Recent advances in moonshine

Scott Carnahan

Department of Mathematics University of Tsukuba

2017-3-25 JMS Special Lecture

What is moonshine?

Strange connections between finite groups and modular forms

What is moonshine?

Strange connections between finite groups and modular forms

The connections should be "very special"

Infinitely many cases \Rightarrow not moonshine!

Monstrous Moonshine (1978-1992) Generalized Monstrous Moonshine (1987-2016) Rademacher sums and quantum gravity (2009-) K3 Mathieu Moonshine (2010-) Newer Moonshines (2012-, 2014-, 2017-)

Monstrous Moonshine (1978-1992)

Classification of finite simple groups (1982-2004)

Any finite simple group is one of the following

- A cyclic group of prime order
- An alternating group A_n $(n \ge 5)$
- A group of Lie type (16 infinite families)
- One of 26 sporadic simple groups

Largest sporadic: Monster, about $8 \cdot 10^{53}$ elements (Griess 1982).

194 irred. repres. of dim 1, 196883, 21296876, . . .

$SL_2(\mathbb{Z})$ action on complex upper half-plane \mathfrak{H}

Generators:
$$\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right): z\mapsto z+1$$
, $\left(\begin{smallmatrix}0&-1\\1&0\end{smallmatrix}\right): z\mapsto -1/z$

(Wikipedia)

J-function as Hauptmodul

The quotient space $SL_2(\mathbb{Z})\backslash \mathfrak{H}$ has genus zero. J generates the function field. Fourier expansion: $q^{-1} + 196884q + 21493760q^2 + \cdots (q = e^{2\pi iz})$

Coefficients of J and Irreducible Monster reps

```
196884 = 1 + 196883 \text{ (McKay, 1978)}
21493760 = 1+196883+21296876 \text{ (Thompson, 1979)}
864299970 = 2 \times 1 + 2 \times 196883 + 21296876 + 842609326
\vdots
\vdots
```

How to continue this sequence?

McKay-Thompson conjecture: Natural graded rep $\bigoplus_{n=0}^{\infty} V_n$ of \mathbb{M} such that $\sum \dim V_n q^{n-1} = J$.

Idea: Physics forms a bridge

Solution: Frenkel, Lepowsky, Meurman 1988

Constructed a vertex operator algebra $V^{\natural}=\bigoplus_{n\geq 0}V^{\natural}_n$ (the Moonshine Module), such that $\sum_{n\geq 0}(\dim V^{\natural}_n)q^{n-1}=J$ and Aut $V^{\natural}=\mathbb{M}$.

Refined correspondence

Thompson's suggestion: replace graded dimension with graded trace of non-identity elements.

Monstrous Moonshine Conjecture (Conway, Norton 1979)

There is a faithful graded representation $V=\bigoplus_{n\geq 0}V_n$ of the monster $\mathbb M$ such that for all $g\in \mathbb M$, the series $T_g(\tau)=\sum_{n\geq 0}\operatorname{Tr}(g|V_n)q^{n-1}$ is the q-expansion of a congruence Hauptmodul (= "generates function field of genus 0 $\mathfrak H$ -quotient").

First proof (Atkin, Fong, Smith 1980)

Theorem: A virtual representation of \mathbb{M} exists yielding the desired functions. No construction.

Second proof (Borcherds 1992)

Theorem: The Conway-Norton conjecture holds for V^{\natural} .

Outline of Borcherds's proof FLM construction: V^{\natural} Automorph. ∞ prod. Add torus and quantize gens. and rels. Lie algebra m Lie algebra *L* Isom. $\mathfrak{m} \cong L$ Twisted Denominator Identities Recursion relations Hauptmoduln

Add a torus

Functor: tensor with lattice VA $V^{\natural} \mapsto V^{\natural} \otimes V_{II_{1,1}}$. Central charge increases by 2 (from 24 to 26).

Quantize (need central charge 26 = critical dim)

Old canonical quantization: Primary mod spurious.

Equivalent functor: H_{BRST}^1 .

Get Lie algebra m with monster action.

Oscillator cancellation (no-ghost theorem)

$$\mathfrak{m}_{m,n}\cong V_{1+mn}^{\natural}$$
 when $(m,n)\neq (0,0)$.

Infinite product identity (Koike-Norton-Zagier)

$$J(\sigma)-J(au)=p^{-1}\prod_{m>0,n\in\mathbb{Z}}(1-p^mq^n)^{c(mn)}$$

where
$$J(\tau) = \sum_{n \geq -1} c(n)q^n$$
, $p = e^{2\pi i \sigma}$, $q = e^{2\pi i \tau}$.

Remarkable property

Left side is pure in p and q.

Vanishing of
$$pq^2$$
 term $\Rightarrow c(4) = c(3) + {c(1) \choose 2}$.

Get isom $V_5^{\sharp} \cong V_4^{\sharp} \oplus \Lambda^2(V_2^{\sharp})$ of monster reps.

End of Borcherds's proof

- All M-reps V_n^{\natural} are determined by $(V_n^{\natural})_{n=0}^6$.
- Same for coefficients of McKay-Thompson series $T_g(\tau) = \sum_{n \geq 0} \operatorname{Tr}(g|V_n)q^{n-1}$.
- Theorem (Koike): Conway-Norton's candidate functions satisfy the same recursion relations.
- suffices to check first 7 terms.

Theorem (Cummins, Gannon 1997)

The recursion relations alone are sufficient to get $\Gamma_0(N)$ -invariant Hauptmodul property.

Monstrous Moonshine (1978-1992)
Generalized Monstrous Moonshine (1987-2016)
Rademacher sums and quantum gravity (2009-)
K3 Mathieu Moonshine (2010-)
Newer Moonshines (2012-, 2014-, 2017-)

Generalized Monstrous Moonshine (1987-2016)

Moonshine away from the monster?

Suggested by Conway-Norton 1979.

Computations by Queen 1980.

Example: Baby monster irreps 1, 4371, 96255, . . .

 $q^{-1} + 4372q + 96256q^2 + \cdots$ is Hauptmodul for $\Gamma_0(2)^+$.

Strange observation (Norton)

Only groups "inside" the monster are interesting. (central extensions of centralizers of elements)

The Conjecture (Norton 1987):

- ullet $g\in \mathbb{M} \Rightarrow V(g)$ graded proj. rep. of $\mathcal{C}_{\mathbb{M}}(g)$
- $(g,h), gh = hg \Rightarrow Z(g,h;\tau)$ holomorphic on \mathfrak{H}
- q-expansion of $Z(g, h; \tau)$ is graded trace of (a lift of) h on V(g).
- 2 Z is invariant under simultaneous conjugation of the pair (g, h) up to scalars.
- **3** $Z(g,h;\frac{a\tau+b}{c\tau+d})$ proportional to $Z(g^ah^c,g^bh^d;\tau)$.
- $(g, h; \tau) = J(\tau)$ if and only if g = h = 1.

Brute force solution (like Atkin-Fong-Smith)?

This is a finite problem:

- Finitely many conjugacy classes of commuting pairs, and possible levels are bounded.
- Central extensions of centralizers "can be computed".

Not finite enough for 2017

- We still haven't classified the commuting pairs.
- We still don't know character tables of all centralizers, let alone central extensions.

Physics Language (Dixon, Ginsparg, Harvey 1988)

V(g) - twisted sectors of a monster CFT.

 $Z(g, h; \tau)$ - genus 1 partition functions (with twisted boundary conditions).

All except Hauptmodul claim (3) "follow" from conformal field theory considerations.

Algebraic Interpretation

$$V(g) = \text{irreducible } g\text{-twisted } V^{\natural}\text{-module } V^{\natural}(g)$$

 $Z(g, h; \tau) = \text{Tr}(\tilde{h}q^{L(0)-1}|V(g)).$

Geometric interpretation of Z

Physicists draw boundary conditions as colorings.

Commuting pair (g, h) describes hom $\pi_1(E) \to \mathbb{M}$. $SL_2(\mathbb{Z})$ action changes generating pair. Ignoring scalar ambiguities, claims (2) and (4) say that Z is a function on the moduli space of elliptic curves with principal \mathbb{M} -bundles.

First Breakthrough (Dong, Li, Mason 1997)

- Existence and uniqueness (up to isom.) of $V^{\natural}(g)$.
- Convergence of power series defining Z.
- Settles claims (1), (2), (5).
- Reduces $SL_2(\mathbb{Z})$ claim (4) to g-rationality.

Theorem (C, Miyamoto 2016)

Category of g-twisted V^{\natural} -modules is semisimple. This resolves the $SL_2(\mathbb{Z})$ -compatibility claim (4).

g-rationality is really a corollary

Main theorem of [C-Miyamoto] is: If V is strongly regular, then so is the fixed-point subVOA V^g .

Here, "strongly regular" means roughly "module category is a modular tensor category".

This gives modular functions for traces of automorphisms of VOAs in infinitely many cases (therefore not really moonshine).

Main steps of proof

- V a C_2 -cofinite VOA, CFT type, σ finite order aut, $\Rightarrow V^{\sigma}$ is C_2 -cofinite (Miyamoto 2013)
- If V is also regular, then V^{σ} is a projective V^{σ} -module (uses Huang-Lepowsky-Zhang 2007-2011).
- 3 Any irreducible V^{σ} -module W is rigid, i.e., get isom. $W \boxtimes V^{\sigma} \to W \boxtimes (W^{\vee} \boxtimes W) \to (W \boxtimes W^{\vee}) \boxtimes W \to V^{\sigma} \boxtimes W$ (uses Huang's genus 1 fcns + Verlinde + Miyamoto's pseudo-trace).

On to claim (3)

We now need to show that all $Z(g, h; \tau)$ are Hauptmoduln or constant.

Second Breakthrough (Höhn 2003)

Generalized Moonshine for 2A (Baby monster case).

- Gives outline for proving Hauptmodul claim (3).

Borcherds-Höhn program for Hauptmoduln

Right side (C 2009)

Borcherds products of the form:

$$\mathcal{T}_g(\sigma) - \mathcal{T}_g(-1/ au) = p^{-1} \prod_{m>0, n \in rac{1}{N}\mathbb{Z}} (1-p^mq^n)^{c_{m,n}^g(mn)}$$

- Exponent $c_{m,n}^g(mn)$ is q^{mn} -coefficient of a v.v. modular function formed from $\{T_{g^i}(\tau)\}_{i=0}^{N-1}$.
- L_g is a $\mathbb{Z} \oplus \frac{1}{N}\mathbb{Z}$ -graded BKM Lie algebra.
- Simple roots of multiplicity $c_{1,n}^g(n)$ in degree (1,n).

Third Breakthrough (van Ekeren, Möller, Scheithauer 2015)

- There exists an abelian intertwining algebra structure on

$${}^{g}V^{
atural} := igoplus_{i=0}^{|g|-1} V^{
atural}(g^i)$$

- Dimensions of eigenspaces match coefficients $c_{m,n}^g(k)$ of v.v. modular function.

Add a torus and quantize

- Take a graded tensor product with a lattice abelian intertwining algebra $V_{II_{1,1}(-1/N)}$
- Get conformal VA, c=26, graded by 2d lattice, has invariant form.
- Apply a bosonic string quantization functor.
- For Fricke g (i.e., $T_g(\tau) = T_g(-1/N\tau)$), get a BKM Lie algebra \mathfrak{m}_g with real simple root.
- graded by $I_{1,1}(-1/N) \cong \mathbb{Z} \oplus \frac{1}{N}\mathbb{Z}$.

Comparison

Borcherds-Kac-Moody Lie algebras:

- \mathfrak{m}_g has canonical projective action of $C_{\mathbb{M}}(g)$.
- L_g has "nice shape": known simple roots, good homology.

Isomorphism from matching root multiplicities: $\dim(I_n) = -(m_n) = -c^g + (mn)$

$$\dim(L_g)_{m,n}=(\mathfrak{m}_g)_{m,n}=c_{m,n}^g(mn).$$

Transport de structure $\Rightarrow L_g$ gets $C_{\mathbb{M}}(g)$ action.

End of proof (C 2016)

Virtual $C_{\mathbb{M}}(g)$ -module isom $H_*(E_g, \mathbb{C}) \cong \bigwedge^* E_g$ implies equivariant Hecke operators $n\hat{T}_n$ given by $n\hat{T}_nZ(g,h,\tau) = \sum_{ad=n,0\leq b< d} Z(g^d,g^{-b}h^a,\frac{a\tau+b}{d})$

act by monic polynomials on $Z(g, h, \tau)$.

- Hauptmodul condition follows (C 2008).
- Constants come from (g, h) such that all $g^a h^c$ are non-Fricke when (a, c) = 1, using claim (4).

This resolves the final claim (3).

Stronger version of conjecture?

Folklore: constant ambiguities are precisely controlled by a "Moonshine element" $\gamma^{\natural} \in H^3(\mathbb{M}, \mathbb{C}^{\times})$.

- $H^3(\mathbb{M}, \mathbb{C}^{\times})$ not known to be nontrivial.
- G. Mason says $|\gamma^{\natural}| \in 24\mathbb{Z}$ if γ^{\natural} exists.
- Existence of canonical element γ^{\sharp} follows from non-abelian twisted fusion (in progress).
- ullet M is enhanced to "categorical group" $\tilde{\mathbb{M}}$.
- ullet Z naturally lives on space $\mathcal{M}_{1,1}^{ ilde{\mathbb{M}}}$

Connections to elliptic cohomology and tmf?

- Segal and Stolz-Teichner: interpretation of tmf in terms of CFTs (hence VOAs).
- Dependence on commuting pairs looks like Hopkins-Kuhn-Ravenel "higher character" theory at height 2.
- ullet Claims (1), (2), (4) suggest $V^{
 atural} \in tmf(B ilde{\mathbb{M}})$
- Equivariant Hecke operators \hat{T}_n , used in Hauptmodul proof, first appeared as cohomology operations for $\mathcal{E}\ell\ell(BG)$. Explicit formula given in (Ganter 2007) .

Monstrous Moonshine (1978-1992) Generalized Monstrous Moonshine (1987-2016) Rademacher sums and quantum gravity (2009-) K3 Mathieu Moonshine (2010-) Newer Moonshines (2012-, 2014-, 2017-)

Rademacher sums and quantum gravity (2009-)

Rademacher's sum, 1938

- Try to make an $SL_2(\mathbb{Z})$ -invariant function from the $B(\mathbb{Z}) = \{\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\}$ -invariant function q^{-1} .
- Problem: the sum $\sum_{\gamma \in B(\mathbb{Z}) \setminus SL_2(\mathbb{Z})} e(-\gamma \tau)$ diverges everywhere.
- Regularize: subtract constants at infinity.

$$e(- au) + \lim_{K o \infty} \sum_{\substack{0 < c < K \ -K^2 < d < K^2 \ (c,d) = 1}} e\left(-rac{a au + b}{c au + d}
ight) - e\left(-rac{a}{c}
ight)$$

converges conditionally to $J(\tau) + 12$.

Generalization by Duncan-Frenkel 2009

- Allow large class of groups Γ in $SL_2(\mathbb{R})$.
- Allow arbitrary poles at distinguished cusp.
- Arbitrary non-positive weight.
- For weight 0, adjustments to constant terms.

Connection to Hauptmodul

Weight 0 sum is Γ -Hauptmodul $\Leftrightarrow \Gamma$ is genus 0. If not, modular function plus weight 2 cusp form.

Rademacher sums are natural in quantum gravity

- Cosets $B(\mathbb{Z})\backslash SL_2(\mathbb{Z})$ enumerate asymptotically AdS_3 spacetimes with torus boundary.
- Non-trivial cosets correspond to BTZ black hole solutions of Einstein's equations.
- This gives a semiclassical "sum over histories" when computing quantum gravity partition function.

(Dijkgraaf-Maldacena-Moore-Verlinde: "A black hole Farey tale", Manschot-Moore: "A modern Farey tale")

Moonshine-gravity proposal (Duncan, Frenkel 2009)

- Generalized moonshine is connected to "second-quantized twisted chiral gravity" through AdS/CFT.
- Denominator formulas for Monstrous Lie algebras \mathfrak{m}_g come from totalized Rademacher sums, which also describe gravity Fock spaces.

Warning: Quantization of 2+1 dimensional gravity is still far from rigorous.

Monstrous Moonshine (1978-1992) Generalized Monstrous Moonshine (1987-2016) Rademacher sums and quantum gravity (2009-) K3 Mathieu Moonshine (2010-) Newer Moonshines (2012-, 2014-, 2017-)

K3 Mathieu Moonshine (2010-)

K3 Mathieu moonshine

An experimental mathematical observation motivated by physics.

K3 surfaces

A K3 surface is a compact complex surface that is simply connected and has trivial holomorphic canonical class.

Examples

Fermat quartic: $V(x^4+y^4+z^4+w^4)\subset \mathbb{P}^3_{\mathbb{C}}$

Kummer: Blow up orbifold points in $(\mathbb{C}^2/\Lambda)/\{\pm 1\}$.

Theorem (Kodaira 1964)

The underlying smooth 4-manifolds of any two K3 surfaces are diffeomorphic.

Moduli space of complex structures

The moduli space of K3 surfaces is a connected complex 20-manifold. Algebrizable part is 19-dimensional.

Elliptic genus (Landweber-Stong, Ochanine 1980s)

- Homomorphism $\Omega^{SO} \to \mathcal{M}(\Gamma_0(2))$.
- {closed oriented mfds} → {modular forms}
- Enhancements by Witten, Hirzebruch, Krichever.

2-variable Elliptic genus

M a complex d-manifold. Define $EII(M) \in y^{d/2}\mathbb{Z}[y,y^{-1}][[q]]$ as holom. Euler char. of $y^{-d/2} \bigoplus_{n \geq 1} (\Lambda_{-yq^{n-1}} \bar{T}_M \otimes \Lambda_{-y^{-1}q^n} T_M \otimes S_{q^n} \bar{T}_M \otimes S_{q^n} T_M)$

Theorem (Borisov, Libgober 1999)

If M is Calabi-Yau, then Ell(M) is a Jacobi form of weight 0 and index d/2. In particular, Ell(K3) has index 1.

Uniqueness

The space of Jacobi forms of weight 0 and index 1 is one-dimensional, spanned by $Ell(K3) = 2\phi_{0,1}$. $2y + 20 + 2y^{-1} + q(20y^2 - 128y + 216 - 128y^{-1} + 20y^{-2}) + O(q^2)$

Superconformal elliptic genus (Witten)

For a representation \mathcal{H} of $\mathcal{N}=2$ superconformal algebra, one defines the elliptic genus as $EII(\mathcal{H})=\mathrm{Tr}_{\mathcal{H}_{RR}}(q^{L_0-c/24}y^{J_0}(-1)^F \bar{q}^{\bar{L}_0-\bar{c}/24}(-1)^{\bar{F}})$

Physics conjecture (Witten)

Given a sigma model CFT with target Calabi-Yau X and Hilbert space \mathcal{H} , $Ell(\mathcal{H}) = Ell(X)$.

Enhanced supersymmetry for K3

K3 surfaces have hyperKähler structure, so their CFTs have action of $\mathcal{N}=4$ superconformal algebra.

Natural question

Decompose Ell(K3) into elliptic genera for irreducible $\mathcal{N}=4$ representations?

- the genera are linearly independent

Eguchi, Ooguri, Tachikawa 2010

Decomposition into $\mathcal{N}=4$ characters:

$$EII(K3)(\tau, z) = 20\chi_{1/4,0} - 2\chi_{1/4,1/2} + \sum_{n\geq 1} A_n \chi_{1/4+n,1/2}$$

where
$$A_1 = 2 \times 45$$
, $A_2 = 2 \times 231$, $A_3 = 2 \times 770$.

Surprising observation

The numbers 45, 231, 770 are dimensions of irreducible reps of the sporadic group M_{24}

Theorem (Gannon 2012) - like Atkin-Fong-Smith

There is a $\mathcal{N}=4$ -representation with faithful commuting action of M_{24} , whose elliptic genus is Ell(K3), such that taking traces of elements of M_{24} yields Jacobi forms of small level.

Additional suggestive evidence

- Setting $A_n = \dim H_n$, the series $\sum A_n q^n$ is a mock modular form, and so is $\sum \text{Tr}(g|H_n)q^n$.
- Analogue of Hauptmodul property (Cheng, Duncan 2012): The trace forms are weight 1/2 Rademacher sums.

Big mystery: where do we get M_{24} symmetry?

- No M_{24} -symmetry on K3 surfaces (Mukai 1988, Kondo 1998). Only get subgroups of M_{23} with > 5 orbits.
- No M_{24} -symmetry of K3 CFTs (Gaberdiel, Hohenegger, Volpato 2011). Moduli space is $\operatorname{Aut}(II_{4,20}) \setminus O_{4,20}(\mathbb{R})/(O_4(\mathbb{R}) \times O_{20}(\mathbb{R}))$. Stabilizers fix 4-dim subspace naturally live in Co_1 , but too small.

How much structure do we need?

$$\mathcal{N}=$$
 4 rep. $\mathcal{N}=$

$$\mathcal{N} = 4 \text{ superCFT}$$

less structure more structure

more symmetry less symmetry

 ∞ -dim

 M_{24}

small groups

Holomorphic vertex operator superalgebras?

- Generalized Mathieu Moonshine (Gaberdiel, Persson, Ronellenfitsch, Volpato 2012) suggests good orbifold behavior.
- Chiral de Rham constructions proposed, but few computations.
- Conway moonshine module $V^{\mathfrak{sl}}$ (Duncan, Mack-Crane 2015) may be manipulated to produce some K3-like characters.

Symmetry surfing (Taormina, Wendland 2013)

Moduli space of K3 CFTs is 80-dimensional, with scattered symmetries. Thus, try gluing symmetries from different points.

- Works well for Kummer surfaces get max subgroup $(\mathbb{Z}/2\mathbb{Z})^4 \rtimes A_8 \subset M_{24}$
- Recent progress on connections with $V^{s \downarrow}$

Monstrous Moonshine (1978-1992) Generalized Monstrous Moonshine (1987-2016) Rademacher sums and quantum gravity (2009-) K3 Mathieu Moonshine (2010-) Newer Moonshines (2012-, 2014-, 2017-)

Newer Moonshines (2012-, 2014-, 2017-)

Umbral moonshine (Cheng, Duncan, Harvey 2012)

For each Niemeier (even unimod. pos. def. rank 24) lattice N, get:

- the umbral group $G^N = \operatorname{Aut} N/Weyl(N)$
- graded representations K^N of G^N , such that
- graded traces are vector valued mock modular forms (vector rep. tied to Coxeter # of N)
- shadows are specific theta functions.

K3 Mathieu moonshine is the case $N = A_1^{24}$.

Theorem (Duncan, Griffin, Ono 2015)

Umbral moonshine modules exist.

- Only $N = E_8^3$ case has a known construction.
- Many umbral functions come from V^{sa} .
- Connections to physics and geometry are still speculative, and the subject of active research.
- Example (Cheng, Harrison 2014): Niemeier lattices
 ⇔ duVal degenerations of marked K3.
 Ell(K3) = sum of umbral genus and singular local genus.

Thompson moonshine observation (Piezas 2014)

Coefficients of the weight 1/2 modular form $f_3 = q^{-3} - 248q + 26752q^4 - \cdots$ "come from" sporadic group Th.

Partial (Generalized Monstrous) explanation

For
$$g$$
 in class 3C, $Z(g,1;\tau)=\sqrt[3]{j(\tau/3)}$ = $q^{-1/9}+248q^{2/9}+4124q^{5/9}+\cdots$, and $C_{\mathbb{M}}(g)=\mathbb{Z}/3\mathbb{Z}\times Th$. Coeffs give reps of Th , and chars are Hauptmoduln. $\sqrt[3]{j(\tau/3)}\sim$ theta lift of f_3 .

Problem:

This only explains Th representations for coefficients of q^{n^2} in f_3 .

Refined observation (Harvey, Rayhoun 2015)

There is a $\frac{1}{2}\mathbb{Z}$ -graded *Th*-module whose graded super-dimension is the weight 1/2 form $2f_3 + 248\theta$. Graded traces are also "nice" weight 1/2 forms.

Theorem (Griffin, Mertens 2016)

A Thompson moonshine module exists.

No construction or natural explanation.

Skew-holomorphic moonshine (Duncan, Harvey, Rayhoun ≥ 2017)

- Thompson moonshine appears to be the level 1 case of a more general phenomenon involving weight 1/2 forms that lift to Hauptmoduln for Fricke-containing genus zero groups.
- Calculations are still underway.
- Physics is still quite unclear.

Summary

- Generalized Monstrous Moonshine: Controlled by the vertex operator algebra V^{\natural} . Hauptmodul property comes from string quantization and possibly 3d quantum gravity.
- Mathieu and umbral moonshine: possibly controlled by $V^{s\natural}$ and K3 surfaces.
- Thompson and skew-holomorphic moonshine: unknown.

Thank you.

