Monstrous Moonshine over the Integers

Scott Carnahan

Department of Mathematics University of Tsukuba

2019-9-2 The 64th Algebra Symposium

What is moonshine?

Strange connections between finite groups and modular forms

・ロト ・日本 ・モート ・モート

What is moonshine?

Strange connections between finite groups and modular forms

The connections should be "very special"

Infinitely many cases \Rightarrow not moonshine!

- 4 同 6 4 日 6 4 日 6

Monstrous Moonshine (1978-1992)

More monstrous moonshines Cyclic orbifolds over small rings Monster symmetry Gluing forms over small rings Further questions

Monstrous Moonshine (1978-1992)

Scott Carnahan Monstrous Moonshine over the Integers

イロン イヨン イヨン イヨン

Classification of finite simple groups (1982 or 2004)

Any finite simple group is one of the following

- A cyclic group of prime order
- An alternating group A_n $(n \ge 5)$
- A group of Lie type (16 infinite families)
- One of 26 sporadic simple groups

Largest sporadic: Monster \mathbb{M} , about $8 \cdot 10^{53}$ elements (Griess 1982). 194 irred. repres. of dim 1, 196883, 21296876, ...

イロト イヨト イヨト イヨト

Monstrous Moonshine (1978-1992)

More monstrous moonshines Cyclic orbifolds over small rings Monster symmetry Gluing forms over small rings Further questions

J-function as Hauptmodul

The quotient space $SL_2(\mathbb{Z}) \setminus \mathfrak{H}$ has genus zero. J generates the function field. Fourier expansion: $q^{-1} + 196884q + 21493760q^2 + \cdots (q = e^{2\pi iz})$

Coefficients of J and Irreducible Monster reps

- 196884 = 1 + 196883 (McKay, 1978)
- 21493760 = 1 + 196883 + 21296876 (Thompson, 1979)
- $864299970 = 2 \times 1 + 2 \times 196883 + 21296876 + 842609326$

How to continue this sequence?

McKay-Thompson conjecture: Natural graded rep $\bigoplus_{n=0}^{\infty} V_n$ of \mathbb{M} such that $\sum \dim V_n q^{n-1} = J$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Monstrous Moonshine (1978-1992)

More monstrous moonshines Cyclic orbifolds over small rings Monster symmetry Gluing forms over small rings Further questions

Idea: Physics forms a bridge

Solution: Frenkel, Lepowsky, Meurman 1988

Constructed a vertex operator algebra $V^{\natural} = \bigoplus_{n \ge 0} V_n^{\natural}$ (the Moonshine Module), such that $\sum_{n \ge 0} (\dim V_n^{\natural}) q^{n-1} = J$ and Aut $V^{\natural} = \mathbb{M}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Monstrous Moonshine (1978-1992)

More monstrous moonshines Cyclic orbifolds over small rings Monster symmetry Gluing forms over small rings Further questions

Refined correspondence

Thompson's suggestion: replace graded dimension with graded trace of non-identity elements.

Monstrous Moonshine Conjecture (Conway, Norton 1979)

There is a faithful graded representation $V = \bigoplus_{n \ge 0} V_n$ of the monster \mathbb{M} such that for all $g \in \mathbb{M}$, the series $T_g(\tau) = \sum_{n \ge 0} \operatorname{Tr}(g|V_n)q^{n-1}$ is the *q*-expansion of a congruence Hauptmodul (= "generates function field of genus 0 \mathfrak{H} -quotient").

イロト イヨト イヨト イヨト

First proof (Atkin, Fong, Smith 1980)

Theorem: A virtual representation of \mathbb{M} exists yielding the trace functions T_g . No construction.

Second proof (Borcherds 1992)

Theorem: The Conway-Norton conjecture holds for V^{\natural} .

イロト イポト イヨト イヨト

More monstrous moonshines

Scott Carnahan Monstrous Moonshine over the Integers

・ロン ・回 と ・ ヨン ・ ヨン

2

Moonshine for other groups?

Conway-Norton 1979, computations by Queen 1980. Example: Baby monster \mathbb{B} has irreps of dim 1,4371,96255,..., and the Hauptmodul for $\Gamma_0(2)^+$ is $q^{-1} + 4372q + 96256q^2 + \cdots$.

Main observation

If g has prime order p and g is in conjugacy class $pA \subset M$, then T_g has positive integer coefficients that "look like" representations of $C_M(g)$. For p = 2, $C_M(g) \cong 2.\mathbb{B}$, a central extension of Baby monster.

Conj 1: Generalized Moonshine (Norton 1987)

For each $g \in \mathbb{M}$ exists V(g) graded proj. rep. of $C_{\mathbb{M}}(g)$. Trace functions $Z(g, h; \tau)$ for commuting pairs satisfy modularity properties.

Conj 2: Modular Moonshine (Ryba 1994)

For each g in class pA, there is a vertex algebra V_g over \mathbb{F}_p with $C_{\mathbb{M}}(g)$ action. For each p-regular $h \in C_{\mathbb{M}}(g)$, the graded Brauer character of h on V_g is equal to T_{gh} .

(日) (部) (注) (注) (言)

Interpretation of Generalized Moonshine

V(g) - twisted sectors of a monster CFT. $Z(g, h; \tau)$ - genus 1 partition functions (with twisted boundary conditions). (Dixon, Ginsparg, Harvey 1988)

Interpretation of Modular Moonshine

 $V_g = \hat{H}^0(g, V_{\mathbb{Z}}^{\natural})$ - Tate cohomology of $V_{\mathbb{Z}}^{\natural}$, a self-dual integral form of V^{\natural} with \mathbb{M} symmetry. (Borcherds, Ryba 1996)

(日) (部) (注) (注) (言)

First advances (1990s)

Generalized moonshine: Existence and uniqueness (up to isom.) of $V^{\natural}(g)$ (Dong, Li, Mason 1997). Modular moonshine: Good properties, assuming existence of $V_{\mathbb{Z}}^{\natural}$ (Borcherds, Ryba 1996, 1998).

Later advances (2010s)

Generalized: Good properties of $Z(g, h; \tau)$. Modular: Existence of $V_{\mathbb{Z}}^{\natural}$.

イロン イヨン イヨン イヨン

Main breakthrough for both moonshines

- If V is strongly regular and holomorphic, and $g \in \operatorname{Aut}(V)$ is finite order, then there exists an abelian intertwining algebra structure on the direct sum of irreducible twisted modules

$${}^{g}V:=igoplus_{i=0}^{|g|-1}V(g^{i})$$

(van Ekeren, Möller, Scheithauer 2015)

・ロト ・回ト ・ヨト ・ヨト

Corollary (Cyclic orbifold construction)

Let V be a strongly regular and holomorphic vertex operator algebra, and $g \in Aut(V)$ finite order. Assume g is "anomaly-free" (i.e., eigenvalues of L(0) on V(g) are in $\frac{1}{|g|}\mathbb{Z}$). Decompose ${}^{g}V := \bigoplus_{i=0}^{|g|-1} V(g^{i})$ under canonical g action to get $\bigoplus V^{i,j}$, where $V = \bigoplus V^{0,j}$. Then $V/g := \bigoplus V^{i,\overline{0}}$ is a strongly regular holomorphic vertex operator algebra, and there is a canonical automorphism g^* such that $V^{i,0}$ is the $e^{2\pi\sqrt{-1i/|g|}}$ eigenspace.

イロン イヨン イヨン イヨン

Cyclic orbifold constructions of V^{\natural} from Leech lattice vertex operator algebra V_{Λ}

- Order 2 orbifold (Frenkel, Lepowsky, Meurman 1988)
- Order 3 orbifold (Chen, Lam, Shimakura 2016)
- Orders 5, 7, 13 (Abe, Lam, Yamada 2017)
- 46 classes of composite order (C 2017)

- confirms Tuite's orbifold correspondence (1992): Massless classes in $Co_0 \leftrightarrow$ non-Fricke classes in \mathbb{M} . For $p \in \{2, 3, 5, 7, 13\}$, $(V_{\Lambda}, p_a) \leftrightarrow (V^{\natural}, pB)$.

イロト イヨト イヨト イヨト

Cyclic orbifolds over small rings

Scott Carnahan Monstrous Moonshine over the Integers

・ロン ・回 とくほど ・ ほとう

Vertex algebras

A vertex algebra over a commutative ring R is an *R*-module *V*, with an element $\mathbf{1} \in V$ and a multiplication map $V \otimes_R V \to V((z))$, written $u \otimes v \mapsto Y(u,z)v = \sum u_n v z^{-n-1}$, satisfying: • $Y(1, z) = id_V z^0$ and $Y(a, z) \mathbf{1} \in a + zV[[z]]$. **2** For any $r, s, t \in \mathbb{Z}$, and any $u, v, w \in V$, $\sum_{i>0} {r \choose i} (u_{t+i}v)_{r+s-i}w =$ $\sum_{i>0} (-1)^{i} {t \choose i} (u_{r+t-i}(v_{s+i}w) -$ $(-\overline{1})^t v_{s+t-i}(u_{r+i}w))$

イロト イヨト イヨト イヨト

Example: Lattice vertex algebras over \mathbb{Z}

For any positive definite even unimodular lattice L there is a self-dual vertex algebra $(V_I)_{\mathbb{Z}}$ over \mathbb{Z} (Borcherds 1986). It is a \mathbb{Z} -form of Sym $(t^{-1}(\mathbb{C} \otimes L)[t^{-1}]) \otimes \mathbb{C}[L]$ spanned by $s_{\alpha_1,n_1}\cdots s_{\alpha_k,n_k}e^{\alpha}$, where e^{α} is a basis element of $\mathbb{C}[L]$, α_i are chosen from a basis of L, and the operator $s_{\alpha,k}$ is the z^k -coefficient of $\exp(\sum_{n>0} \frac{lpha(-n)}{n} z^n)$. Here, $\operatorname{Sym}(t^{-1}(\mathbb{C} \otimes L)[t^{-1}])$ is a representation of the Heisenberg algebra, with generators $\alpha(n) = \alpha t^{-n} \in L[t, t^{-1}] \oplus \mathbb{C}K$.

イロト イヨト イヨト イヨト

Vertex operator algebras

A vertex operator algebra over R with half central charge c is a vertex algebra V over R equipped with a "conformal element" ω and a \mathbb{Z} -grading $V = \bigoplus V_n$, such that

• If $u \in V_m$, $v \in V_n$, then $u_k v \in V_{m+n-k-1}$.

- The coefficients of $Y(\omega, z) = \sum L_n z^{-n-2}$ satisfy Virasoro relations: $[L_m, L_n] = (m-n)L_{m+n} + c {m+1 \choose 3} \delta_{m+n,0}$ id.
- Each V_n is a finite rank projective *R*-module, and L_0 acts on V_n by $n \cdot id$.

(D) (A A) (A B) (A B)

Abelian intertwining algebras over subrings of $\mathbb C$

An abelian intertwining algebra is a "braided commutative" generalization of vertex operator algebra, graded by an abelian group A with Eilenberg-MacLane abelian 3-cocycle (F, Ω) . These can be defined over any subring R of \mathbb{C} that contains not only all values of $F : A^{\times 3} \to \mathbb{C}^{\times}$ and $\Omega : A^{\times 2} \to \mathbb{C}^{\times}$, but also 1/N and $e^{\pi \sqrt{-1}/N}$, where $\Omega(a, a)^N = 1$ for all $a \in A$.

・ロト ・回ト ・ヨト ・ヨト

Key lemma

Let $V = \bigoplus_{i,j \in \mathbb{Z}/N\mathbb{Z}} V^{i,j}$ be a self-dual abelian intertwining algebra over \mathbb{C} , where each $V^{i,j}$ is an irreducible $V^{0,0}$ -module, and let $U = \bigoplus V^{0,j}$ and $W = \bigoplus V^{i,0}$. If R is a suitable subring of \mathbb{C} , and we are given self-dual R-forms U_R and W_R such that $U_R \cap V^{0,0} = W_R \cap V^{0,0}$, then they generate a self-dual R-form of V.

・ロン ・回と ・ヨン ・ヨン

Intermediate orbifolds (after Abe, Lam, Yamada)

Let $P_0 = \{2, 3, 5, 7, 13\}$. If p, q are distinct in P_0 , and $pq \notin \{65, 91\}$, then there is an automorphism \overline{g} of the Leech lattice of order pq, such that no non-identity power of \overline{g} has fixed points, and an order pq lift $g \in \operatorname{Aut}(V_{\Lambda})$. Then:

)
$$V_{\Lambda}/g^{p}\cong V_{\Lambda}/g^{q}\cong V^{\natural}$$

In particular, there are 2 copies of V^{\natural} inside the abelian intertwining algebra $\bigoplus_i V_{\Lambda}(g^i)$, which is generated by 2 copies of V_{Λ} .

Corollary

Let p, q be distinct elements of $P_0 = \{2, 3, 5, 7, 13\}$, such that $pq \notin \{65, 91\}$, and let $R_{pq} = \mathbb{Z}[1/pq, e^{\pi\sqrt{-1}/pq}]$. Then, there is a self-dual R_{pq} -form of the abelian intertwining algebra $\bigoplus_i V_{\Lambda}(g^i)$, and it contains 2 isomorphic self-dual R_{pq} -forms of V^{\natural} .

・ロト ・回ト ・ヨト ・ヨト

Monster symmetry

Scott Carnahan Monstrous Moonshine over the Integers

・ロト ・回 ト ・ヨト ・ヨト

æ

Symmetries of V_{Λ}

The Leech lattice Λ has $Co_0 = 2.Co_1$ symmetry. Aut $V_{\Lambda} \cong (\mathbb{C}^{\times})^{24}.Co_0$ (non-split extension). Let $p \in P_0$, $\overline{g} \in Co_0$ fixed-point free, order p. Then any order p lift $g \in Aut V_{\Lambda}$ has centralizer $(\mathbb{Z}/p\mathbb{Z})^{24/(p-1)}.C_{Co_0}(\overline{g})$. The same is true for suitably chosen automorphisms of the R-form, as long as R contains 1/p and $e^{\pi\sqrt{-1/p}}$.

・ロン ・回 と ・ 回 と ・ 回 と

Symmetries of V_R^{\natural}

The self-dual R_{pq} -forms of V^{\natural} naturally inherit an action of $G_p = p^{1+24/(p-1)} \cdot (C_{Co_0}(\bar{g^q})/\bar{g^q})$ from an abelian intertwining algebra containing $V_{R_{pq}}^{\natural}$ and $(V_{\Lambda})_{R_{pq}}$ (and similarly for G_q).

Maximal subgroups (from Wilson 2015)

When $p \in P_0$, G_p contains the Sylow *p*-subgroup of \mathbb{M} , and when $p \in \{2, 3, 5\}$, G_p is contained in a unique maximal subgroup of \mathbb{M} .

イロト イポト イヨト イヨト

Monster symmetry

If p, q are distinct elements of P_0 such that $pq \notin \{65, 91\}$, then G_p and G_q generate \mathbb{M} . In particular, the self-dual R_{pq} -forms of V^{\natural} have \mathbb{M} symmetry,

・ロン ・回と ・ヨン ・ヨン

Gluing forms over small rings

Scott Carnahan Monstrous Moonshine over the Integers

イロン スポン イヨン イヨン

Gluing data

Given a diagram $R_1 \rightarrow R_3 \leftarrow R_2$ of commutative rings, a gluing datum for vertex operator algebras is a triple (V^1, V^2, f) , where

- V^1 is a vertex operator algebra over R_1 ,
- 2 V^2 is a vertex operator algebra over R_2 , and
- $f: V^1 \otimes_{R_1} R_3 \to V^2 \otimes_{R_2} R_3$ is an isomorphism of vertex operator algebras over R_3 .

These form a category, where morphisms are pairs of maps satisfying a commutative square condition.

イロン イヨン イヨン イヨン

Effective gluing lemma

Let $i_1 : R \to R_1$ and $i_2 : R \to R_2$ be maps of commutative rings, such that either

- **1** i_1 and i_2 form a Zariski open cover, or
- **2** i_1 and i_2 are faithfully flat.

Then, the category of gluing data for $R_1 \rightarrow R_1 \otimes_R R_2 \leftarrow R_2$ is equivalent to the category of vertex operator algebras over R.

・ロン ・回と ・ヨン ・ヨン

Comparison of fixed points

Let $R_n = \mathbb{Z}[1/n, e^{\pi\sqrt{-1}/n}]$ and let $g \in pB$. Recall (V^{\natural}, pB) is orbifold dual to (V_{Λ}, pa) , and $V_{pq}^g \cong (V_{\Lambda})_{R_{pq}}^{\sigma}$. Then $V_{pq}^g \otimes_{R_{pq}} R_{pqr} \cong (V_{\Lambda})_{R_{pqr}}^{\sigma} \cong V_{pr}^g \otimes_{R_{pr}} R_{pqr}$.

*p*B-pure elementary subgroups (Wilson 1988)

For each $p \in P_0$, there is an elementary subgroup $H_p \subset \mathbb{M}$ of order p^2 , whose non-identity elements lie in conjugacy class pB.

イロト イポト イヨト イヨト

Construction of gluing datum

 V_{pq} and V_{pr} are generated by *g*-fixed point subalgebras for *g* ranging over H_p , so $V_{pq} \otimes_{R_{pq}} R_{pqr} \cong V_{pr} \otimes_{R_{pr}} R_{pqr}$ by uniqueness of generated self-dual forms.

Sufficiency of gluing data

From our isomorphisms

 $V_{pq} \otimes_{R_{pq}} R_{pqr} \cong V_{pr} \otimes_{R_{pr}} R_{pqr}$, we may produce a self-dual \mathbb{Z} -form with \mathbb{M} -symmetry by repeated gluing. Uniqueness comes from the fact that $\mathbb{M}\setminus\mathbb{M}/\mathbb{M}$ is a singleton.

Main result

There is a unique self-dual \mathbb{Z} -form $V_{\mathbb{Z}}^{\natural}$ of V^{\natural} such that $V_{\mathbb{Z}}^{\natural} \otimes R_{pq} \cong V_{pq}$. This form has \mathbb{M} -symmetry, and the natural inner product is positive definite.

Corollary

Modular moonshine conjecture.

Corollary

There exists a positive definite unimodular lattice of rank 196884 with a faithful monster action.

イロン イヨン イヨン イヨン

Further questions

Scott Carnahan Monstrous Moonshine over the Integers

・ロト ・回 ト ・ヨト ・ヨト

æ

Borcherds-Ryba proof of modular moonshine

- Easy part: $\sum_{n} \tilde{\mathrm{Tr}}(h|\hat{H}^{*}(g, V_{\mathbb{Z},n}^{\natural}))q^{n-1} = \sum_{n} \mathrm{Tr}(gh|V_{n}^{\natural})q^{n-1}$, where \hat{H}^{*} is the virtual module $\hat{H}^{0} \ominus \hat{H}^{1}$
- **2** Hard part: $\hat{H}^1(g, V_{\mathbb{Z}}^{\natural}) = 0$ for $g \in pA$.

Can we extend this to composite order g?

Conjecture (Borcherds-Ryba 1996) $\hat{H}^1(g, V_{\mathbb{Z}}^{\natural}) = 0$ for all Fricke classes g.

イロト イポト イヨト イヨト

Unifying Conjecture (Borcherds 1998)

For each $g \in \mathbb{M}$, let $R_g = \mathbb{Z}[e^{2\pi i/|g|}]$. Then there is a free $\frac{1}{|g|}\mathbb{Z}$ -graded R_g -supermodule \hat{V}_g with an action of $\mathbb{Z}/|g|\mathbb{Z}.C_{\mathbb{M}}(g)$, such that:

- $\ \, \hat{V}_1 = V_{\mathbb{Z}}^{\natural}.$
- If h ∈ C_M(g) satisfies (|g|, |h|) = 1, then $\hat{V}_{gh} \otimes_{R_{gh}} \mathbb{Z}/|h|\mathbb{Z} \cong \hat{H}^*(\tilde{h}, \hat{V}_g) \text{ for a lift } \tilde{h} \text{ of } h.$
- If g is Fricke, then $\hat{V}_g \otimes_{R_g} \mathbb{C} \cong V^{\natural}(g)$.
- If g is non-Fricke, then \hat{V}_g is a self-dual conformal vertex superalgebra.

Connections to other moonshines

Numerical evidence relating non-Fricke classes in $\mathbb{M} \leftrightarrow \text{Umbral moonshine}$ Fricke classes \leftrightarrow Skew-holomorphic moonshine No concrete conjectures yet (as far as I know).

・ロト ・ 日 ・ ・ ヨ ト

Thank you

Scott Carnahan Monstrous Moonshine over the Integers

・ロト ・回ト ・モト ・モト

Э