) to an independence for random fields.



Usually a sample of whole paths of (X, Y) is rarely at our disposal, and we observe (X, Y) on a
lattice with equidistant grid sizes or observe (X, ¥) at random locations. Accordingly asymptotic
behavior of the test statistic depends on each of sampling schemes. We provide asymptotic theory
for the sample distance correlation in both situations and show bootstrap consistency. The latter
fact allows one to build a test for independence of X and Y based on the considered discretizations
of these fields. We illustrate the performance of the bootstrap test in a simulation study involv-
ing fractional Brownian and infinite variance stable fields. The independence test is applied to
Japanese meteorological data, which are observed over the entire area of Japan.

Main contents

1. Distance covariance for random fields on a lattice in [0, 1].

We provide asymptotic theory for the lattice case on B = [0, 1]¢ for increasing intensity p which
is the total (deterministic) number of grid points. We show that the discretized sample distance
correlation converges to non-discretized whole path sample distance correlation as p,, — oo de-
pending on the sample size n — oo. Therefor they have the same asymptotic distribution. We
show the bootstrap consistency for this sampling scheme.

2. Distance covariance for random fields at random locations.
We define Tﬁ(X(p), Y®)) and Rﬁ(X(p), Y®) for non-lattice based discretizations X, Y?) of X, Y
on B. We choose a random number N, of random locations (U;) where the processes X, Y are ob-

served. Typically, these locations are uniformly distributed on B and N), 3 o as p increases with
the sample size n to infinity. We show that the sample distance correlation at random locations
well approximate the whole path sample distance correlation as p, — oo0. Moreover we show
that n T,,ﬂ(X(l’), Y")) conditional on (N®) p>0 has the same weak limit as n T, g(X, Y). We provide
consistency of a suitable bootstrap procedure in this case.

3. A Monte Carlo study.

We conduct a Monte Carlo study of the finite sample behavior of the sample distance correlation
for § = 1. We consider a fractional Brownian sheet and, as a heavy-tailed alternative, we choose
symmetric 1.8-stable Lévy sheets. The observations are given either on a lattice or at random lo-
cations in [0, 1]2. In addition, we illustrate the performance of the bootstrap procedure for the test
for independence based on distance correlation in the cases of fixed locations on a lattice and of
randomly scattered locations. We focus on independent pairs X, Y, Brownian or 1.8-stable sheets.

4. An application to Japanese meteorological data.

We apply our results to Japanese meteorological data. We choose the 3 most fundamental fac-
tors: temperature (temp), precipitation (prec) and wind speed (wind) which have been observed
for a long time and over a wide range of Japan. We focus on the distance correlations for the
pairs (prec & temp), (prec & wind), (temp & wind) and conduct the bootstrap tests for pair-wise
independence.
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Time Series Quantile Regressions by using Random Forest
(7 Y& L7+ VA2 HWRERIG LA EN)

Ryotaro Shibuki* , Tomoshige Nakamura' , Hiroshi Shiraishit

In this paper, we discuss an estimation procedure of conditional quantile by using random forests in time
series setting. Our study is an extension of the quantile random forest (QRF) by Meinshausen (2006), the
generarized random forest (GRF) by Athey et. al (2019) and random forest in time series setting by Davis and
Nielsen (2020).

Model Let (g;);>1be a sequence of i.i.d. random variables with E[e;] = 0 and E[¢?] < oo, and fix an integer

p > 1. Given a measurable function g : R? — R, define the process (Y;):>1 recursively by
Vi =9(Xe)+e, Xi=o1,....Yip). (1)

In addition to the initial data n = (Yp,Y_q,---,Y1_,), suppose that we have T observations Y7,...,Yr from
the model (1) available and that we group them in input-output pairs, Dr = {(X1,Y1),...,(Xr,Yr)}. For
each fixed value 7 € (0,1), we seek forest-based (function) estimator of ¢7 : RP — R defined by a solution of

local estimating equation of the form
U7 (g, ®) == E[Y, (V)| Xy = 2] =0, forallzeRy (2)

where 7 (y) = 7 — 1y<q)- Let ¢ = (¢f(x))zerr be the solution of (2) under the model (1). We assume that
there exists ¢f (x) for all x € RP and 7 € (0, 1).

Double sample We next define our random forests following Athey et. al (2019). Our random forests consists

of the double sample trees, which are regression trees based on two subsamples Z; and Js from sample Drp.

Definition 1. (Double Sample) Suppose that sample Dr is available and the sub-sample size s = s(T) with
s < T is provided. Let

Ay = {A:AIuAJ) C{1,2,...,T}AT N A7) =0, |AT| = H 47| = ﬂ}

2 2
For any A = AT U A7) € A,, we define two sub-samples T, and Js by Ty = Dz, Js = Dz where Dy =
{(Xh}/t)}tEA'-

Splitting rule We next define splitting rule in order to construct the double-sample regression trees following
Wager and Athey (2018).

Definition 2. (Splitting rule) Given subsample Js in Definition 1, we define a sequence of partitions Py, P1, . ..
by starting form Py = {RP} and then, for each £ > 1, construct Py from Py—_1 by replacing one set (parent node)
P € Py by (child node) Cy :={x = (z1,...,2p) € PCRP : 2 <(} and Cy :={x = (z1,...,2,) e PCRP:
xe > (}, where the split direction § € {1,...,p} is randomly chosen (i.e., random split) .
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Double-sample regression trees A given partition A of R? is called “recursive” if A = P, for some ¢ > 0,
where Py, ..., P, are obtained as above. Note that the splitting rules determining how to choose node, direction
and position of a split may depend on the data Dy, the double samphng procedure A € A, and the sequence
of independent random splittings £ = {;}i=1,... ¢ with & " Z. By using the recursive partition A, we define

our double-sample regression trees.
Definition 3. Given a recursive partition A(A,§,Dr) = {L1,..., Lz} and a fized x € R g € R,7 € (0,1),
our double-sample regression tree T (q,x; A, &, Dr) is defined by

Lix.era(x)} .+
Tla,ai 4,8 Dr) = 37 —=e by (1)
teAT A

where La(x) = {X;: X, € L(x)} NZ, and L(z) € A(A, &, Dr) is a leaf containing = (i.c., © € L(x)).
Random Forests According to Wager and Athey (2018), the predictor T defined by Definition 3 is called

“k- PNN predictor” if the assumption (A-3) is satisfied. Then, we define our random forests following Athey
et. al (2019).

Definition 4. For a fized x € R?, g € R,7 € (0,1), our forest score is defined by

1
\I/’}—‘(qvw) = |A| Z T(q,w A £ DT Zat

1 @
where ay(x) = \Tlsl Yoaea, aar(x) and aa(z) = %

Quantile estimator By using the above random forest, we can define an estimator of the conditional quantile

as follows.

Definition 5. For each 7 € (0,1) and given X; = x, we define an estimator of qI(x) by

-] |

Theorem 1. Under some regularity conditions and subsample size s(T) satisfies s(T)/T — 0 and s(T) — oo

gr(z) € argmm{

as T — oo. For each T € (0,1) and « € RP, any sequence of estimators ¢7-(x) converges in probability to ¢ (x),
that is,

§7(x) LN qi(x) as T — oco.
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High-Dimensional Statistical Method

Tsutomu T. TAKEUCHI*?, Kai T. KONO?, Kazuyoshi YATA, Makoto AOSHIMA?Z, Aki ISHII%,
Kento EGASHIRAS, Kouichiro NAKANISHI®, Suchetha COORAY™", Kotaro KOHNO’
1. Division of Particle and Astrophysical Science, Nagoya University, Nagoya 464-8602, Japan
2. The Research Center for Statistical Machine Learning, the Institute of Statistical Mathematics, Tachikawa, Tokyo 190-8562, Japan
3. Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

4. Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan

5. Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8571, Japan

6. The ALMA Project, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
7. Institute of Astronomy, the University of Tokyo, Mitaka, Tokyo 181-0015, Japan
T JSPS Research Fellow (DC1)

1. Galaxy Formation and Evolution

A galaxy is a huge agglomeration of stars, interstellar medium (ISM: gas and dust), and dark matter
(DM), a complex system with a complicated interaction between each component. There are a few
billions of galaxies in the observable Universe, which delineate the appearance of the visible Universe
at optical wavelengths. However, galaxies have formed from a tiny (order of ~ 107°) fluctuation of
matter (mainly DM) in the early Universe, when the age of the Universe was only 380,000 yr. The
initial Gaussian fluctuations of DM start to grow by gravitational interactions, finally to form
virialized structures called dark halos. The dark halos approach each other and finally merge to form
larger halos. The formation proceeds from smaller to larger structures. This is the so-called
hierarchical structure formation, currently the most reliable scenario of the structure formation in the
Universe. During the merging of dark halos, the baryonic gas falls into the gravitational potential
wells of DM and is compressed there to form first stars and galaxies. Finally, some galaxies merge
and form larger galaxies. Present-day large galaxies (Up t0 Mparyon ~ 102 Mo) have formed in the
merger process. Strong merging process is often accompanied by an effective compression of gas,
inducing burst of star formation. Therefore, galaxy evolution is a highly complex process that depends
on the environment of galaxies (number density of ambient galaxies and gas), as well as their internal
processes. The formation and evolution of galaxies are regarded as one of the most important
phenomena in the history of the Universe ranging of 13.8 billion years.

2. Evolution of the Interstellar Medium and Star Formation in Galaxies
2.1 Star formation in the interstellar medium

The most important internal physical process that drives the galaxy evolution is the star formation.
The star formation proceeds as follows: 1) the interstellar medium (ISM) gravitationally contracts, 2)
the ISM cools down and changes its phase as ionized, atomic, and then molecular gas, 3) high-density



molecular gas clumps are formed, and 4) the nuclear fusion ignites. Since stars form in molecular
clouds, it is important to elucidate the physical state of the molecular clouds for the understanding of
galaxy evolution. Observationally, an empirical relation between the star formation rate (SFR) and
the gas mass density is known (Kennicutt-Schmidt law: Schmidt 1959; Kennicutt 1989, 1998). The
understanding of the fundamental processes in the ISM is also expected to be a clue to explain the
relation.

2.2 Spectroscopic observation of the ISM

Direct laboratory experiments are impossible for most of the problems in astronomy. Instead, only
a unique method to obtain the physical information of the ISM in remote objects. Particularly, since
the electromagnetic emission of astronomical molecules are mainly emitted as the radio emission
lines, the astrophysics of the molecular clouds has been developed in radio astronomy. The largest
and most efficient observational facility to observe molecular emission lines is the Atacama Large
Millimeter/Submillimeter Array (ALMA).

Modern astronomical spectroscopic facilities as ALMA can provide tremendous amount of
information on the atoms, molecules, ions, and dust in the ISM. However, spectroscopic observations
are very time-consuming in general, and mapping an extended object by observing many positions
on the sky is not easy. As a result, the number of independent sample size (number of observed
positions) n is much smaller than the wavelength/frequency dimension d, i.e., n < d. Such data are
called high-dimensional low-sample size (HDLSS) data. Such a problem was regarded as an ill-posed
problem in traditional astronomy and has been simply given up to study further. It has long been
believed that we must make d smaller than n by throwing away the information of the data, in order
to analyze such type of problem. Obviously a method to make a maximal use of the information of
the data is desirable.

2.3 High-dimensional statistics

In a research field other than astronomy, for example in genomics, it is not rare to handle data with
the dimension of the base sequence d ~ 10° while the sample size n ~ 100. A new statistical method
to deal with the HDLSS data has been developed in recent decade, which is referred to as the high-
dimensional statistical method. The high-dimensional statistics is continuously providing new
findings (e.g., Aoshima 2018).

In this study, we apply the high-dimensional statistics to the spectroscopic mapping data obtained
by ALMA. As mentioned above, the observational cost of spectroscopic mapping is very expensive,
and for the ALMA observation, the sample size is at most n ~ 200, while the frequency dimension
isd ~2000. Thus, the spectroscopic map of the ALMA is typically HDLSS. In traditional astronomy,
they extracted some emission lines that are already known to be useful and used them to classify
objects. However, ALMA revealed that molecular emissions appear to be significantly different
even between neighboring molecular clouds in the same galaxy (Fig. 1), and the limitation of the



traditional method was clarified. The excessively huge amount of information obscures the relation
between the evolution of the molecular cloud and star formation. The high-dimensional statistics is
expected to make it possible to classify the molecular clouds by using all the emission lines, which
has been considered to be forlorn.
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Figure 1: The spectral map of the central region of a starburst galaxy NGC 253 by ALMA (adopted from
Ando et al. 2017). Left: spectra of star forming regions, Right: corresponding regions in NGC 253.

3. Application of the High-Dimensional PCA

The spatial dimension of the map of the central region of NGC 253 is 231, and the spectral
dimension is 2248, namely n = 231 and d = 2248, typical HDLSS data. We applied the high-
dimensional statistical analysis to the original ALMA spectral mapping data of NGC253 (Fig. 2).
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Figure 2: The result of the high-dimensional PCA to the NGC 253. Left: eigenvalue distribution, Right:
distribution of the PC1 and 2.

It is remarkable that the complicated molecular spectra are characterized by first a few PCs. The
PC1 and 2 are particularly dominant, and show a butterfly-like pattern. The physical meaning of these
features are simple. The molecular clouds are coherently rotating around the center of the galaxy,
which causes a systematic Doppler shift of the spectral lines. Thus, PC1 represents the total intensity
of the spectral lines, and PC2 shows the Doppler shift (blueshift and redshift) of the lines.

Then we further proceeded the PCA by eliminating the effect of the Doppler shift to explore more
subtle features in the spectra. The result of the PCA to the Doppler-corrected spectra is presented in



Fig. 3. New PC2 is much smaller than the original one, and there is no butterfly pattern in the PC
distribution. It shows that the systemic rotation is well eliminated. By examining the spatial
distribution of the PCs on the map of the star forming regions, we discovered that the new PC2 and
PC3 represent the effect of local expansion of these regions.
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Figure 3: The result of the high-dimensional PCA to the Doppler-corrected spectral map of NGC 253. Left:
eigenvalue distribution, Right: distribution of the PC1, 2, and 3.

4. Conclusion

Galaxies ubiquitously exist in the present-day Universe, but they have been formed from a tiny
fluctuation of matter in the early Universe. Evolution of galaxies is mainly driven by the star
formation, a transition from ISM to stars. Various phases of the ISM are related, and the evolution of
the ISM is a key to complete the understanding of the galaxy evolution. Spectroscopic observations
are of vital importance to extract and interpret the information of matter in galaxies. Spectroscopic
mapping and similar methods are fundamentally important to reveal the ISM physics, but the data are
high-dimensional low sample size. We summarize the conclusions from this study.

1. We applied the high-dimensional PCA on the NGC 253 spectral map. ALMA mapping data
are typically HDLSS in general, and in this case n = 231 and d = 2228.

2. Very large variety in the molecular line spectra of NGC253 map can be described only by two
PCs. Each PC consists of ~ 20 elements, much fewer than d. Because these elements may be
a part of same features, the key features may be reduced to several.

3. The high-dimensional PCA successfully chose two PCs that reproduce the general properties
of the ALMA spectroscopic map of NGC253.

4. The controlling feature was HCN(4-3) rotational lines. PC1 describes the total intensity of the
lines, and PC2 represents the Doppler shift caused by the systemic rotation.

5. After correcting the Doppler shift due to the systemic rotation, we could obtain information
on the smaller-scale velocity field described by PC2 (new) and PC3. These are caused by
outflow of starburst regions.

We stress that this result is not obtained by choosing a handful of features by hand, but by making

use of the full information of the high-dimensional data.



Statistical Inference for Glaucoma Detection !
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Abstract

This talk will review some of the statistical techniques used in the
analysis and detection of one of the most commonly encountered eye
diseases, Glaucoma. By means of some of the recent artificial intel-
ligence algorithms, ophthalmologists are employing modern machine
learning technologies such as CNN and its variates to assist in early
detection of eye symptoms in Glaucoma studies. This talk will address
some of the related issues and discuss the potential of statistical ideas
in these studies. Some examples will be given.
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1 Introduction

We consider models for count time series, which allow for the mean process to change according to the
values of an unobservable discrete random variable. Such models are directly related to Markov switching
AR models (see Hamilton (1994, Ch.22), Cappé et al. (2005) and Frithwirth-Schnatter (2006, Ch. 11-12)).
This class of processes is defined by regime specific models where transition among different regimes
is determined by the state of an unobserved Markov chain. The conditional distribution of the process,
given the past and the specific regime, is assumed to be Poisson with a time-varying mean modelled by a
non-linear autoregressive infinite order model. The Poisson distributional assumption has been employed
for modeling count time series by several authors including Rydberg and Shephard (2000), Davis et al.
(2003), Ferland et al. (2006) and Fokianos et al. (2009), among others. The aim of this contribution is to
extend this framework to Markov switching Poisson processes which can deal with complex dynamics
and take into account several issues found in count data including proper modeling of non-linearities,
overdispersion, multimodal conditional distribution and outliers. In the context of Gaussian time series,
these issues were examined by Le et al. (1996) and Wong and Li (2000), among others.

Count time series analysis is a research topic receiving considerable attention over the last years, see
Kedem and Fokianos (2002, Sec 4 & 5) and the recent edited volume by Davis et al. (2016) for several
additional references. INARCH (INteger ARCH) and INGARCH (INteger GARCH) processes have been
found useful in applications because they allow for estimation, model assessment and forecasting by
employing existing statistical software. They belong to a broad class of models that falls under the ex-
ponential family framework; see Douc et al. (2017) who provide a unified point of view for time series
generalized linear models. This study includes models and associated inference for mixtures of count
time series models, a topic which has not attracted a lot of attention. Related early work was given by
Albert (1991). Subsequently Carvalho and Tanner (2005, 2007) proposed a mixture-of-experts approach to
model nonlinearities in count time series models. These authors studied maximum likelihood estimation,
investigated identifiability and asymptotic normality of the estimates, and employed the AIC and BIC for
selecting the number of mixture components in the model. However, they imposes strict conditions for
developing asymptotic inference and their study focused explicitly on log-linear models for count time
series. A mixture of linear models was considered by Zhu et al. (2010) but the authors did not provide the-
oretical evidence about its properties. More recently, Berentsen et al. (2018) applied a Markov-switching
Poisson log-linear model autoregressive model to a study of corporate defaults. For the case of continuous
valued time series, studies of mixture models were given by Jacobs et al. (1991), Le et al. (1996), Francq and
Roussignol (1998) and Francq and Zakoéian (2001), among others. In addition, Wong and Li (2000, 2001)



have used a two-component mixture model to extend AR and conditional ARCH models, respectively.
Stability properties of such models have been studied by Saikkonen (2007) and some further work is given
by Kalliovirta et al. (2015). In the context of GARCH models see Francq et al. (2001) while ¢-distributed
autoregressive models were considered by Wong et al. (2009). Mixtures of AR models, under a Bayesian
framework, have been considered by Wood et al. (2011), among others.

The main goals of this work is to fill several gaps in the literature of mixture models for count time
series models. Precisely,

1. We introduce Markov switching non linear autoregressive Poisson models and study their properties
by considering two cases: (a) For the mixture setup, we show that infinite order models are weakly
dependent. (b) For the Markov switching case, we prove that finite order models are geometric
B-mixing.

2. We study the statistical properties of the maximum likelihood estimator for the case of finite order
autoregression of Markov switching models.

3. We show that the marginal likelihood ratio test for testing the number of hidden regimes converges
to a Gaussian process. This fact implies that the BIC estimator is consistent estimator for selecting
the true number of regimes.

4. We provide a counterexample which shows that estimation of the true number of regimes, under a
misspecified GARCH type count time series model, is not possible.

5. We apply the theoretical results to the weekly number of E.coli cases and compare mixture models
to models with interventions.
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=B+ B1w1i+ 0+ B Thi £ 00 Tpe 1+ + 00 2p, 0+,
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RERANCT S B Ol B, BRDIE IV, 22U, |8 = S0 18] 5 5. CofERi

j=1

LASSO #E& & MEh, A\, = 0o (n — 00) £ ZDOMOFRMAD S & THnL ERMEEZRD 2 & 29
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Ln(B) = lly = XBI” + 2 > _ 1817, (2)
j=1
72L0<y< 1235 ZOHERITV vy PHERLMTINTVWS. BROZ LS, 7
Uy SHEECBWTHEYIR N, OEBCHHPEEICRS. Unezu et al. (2019) 1BV TIE, p, 1&
nATHRIE LR WG, LA LB ET L X D R0 —RLEEE T LD T T AIC Bl EEHEEL
B ZTw3. —}T, Wang et al. (2009) T, ##EET LD T T, ET7/LERICBE L T8k Z
2 BIC B oFHEHEEZ 5 2 TW5. Huang et al. (2008) TlX, A 7 7 e Midn 3, #HER
B AHDEIERMN, WA 2R, BB OBALRICE LT —BlE2Ho X S R 52
TWa. FlzIXy=1/2 LT, k, = k(EE), p, =logn £ BVWLGE, N, DA —X 12T 5
S, N /(04 (logn)3/4) — 0o (n — 00), Ay = o(n'/?) 2273, ZD X 57 N\, DRI,
A =308 THRWVWL, A\, = 10038 TH X \WZ ¥ IZk 3. T72b b5 Huang et al. (2008) DFEHE
A, OIFEFUCE L T, BTNV 2IZhRE. 2D, SEIOFHETIX, Huang et al.
(2008) DD T T N, ZEILDORHELR, —fBRAVELILE IS T 20 LTEZ6NE
ZRL,¥Ialb—2ayilIDZDORT7 =< Y RAEMIEL. 22 THOWE—RICEDLE
'&, Yamanishi (1998) I2 &k b G2 &7z, BAD EMBOLEIC (—1) 2R L dDEHEKRBEE L
FARERAIERa > P L XS T 4 1B T DTH S,

BE 3k

Huang, J., J. L. Horowitz, and S. Ma (2008). Asymptotic properties of bridge estimators in
sparse high-dimensional regression models. Ann. Statist. 36(2), 587-613.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.
Ser. B 58(1), 267-288.

Umezu, Y., Y. Shimizu, H. Masuda, and Y. Ninomiya (2019). AIC for the non-concave
penalized likelihood method. Ann. Inst. Statist. Math. 71(2), 247-274.

Wang, H., B. Li, and C. Leng (2009). Shrinkage tuning parameter selection with a diverging
number of parameters. J. R. Stat. Soc. Ser. B Stat. Methodol. 71(3), 671-683.

Yamanishi, K. (1998). A decision-theoretic extension of stochastic complexity and its appli-
cations to learning. IEEE Trans. Inform. Theory 44 (4), 1424-1439.



Gl

SRITDEIRICE T BREBMA S HIIERERESTEDEHRET
[2DWT

bHEEEE K - fLIR EAER
eHEEEE K - Pl BInhE
BUER MR AL

1. 3RTHEIRICE T BRMEAHIIEETIV.

3RILD Jx K x L BEIRIZBWTEZHNHET N EE XD, (j,k, 1) 2V OBIHIEL
ERTHERERE X &35, 72120, X &3 Y Sy Xju = n &9
FEBEHOMEZID, HRB n FERE TS, 7, (J,k, 1) BVORIVHERE pyy &
T5. Z0LE, WREKRRI ML X = (X111, -5 XyrL) D% IH 3 A Mkr(n,p)
RS BEITZODWTEZD. 22T, p= (pi11, ..., pyrL) THB. ZOLE, ZD
J x K x L 3E1£D v )VHERIZE T 2 & AF & i oG

mmm(.

j=1...,J,k=1,...,K,l=1,...,L)
b1

Ho :pjr =

Thsb. ZTIZT, ﬁjkl = Xjkl/n, ﬁjkl = Xj-lX-kl/(nX--l)7 THY, e (0,00) IZHEWN
TEHREINZFEMEBTHY, ¢(1)=¢'(1) =02 ¢"(1)=1 2H/=3HDLT 5.

2. IR EMREEDO M OEERRICED <E{EL.

Hy D% & TCORERGE Cyp DAMOWHEREIZE D RO LS ELEE R 5.
PT{C¢ < :L'|H0} ~ W1 +W2, Z Z T, W1 &i%ﬁ%l‘y ?7‘7*‘1@%%&1%0< IE:, W2
EAERE 2 ZRICANZHMBIATDH 5. Wy &, ZHAMOBESEREIZEITSYE
TV DI A ZFARGFRODAMAIZH LT, Yarnold [4] (2 &k 0 52 &7zl R H
DGEMATEASINZHINIGT 5. Wy IZEUTLANOREHA AL D 31D,

EIE. (Taneichi et al. [3])
B p(t) 236 M ATRET, ¢O) () 2%t =1 THllERS1F, Wy XKD & 5 IZHE
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1 3
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=u{l+¢ ()}, 0 =—%01— 5l2+ 5 (T3 +Ta), 1 = §JKT1 + 3T9 — (KT
+JT4), 2 = §J2K?Dy + 105 = J(K?Tg+ J°Ty), 93 = (—3JK = 1+ 17 + 1K) Ty
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