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What is moonshine?
Strange connections between finite groups and
modular forms

The connections should be “very special”

Infinitely many cases ⇒ not moonshine!
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Classification of finite simple groups (1982 or 2004)

Any finite simple group is one of the following

A cyclic group of prime order

An alternating group An (n ≥ 5)

A group of Lie type (16 infinite families)

One of 26 sporadic simple groups

Largest sporadic: Monster M, about 8 · 1053

elements (Griess 1982).
194 irred. repres. of dim 1, 196883, 21296876, . . .
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SL2(Z) action on complex upper half-plane H

Generators: ( 1 1
0 1 ) : z 7→ z + 1, ( 0 −1

1 0 ) : z 7→ −1/z

(Wikipedia)

J-function as Hauptmodul

The quotient space SL2(Z)\H has genus zero. J
generates the function field. Fourier expansion:
q−1 + 196884q + 21493760q2 + · · · (q = e2πiz)
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Coefficients of J and Irreducible Monster reps

196884 = 1 + 196883 (McKay, 1978)
21493760 = 1+196883+21296876 (Thompson, 1979)

864299970 = 2×1+2×196883+21296876+842609326

...
...

How to continue this sequence?

McKay-Thompson conjecture: Natural graded rep⊕∞
n=0 Vn of M such that

∑
dimVnq

n−1 = J .
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Idea: Physics forms a bridge

Monster J function
Conformal field theory

(Vertex operator algebras)

Solution: Frenkel, Lepowsky, Meurman 1988

Constructed a vertex operator algebra
V \ =

⊕
n≥0 V

\
n (the Moonshine Module), such that∑

n≥0(dimV \
n)qn−1 = J and AutV \ = M.
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Refined correspondence

Thompson’s suggestion: replace graded dimension
with graded trace of non-identity elements.

Monstrous Moonshine Conjecture (Conway, Norton
1979)

There is a faithful graded representation
V =

⊕
n≥0 Vn of the monster M such that for all

g ∈M, the series Tg(τ) =
∑

n≥0 Tr(g |Vn)qn−1 is
the q-expansion of a congruence Hauptmodul (=
“generates function field of genus 0 H-quotient”).
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First proof (Atkin, Fong, Smith 1980)

Theorem: A virtual representation of M exists
yielding the trace functions Tg .
No construction.

Second proof (Borcherds 1992)

Theorem: The Conway-Norton conjecture holds for
V \.
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More monstrous moonshines
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Moonshine for other groups?

Conway-Norton 1979, computations by Queen 1980.
Example: Baby monster B has irreps of dim
1, 4371, 96255, . . ., and the Hauptmodul for Γ0(2)+

is q−1 + 4372q + 96256q2 + · · · .

Main observation
If g has prime order p and g is in conjugacy class
pA ⊂M, then Tg has positive integer coefficients
that “look like” representations of CM(g).
For p = 2, CM(g) ∼= 2.B, a central extension of
Baby monster.
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Conj 1: Generalized Moonshine (Norton 1987)

For each g ∈M exists V (g) graded proj. rep. of
CM(g). Trace functions Z (g , h; τ) for commuting
pairs satisfy modularity properties.

Conj 2: Modular Moonshine (Ryba 1994)

For each g in class pA, there is a vertex algebra Vg

over Fp with CM(g) action. For each p-regular
h ∈ CM(g), the graded Brauer character of h on Vg

is equal to Tgh.

Scott Carnahan Monstrous Moonshine over the Integers



Monstrous Moonshine (1978-1992)
More monstrous moonshines

Cyclic orbifolds over small rings
Monster symmetry

Gluing forms over small rings
Further questions

Interpretation of Generalized Moonshine

V (g) - twisted sectors of a monster CFT.
Z (g , h; τ) - genus 1 partition functions (with
twisted boundary conditions).
(Dixon, Ginsparg, Harvey 1988)

Interpretation of Modular Moonshine

Vg = Ĥ0(g ,V \
Z) - Tate cohomology of V \

Z, a
self-dual integral form of V \ with M symmetry.
(Borcherds, Ryba 1996)
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First advances (1990s)

Generalized moonshine: Existence and uniqueness
(up to isom.) of V \(g) (Dong, Li, Mason 1997).
Modular moonshine: Good properties, assuming
existence of V \

Z (Borcherds, Ryba 1996, 1998).

Later advances (2010s)

Generalized: Good properties of Z (g , h; τ).

Modular: Existence of V \
Z.

Scott Carnahan Monstrous Moonshine over the Integers



Monstrous Moonshine (1978-1992)
More monstrous moonshines

Cyclic orbifolds over small rings
Monster symmetry

Gluing forms over small rings
Further questions

Main breakthrough for both moonshines

- If V is strongly regular and holomorphic, and
g ∈ Aut(V ) is finite order, then there exists an
abelian intertwining algebra structure on the direct
sum of irreducible twisted modules

gV :=

|g |−1⊕
i=0

V (g i)

(van Ekeren, Möller, Scheithauer 2015)
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Corollary (Cyclic orbifold construction)

Let V be a strongly regular and holomorphic vertex
operator algebra, and g ∈ Aut(V ) finite order.
Assume g is “anomaly-free” (i.e., eigenvalues of
L(0) on V (g) are in 1

|g |Z).

Decompose gV :=
⊕|g |−1

i=0 V (g i) under canonical g
action to get

⊕
V i ,j , where V =

⊕
V 0,j . Then

V /g :=
⊕

V i ,0 is a strongly regular holomorphic
vertex operator algebra, and there is a canonical
automorphism g ∗ such that V i ,0 is the e2π

√
−1i/|g |

eigenspace.
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Cyclic orbifold constructions of V \ from Leech
lattice vertex operator algebra VΛ

1 Order 2 orbifold (Frenkel, Lepowsky, Meurman
1988)

2 Order 3 orbifold (Chen, Lam, Shimakura 2016)
3 Orders 5, 7, 13 (Abe, Lam, Yamada 2017)
4 46 classes of composite order (C 2017)

- confirms Tuite’s orbifold correspondence (1992):
Massless classes in Co0 ↔ non-Fricke classes in M.
For p ∈ {2, 3, 5, 7, 13}, (VΛ, pa)↔ (V \, pB).
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Vertex algebras

A vertex algebra over a commutative ring R is an
R-module V , with an element 1 ∈ V and a
multiplication map V ⊗R V → V ((z)), written
u ⊗ v 7→ Y (u, z)v =

∑
unvz

−n−1, satisfying:
1 Y (1, z) = idV z

0 and Y (a, z)1 ∈ a + zV [[z ]].
2 For any r , s, t ∈ Z, and any u, v ,w ∈ V ,∑

i≥0

(
r
i

)
(ut+iv)r+s−iw =∑

i≥0(−1)i
(
t
i

)
(ur+t−i(vs+iw)−

(−1)tvs+t−i(ur+iw))
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Example: Lattice vertex algebras over Z
For any positive definite even unimodular lattice L
there is a self-dual vertex algebra (VL)Z over Z
(Borcherds 1986). It is a Z-form of
Sym(t−1(C⊗ L)[t−1])⊗ C[L] spanned by
sα1,n1 · · · sαk ,nke

α, where eα is a basis element of
C[L], αi are chosen from a basis of L, and the
operator sα,k is the zk-coefficient of

exp(
∑

n>0
α(−n)

n zn). Here, Sym(t−1(C⊗ L)[t−1]) is
a representation of the Heisenberg algebra, with
generators α(n) = αt−n ∈ L[t, t−1]⊕ CK .
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Vertex operator algebras

A vertex operator algebra over R with half central
charge c is a vertex algebra V over R equipped with
a “conformal element” ω and a Z-grading
V =

⊕
Vn, such that

1 If u ∈ Vm, v ∈ Vn, then ukv ∈ Vm+n−k−1.
2 The coefficients of Y (ω, z) =

∑
Lnz

−n−2

satisfy Virasoro relations:
[Lm, Ln] = (m − n)Lm+n + c

(
m+1

3

)
δm+n,0 id.

3 Each Vn is a finite rank projective R-module,
and L0 acts on Vn by n · id.

Scott Carnahan Monstrous Moonshine over the Integers



Monstrous Moonshine (1978-1992)
More monstrous moonshines

Cyclic orbifolds over small rings
Monster symmetry

Gluing forms over small rings
Further questions

Abelian intertwining algebras over subrings of C
An abelian intertwining algebra is a “braided
commutative” generalization of vertex operator
algebra, graded by an abelian group A with
Eilenberg-MacLane abelian 3-cocycle (F ,Ω). These
can be defined over any subring R of C that
contains not only all values of F : A×3 → C× and
Ω : A×2 → C×, but also 1/N and eπ

√
−1/N , where

Ω(a, a)N = 1 for all a ∈ A.
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Key lemma

Let V =
⊕

i ,j∈Z/NZ V
i ,j be a self-dual abelian

intertwining algebra over C, where each V i ,j is an
irreducible V 0,0-module, and let U =

⊕
V 0,j and

W =
⊕

V i ,0. If R is a suitable subring of C, and
we are given self-dual R-forms UR and WR such
that UR ∩ V 0,0 = WR ∩ V 0,0, then they generate a
self-dual R-form of V .
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Intermediate orbifolds (after Abe, Lam, Yamada)

Let P0 = {2, 3, 5, 7, 13}. If p, q are distinct in P0,
and pq 6∈ {65, 91}, then there is an automorphism
ḡ of the Leech lattice of order pq, such that no
non-identity power of ḡ has fixed points, and an
order pq lift g ∈ Aut(VΛ). Then:

1 VΛ/g
p ∼= VΛ/g

q ∼= V \

2 VΛ/g ∼= VΛ.

In particular, there are 2 copies of V \ inside the
abelian intertwining algebra

⊕
i VΛ(g i), which is

generated by 2 copies of VΛ.
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Corollary

Let p, q be distinct elements of P0 = {2, 3, 5, 7, 13},
such that pq 6∈ {65, 91}, and let

Rpq = Z[1/pq, eπ
√
−1/pq]. Then, there is a self-dual

Rpq-form of the abelian intertwining algebra⊕
i VΛ(g i), and it contains 2 isomorphic self-dual

Rpq-forms of V \.
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Symmetries of VΛ

The Leech lattice Λ has Co0 = 2.Co1 symmetry.
AutVΛ

∼= (C×)24.Co0 (non-split extension).
Let p ∈ P0, ḡ ∈ Co0 fixed-point free, order p. Then
any order p lift g ∈ AutVΛ has centralizer
(Z/pZ)24/(p−1).CCo0(ḡ). The same is true for
suitably chosen automorphisms of the R-form, as
long as R contains 1/p and eπ

√
−1/p.
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Symmetries of V \
R

The self-dual Rpq-forms of V \ naturally inherit an
action of Gp = p1+24/(p−1).(CCo0(ḡ

q)/ḡ q) from an

abelian intertwining algebra containing V \
Rpq

and

(VΛ)Rpq
(and similarly for Gq).

Maximal subgroups (from Wilson 2015)

When p ∈ P0, Gp contains the Sylow p-subgroup of
M, and when p ∈ {2, 3, 5}, Gp is contained in a
unique maximal subgroup of M.
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Monster symmetry

If p, q are distinct elements of P0 such that
pq 6∈ {65, 91}, then Gp and Gq generate M. In
particular, the self-dual Rpq-forms of V \ have M
symmetry,
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Gluing data

Given a diagram R1 → R3 ← R2 of commutative
rings, a gluing datum for vertex operator algebras is
a triple (V 1,V 2, f ), where

1 V 1 is a vertex operator algebra over R1,
2 V 2 is a vertex operator algebra over R2, and
3 f : V 1 ⊗R1

R3 → V 2 ⊗R2
R3 is an isomorphism

of vertex operator algebras over R3.

These form a category, where morphisms are pairs
of maps satisfying a commutative square condition.
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Effective gluing lemma

Let i1 : R → R1 and i2 : R → R2 be maps of
commutative rings, such that either

1 i1 and i2 form a Zariski open cover, or
2 i1 and i2 are faithfully flat.

Then, the category of gluing data for
R1 → R1 ⊗R R2 ← R2 is equivalent to the category
of vertex operator algebras over R .
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Comparison of fixed points

Let Rn = Z[1/n, eπ
√
−1/n] and let g ∈ pB. Recall

(V \, pB) is orbifold dual to (VΛ, pa), and
V g
pq
∼= (VΛ)σRpq

. Then

V g
pq ⊗Rpq

Rpqr
∼= (VΛ)σRpqr

∼= V g
pr ⊗Rpr

Rpqr .

pB-pure elementary subgroups (Wilson 1988)

For each p ∈ P0, there is an elementary subgroup
Hp ⊂M of order p2, whose non-identity elements
lie in conjugacy class pB.
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Construction of gluing datum

Vpq and Vpr are generated by g -fixed point
subalgebras for g ranging over Hp, so
Vpq ⊗Rpq

Rpqr
∼= Vpr ⊗Rpr

Rpqr by uniqueness of
generated self-dual forms.

Sufficiency of gluing data

From our isomorphisms
Vpq ⊗Rpq

Rpqr
∼= Vpr ⊗Rpr

Rpqr , we may produce a
self-dual Z-form with M-symmetry by repeated
gluing. Uniqueness comes from the fact that
M\M/M is a singleton.
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Main result

There is a unique self-dual Z-form V \
Z of V \ such

that V \
Z ⊗ Rpq

∼= Vpq. This form has M-symmetry,
and the natural inner product is positive definite.

Corollary

Modular moonshine conjecture.

Corollary

There exists a positive definite unimodular lattice of
rank 196884 with a faithful monster action.
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Borcherds-Ryba proof of modular moonshine

1 Easy part:
∑

n T̃r(h|Ĥ∗(g ,V \
Z,n))qn−1 =∑

n Tr(gh|V \
n)qn−1, where Ĥ∗ is the virtual

module Ĥ0 	 Ĥ1

2 Hard part: Ĥ1(g ,V \
Z) = 0 for g ∈ pA.

Can we extend this to composite order g?

Conjecture (Borcherds-Ryba 1996)

Ĥ1(g ,V \
Z) = 0 for all Fricke classes g .
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Unifying Conjecture (Borcherds 1998)

For each g ∈M, let Rg = Z[e2πi/|g |]. Then there is

a free 1
|g |Z-graded Rg -supermodule V̂g with an

action of Z/|g |Z.CM(g), such that:

1 V̂1 = V \
Z.

2 If h ∈ CM(g) satisfies (|g |, |h|) = 1, then

V̂gh ⊗Rgh
Z/|h|Z ∼= Ĥ∗(h̃, V̂g) for a lift h̃ of h.

3 If g is Fricke, then V̂g ⊗Rg
C ∼= V \(g).

4 If g is non-Fricke, then V̂g is a self-dual
conformal vertex superalgebra.
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Connections to other moonshines
Numerical evidence relating
non-Fricke classes in M ↔ Umbral moonshine
Fricke classes ↔ Skew-holomorphic moonshine
No concrete conjectures yet (as far as I know).

Scott Carnahan Monstrous Moonshine over the Integers



Monstrous Moonshine (1978-1992)
More monstrous moonshines

Cyclic orbifolds over small rings
Monster symmetry

Gluing forms over small rings
Further questions

Thank you
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