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Preface

Cheewhye Chin gave a one year long seminar at Berkeley, on Langlands Corre-
spondence for GLr over global function fields, leading up to Lafforgue’s proof. Since
we were had limited time, he focused on precise definitions and precise statements
of theorems, and there are few proofs. These notes are incomplete, and I didn’t un-
derstand some of what was said during the seminar. If the notes get really sketchy
somewhere, it usually indicates that Arthur Ogus started some sort of rapid-fire tech-
nical digression.
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3. L. Lafforgue. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson.
Asterisque 243 (1997) ii+329 pages.

Note that this is just over 600 pages of rather hard mathematics.

Let F be a function field of characteristic p, i.e., some finite extension of Fq(t).
Let A be its ring of adèles, and let |F | be the set of its places.

Spectral World

Choose an algebraic closure C of R. For r ≥ 1 let

Ar(F,C) :=


isomorphism classes of cuspidal automorphic

irreducible complex representations of GLr(A)

whose central character has finite order


Definition An automorphic function on GLr(A) is a function f : GLr(A) → C
satisfying:

1. f(γx) = f(x) for all x ∈ GLr(A), γ ∈ GLr(F ) ⊂
discrete

GLr(A).
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2. There exists an open compact K ⊂ GLr(A) such that f(xk) = f(x) for all
x ∈ GLr(A), k ∈ K.

3. The subrepresentation GLr(A) · f ⊂ C(GLr(A),C) of the right regular repre-
sentation is admissible.

Definition f is called cuspidal if and only if for any proper parabolic subgroup
P ⊂ GLr and any x ∈ GLr(A),∫

NP (F )\NP (A)

f(nx)dn = 0,

for any Haar measure dn, where NP denotes the unipotent radical of P .

Let A0(GLr(A),C) be the complex vector space of all cuspidal automorphic func-
tions on GLr(A). Any irreducible subquotient of A0(GLr(A),C) as a representation
of GLr(A) is called cuspidal automorphic irreducible. The set of isomorphism
classes of these is written Ar(F,C).

For any π ∈ Ar(F,C), let Sπ ⊂ |F | be the finite set of ramified places. For all
x ∈ |F | − Sπ, let {z1(πx), . . . , zr(πx)} ⊂ C be the Satake parameters (also called
Hecke eigenvalues) of π at x. This is an unordered multiset of r complex numbers.

Algebraic World

Choose a separable algebraic closure F of F . We denote by Gal(F/F ) the group
of automorphisms of F fixing F . Choose a prime l 6= p. Choose an algebraic closure
Ql of Ql. For r > 1, let

Gr(F,Ql) :=


isomorphism classes of continuous irreducible representations

of Gal(F/F ) on an r-dimensional Ql vector space almost

everywhere unramified, with determinant of finite order


The determinant is a character, so when we say it has finite order, this means

some tensor power is the trivial character. For any σ ∈ Gr(F,Ql), let Sσ ⊂ |F | be
the finite set of ramified places. For any x ∈ |F | − Sσ, let {z1(σx), . . . , zr(σx)} ⊂ Ql

be the unordered multiset of r Frobenius eigenvalues of σ at x.

Let ι : Ql
∼−→ C be an isomorphism of fields. This exists by Zorn’s lemma, and

is used in e.g. Deligne’s proof of the Weil conjectures.

Definition One says that π ∈ Ar(F,C) and σ ∈ Gr(F,Ql) are in Langlands
correspondence with respect to ι if and only if for all x ∈ |F | − Sπ − Sσ,
{z1(πx), . . . , zr(πx)} = ι({z1(σx), . . . , zr(σx)}).

Theorem (L. Lafforgue, Langlands correspondence for GLr over function fields) For
any ι : Ql

∼−→ C and any r ≥ 1, the relation “Langlands correspondence with respect
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to ι” defines a bijection Ar(F,C)
∼←→ Gr(F,Ql). Moreover, when σ and π are in

Langlands correspondence with respect to ι, we have Sπ = Sσ ⊂ |F |.
More precisely, for any π ∈ Ar(F,C), there exists a unique σ ∈ Gr(F,Ql) such that

σ and π are in Langlands correspondence with respect to ι, and for any σ ∈ Gr(F,Ql)
there exists a unique π ∈ Ar(F,C) such that σ and π are in Langlands correspondence
with respect to ι.

The uniqueness claims have been known for a while. Čebotarev density implies
uniqueness in Gr(F,Ql), and Piatetski-Shapiro’s strong multiplicity one theorem im-
plies uniqueness in Ar(F,C). Existence is proved by induction. The initial case r = 1
is just class field theory for F . In fact, Professor Lang made some key contributions
to our understanding of this in the early part of the last century. [Everyone laughs.
Serge looks completely unperturbed. Vojta asks: why can’t we induct from r = 0?
There is an obvious correspondence between representations of the trivial group and
trivial Galois representations.] You can’t induct from r = 0, because you really need
class field theory to power the induction. Beyond r = 1, we have:

Deligne’s induction machine The goal here is to build a bridge between two worlds,
using another two worlds.

Lafforgue’s moduli of
shtukas, truncations

and compactifications,
Arthur-Selberg
trace formula

(
moduli spaces,

Drinfeld’s shtukas

) Grothendieck’s theory
of l-adic cohomology,

Grothendieck-Lefshetz-
Verdier trace formula,
Deligne’s purity from
Pink and Fujiwara

Geometric cuspidal
automorphic

representations

 ↗ ↘
Spectral Algebraic
↖ ↙

(
Galois

representations

)
Analytic

Piatetski-Shapiro’s
converse theorem,
Rankin-Selberg

convolutions from
Jacquet, Piatetski-

Shapiro, and Shalika

(
L-functions,
ε-factors

)
Deligne’s theory of

weights (Weil II), product
formula, Grothendieck’s

and Laumon’s
cohomological

interpretation of
L-functions and ε-factors

Pink’s proof used resolution of singularities, but could be extended to stacks.
Fujiwara did not use resolution, but his proof required schemes.
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Here’s a literature diagram:

Invent., 241pp

JAMS, 30pp
(moduli spaces)

66mmmmmmmmmmmm
Ast. 241, 340+pp
(trace formula)

hhQQQQQQQQQQQQQ

[Serge asks, “Why isn’t the inverse Galois problem solved, then? For function
fields, there is no problem at infinity!”]

September 6, 2002

Recall the main theorem (Langlands correspondence for GLr over function fields):
For any r ≥ 1 and any ι : Ql

∼−→ C, the relation of Langlands correspondence with
respect to ι defines a bijection Ar(F,C)

∼←→ Gr(F,Ql).

We can squeeze more juice out of this.

Theorem (Deligne’s independence of l conjecture in Weil II for curves over finite
fields) Let X/k be a smooth curve over a finite field k of characteristic p. Let l 6= p
be a prime, and Ql an algebraic closure of Ql. Let L be a lisse Ql-sheaf on X
(meaning an l-adic representation of Gal(K(X))) that is irreducible, and has finite
order determinant (this is a normalization condition, making the result easier to
state). Then:

1. There exists a number field E ⊂ Ql such that L is E-rational, i.e., for any
x ∈ |X|, the polynomial det(1− T · FrobX ;L) ∈ Ql[T ] has coefficients in E.

2. L is:

(a) pure of weight 0

(b) plain of characteristic p

(c) C-bounded in valuation, where we can take C ≤ (r−1)2

r
, with r is the rank

of L
(d) D-bounded in denominators for some D ∈ Z>0

3. There exists a finite extension E ′ of E in Ql such that for any λ ∈ |E ′|6=p
(giving us a completion Eλ

′), there exists an absolutely irreducible lisse Eλ
′-

sheaf Lλ on X such that L and L′ are E-compatible, i.e., for any x ∈ |X|,
det(1− T · Frobx|L) = det(1− T · Frobx|Lλ) in E[T ]. One can say “L extends
to an E-compatible system”. This is Deligne’s original conjecture.

Definition For any x ∈ |X| and any eigenvalue α ∈ Ql of FrobX on L,
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• (2a) ⇔ for any archimedean valuation | · | ∈ |E(α)|∞, |α| = 1 6= qα

• (2b) ⇔ for any λ /∈ |E(α)|p, λ(α) = 0, where λ : E(α)× → Z is a nonar-
chimedean non-p-adic valuation.

• (2c) ⇔ for any p-adic valuation v ∈ |E(α)|p,
∣∣∣ v(α)
v(#X(α))

∣∣∣ ≤ C

• (2d) ⇔ for any p-adic valuation v ∈ |E(α)|p, v(α)
v(#X(α))

∈ 1
D

Z

Statements 1 and 2 are known for arbitrary normal varieties over finite fields.

Let η → X be a geometric point, so we get π1(X, η). For any l-adic field Λ (i.e.,
Ql, some finite extension, Ql), we get an equivalence of categories:{

lisse Λ-sheaves
on X

}
∼→

{
finite dimensional continuous
Λ-representations of π1(X, η)

}
L 7→ Lη, π1(X, η)

[L]→ GL(Lη)

[L] is the monodromy representation of L. [Check out www.monodromy.com]

Definition The (arithmetic) monodromy group of L is Garith(L, η) := Zariski
closure of the image of [L] in GL(L, η). This is a Λ-algebraic group.

Conjecture (Independence of l of monodromy groups) Let L = {Lλ}λ∈|E| 6=p be an
E-compatible system. Assume L is

• arithmetically semisimple (i.e., for any λ ∈ |E|6=p, Lλ is semisimple).

• pure of weight w ∈ Z.

Then there exists an algebraic group G over E such that for any λ ∈ |E|6=p, G⊗EEλ ∼=
Garith(Lλ, η) as an algebraic group over Eλ.

There is also a variant, in which we allow ourselves to replace E by a finite
extension.

For each λ ∈ |E|6=p, we get a short exact sequence:

1→ Garith(Lλ)0 → Garith(Lλ)→ Γarith(Lλ)→ 1

where Garith(Lλ)0 is connected and reductive, Garith(Lλ) is reductive, and Γarith(Lλ)
is finite. (We also define G0

geom := [G0
arith, G

0
arith].)

Theorem 1 (Serre, letter to Ribet, 1981) With notation and hypotheses as above,
Γarith(Lλ) is independent of λ. More precisely, for any λ,

ker(π1(X, η)
[Lλ]→ Garith(Lλ) � Γarith(Lλ))
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is the same open subgroup of π1(X, η).

Theorem 2 With notation and hypotheses as above, after replacing E by a suitable
finite extension, there exists a connected algebraic group G0 over E such that for any
λ ∈ |E|6=p, Garith(Lλ)0 ∼= G0 ⊗E Eλ.

blah blah motives should form a Tannakian category over X. wtf??

Lafforgue gave via Langlands correspondence for GLr a bijection between auto-
morphic irreducible complex representations π of GLr(AF ) and E-compatible systems
of l-adic lisse sheaves L = {Lλ}λ∈|E| 6=p on X, semistable of weight w ∈ Z. This gives
“the” monodromy group G0. [F is the function field of X.]

Conjecture Let H be the F -reductive group whose Langlands dual group is G0.
Then there exists an automorphic representation π0 of H(A) such that π is a weak
functorial lift of π0.

The disconnected case is an extension problem - we get a split sequence in the
case of trivial center. It’s hard with a big center.

Proof Steps of theorem 2:

One: Apply Serre’s theorem. We may assume all Gariths are connected.

Two: Use Serre’s theory of Frobenius tori:

Theorem (Serre, letter to Ribet, 1981) If a lisse l-adic sheaf L is

1. E-rational for some number field E

2. (a) pure of weight w ∈ Z
(b) plain of characteristic p

(c) C-bounded in valuations for some C

(d) D-bounded in denominators for some D

Then there exist infinitely many x ∈ |X| such that [L](Frobx)
s.s.Z ⊂ Garith(L) is a

maximal torus.

Three Pick x ∈ |X| as in step 2. Let Tλ := [Lλ](FrobLx )Z be a maximal torus in
Garith(Lλ). Use Lafforgue to show that one has a commutative diagram [“2” and “3”
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denote distinct primes, that are not necessarily 2 and 3]:

Irr(Garith(L2)) Lafforgue

∼= as sets //
� _

basis
��

Irr(Garith(L3)� _

basis
��

K(Garith(L2))
∼= as ab. groups //

� _

��

K(Garith(L3)� _

��
K(T2)

∼= as rings // K(T3)

X(T2)
∼= as free ab. gps. //

?�

OO

X(T3)
?�

OO

This reduces the problem to representation theory of reductive groups. Thus, one
can conclude that there exists an isomorphism:

f : (Garith(L2)⊗ C, T2 ⊗ C)
∼→ (Garith(L3)⊗ C, T3 ⊗ C).

End of pep talk.

Smooth representations and admissible representations

Let G be a topological group. Choose an algebraic closure C of R.

Definition A complex representation of G is a pair (V, π), where V is a com-
plex vector space (of arbitrary dimension), and π : G → GL(V ) = AutC(V ) is a
homomorphism (with no assumptions on continuity).

We get a complex-linear abelian category Rep(G) := Rep(G; C). We will ignore
the tensor structure.

Definition A complex representation (V, π) of G is smooth if and only if for all
v ∈ V , StabG(v) := {g ∈ G|π(g)v = v} is an open subgroup of G.

We get Repsmooth(G), a full subcategory of Rep(G) whose objects are smooth.
This subcategory is closed under taking subquotients and finite direct sums, so it is
abelian, inclusion is exact, and notions of irreducibility, subquotients, End(V, π), etc.
make sense.

However, it is not closed under extensions. For example the representation R→
GL2(C) given by

x 7→
(

1 x
0 1

)
is not smooth.

Let Z ⊂ G denote the center of G.
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Definition (V, π) ∈ Repsmooth(G) admits a central (quasi-)character if and only
if for any z ∈ Z, π(z) = χπ(z) · idV ∈ GL(V ) for some χπ(z) ∈ C×.

In this case, the map χπ : Z → C× defined by z 7→ χπ(z) is a homomorphism,
called the central (quasi-)character, and it is trivial on some open subgroup of Z.

Note that we get a commutative diagram:

G
π // GL(V )

Z
?�

OO

χπ // C×?
�

OO

Lemma (Jacquet-Schur Lemma) Assume G has a countable basis of open neighbor-
hoods. Let (V, π) ∈ Repsmooth(G) be irreducible. Then the map C → EndRep(G)(V, π)
given by λ 7→ λ · idV is surjective. In particular, (V, π) admits a central character.

Proof Pick any nonzero v ∈ V . Let H := Stabπ(v) ⊂
open

G. Then V as a complex

vector space is spanned by {π(g)·v|g ∈ G/H}, which is a countable set by hypothesis.
Suppose u ∈ EndG(V, π) is not a scalar, i.e., there is no λ ∈ C such that u =
λ · idV . Then for any λ ∈ C×, Rλ := (u − λ · idV )−1 exists . It suffices to show what?
that {Rλ(v) ∈ V, λ ∈ C} is C-linearly independent (by counting). It suffices to show
that for any λ1, . . . , λn ∈ C distinct and any coefficients a1, . . . , an ∈ C×, the sum∑
aiRλi ∈ End(V ) is invertible. From the definition of Rλ, we can write

∑
aiRλi = P (u)

n∏
i=1

Rλi , where P (T ) =
n∑
i=1

ai
∏
i6=j

(T − λi) ∈ C[T ].

Now, we factorize: P (T ) = a
∏

(T − αi) for some nonzero a, so it doesn’t vanish if
we plug in u.

Definition A representation (V, π) of G is admissible if

1. it is smooth

2. for any compact open subgroup K ⊂ G, V K := {v ∈ V |k · v = v} is finite
dimensional over C.

We get a full abelian subcategory Repadm(G) ⊂ Repsmooth(G), and inclusion is exact.
Repadm(G) is closed under subquotients, finite direct sums, and extensions. Further-
more, admissible representations are dualizable via smooth contragradient.

Now, we have three categories, each “more finite” than the next: Repadm(G) ⊂
Repsmooth(G) ⊂ Rep(G). This is analogous to the sequence “coherent and locally free
sheaves,” “quasi-coherent sheaves,” “arbitrary abelian sheaves.”
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Automorphic representations, cuspidal automorphic representations

Let F be a function field, A its ring of adèles. Let r ≥ 1, and consider the group
GLr(A).

Let C(G,C) = {continuous functions φ : G→ C}, where C has its usual topology.
Then we have Rreg : G → GL(C(G,C)), the regular representation, given by g 7→
(φ 7→ (x 7→ φ(xg))) (You should be familiar with this notation if you’ve ever seen
lambda calculus). Then (C(G,C), Rreg) ∈ Rep(G).

Definition An automorphic form (or function) for GLr(A) is a function φ ∈
C(GLr(A),C) such that

1. (automorphic) for any γ ∈ GLr(F ) ⊂
discrete

GLr(A) and for any x ∈ GLr(A),

φ(γx) = φ(x).

2. (uniformly locally constant) there is an open compact subgroup K ⊂ GLr(A)
such that for any k ∈ K and any x ∈ GLr(A), φ(xk) = φ(x).

3. (admissible) The subrepresentation Rreg(G)φ ⊂ (C(GLr(A),C), Rreg) is admis-
sible.

One can also have a “moderate growth” condition.

Note: The first condition is a global condition. It is easy to get a representation,
but the GLr(F ) sits diagonally and discretely in GLr(A), and imposes strong global
conditions on φ.

Let A(GLr(A),C) := {φ ∈ C(GLr(A),C)|φ automorphic form}. Let Raut be the
restriction of Rreg to A(GLr(A)). Then (A(GLr(A)), Raut) ∈ Repsmooth(GLr(A)).

Definition An automorphic irreducible complex representation of GLr(A) is a com-
plex representation (V, π) of GLr(A) that is irreducible and isomorphic to a subquo-
tient of (A(GLr(A)), Raut).

Lemma An automorphic irreducible representation (V, π) of GLr(A) is automatically
admissible.

“Proof” Let V1 ⊂ V2 ⊂ A in Repsmooth with V2/V1 irreducible, and φ ∈ V2 \ V1.
Quotients of admissible representations are admissible. fix me

Why are we interested in decomposing function spaces like (A(GLr(A)), Raut)?
To answer this, we go back to complex irreducible representations of R. This is an
abelian group, so its unitary irreducible representations correspond to points in S1.
Consider the exact sequence:

0→ Z→ R→ R/Z→ 0
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Note that Z is discrete, R is locally compact, and R/Z is compact. By Pontryagin
duality, this sequence is self-dual. and?

Definition An automorphic form φ ∈ A is cuspidal if and only if for any proper
parabolic subgroup P ⊂ GLr over F and any x ∈ GLr(A),∫

NP (F )\NP (A)

φ(nx)dn = 0

where NP is the unipotent radical of P , and dn is some Haar measure on NP (A).
Ideally one would divide dn by the counting measure on the discrete part, but the
vanishing condition works with any choice of Haar measure. It suffices to check
vanishing for P running over a set of representatives of F -conjugacy classes of maximal
proper parabolics.

(NB: A subgroup is parabolic if the quotient is a proper variety over the base
field. In particular, for GLr, the set of parabolic subgroups is the set of all conjugates
of block upper triangular matrices. A unipotent group is an iterated extension of
additive groups, and the unipotent radical NP of a linear algebraic group P is the
unique maximal normal unipotent subgroup. The Levi quotients P/NP in this case
are the conjugates of block diagonal matrices.)

Let G = GLr(A), Acusp(G) := {φ ∈ A(G)|φ cuspidal}, and Rcusp the restriction
of Raut to Acusp. We get (Acusp(G), Rcusp) ∈ Repsmooth(G).

Definition A cuspidal automorphic irreducible complex representation of
GLr(A) is an irreducible subquotient of (Acusp, Rcusp).

Let Z ⊂ GLr be the center. Z ∼= Gm and is given by the diagonal matrices.
Let χ : Z(A)→ C× be a (quasi-)character (not necessarily unitary) that is trivial on
Z(F ), i.e., χ factors through Z(F )\Z(A). Let Acusp(G;χ) := {φ ∈ Acusp(G)|∀z ∈
Z(A),∀x ∈ GLr(A), φ(zx) = χ(z)φ(x)}. Choose a set of representatives of isomor-
phism classes of cuspidal automorphic irreducible representations of GLr(A) shose
central character is χ. Call this Ar(F,C;χ).

Theorem (Gelfand, Piatetski-Shapiro)

1. The set Ar(F,C;χ) is countable.

2. For each (V, π) ∈ Ar(F,C;χ), the multiplicity

Mcusp(π) := dimCHomRep(G)((V, π),Acusp(GLr(A);χ))

is finite and nonzero.

3. One has a noncanonical isomorphism

(Acusp(GLr(A);χ), Rcusp) ∼=
⊕

Ar(F,C;χ)

(V, π)⊕Mcusp(π)
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4. (Acusp(GLr(A);χ), Rcusp) is an admissible representation.

5. For any open compact subgroup K ⊂ GLr(A), there exist only finitely many
(V, π) ∈ Ar(F,C;χ) such that V K 6= 0.

The open compact subgroups are conjugate to those of the form

K = ker(GLr(OA)→ GLr(OF/(nontrivial ideal))).

Condition 5 says that for a fixed level of ramification, there are only finitely many
representations with that level. Mordell’s theorem gives a stronger statement for
number fields. ?

Another way to look at condition 3 is that the cuspidal spectrum lies inside the
discrete spectrum, which lies inside A(G) ∼= Adisc ⊕ Acts. The continuous spectrum
Acts is spanned by Eisenstein series.

September 13, 2002

Restricted tensor products of representations

Let |X| be a set (think of the set of places of a function field or closed points on
a curve). For each x ∈ |X|, let Gx be a topological group that is locally compact,
totally disconnected (every neighborhood of 1 has an open compact subgroup), and
unimodular (every left Haar measure is right-invariant).

We want good information on representations of Hecke algebras. Let Kx ⊂ Gx

be an open compact subgroup, e.g. Gx = GLr(Fx), Kx = GLr(Ox). For each finite
subset S ⊂ |X|, let GS :=

∏
x∈S Gx, a locally compact group, and KS :=

∏
x∈|X|\sKx

a compact group. The subscripts and superscripts are French notation, describing
the support of a group.

Definition The restricted product
∏

x∈|X|(Gx, Kx) := lim−→S⊂|X| finite
(GS × KS),

where the limit is taken in the category of locally compact Hausdorff totally discon-
nected unimodular topological groups. Transition homomorphisms are induced for
all S ⊂ S ′ ⊂

finite
|X| by inclusions KS′\S ↪→ GS′\S.

Lemma
∏

x∈|X|(Gx, Kx) exists, and contains
∏

x∈|X|Kx as an open compact sub-
group.

Construction Choose an algebraic closure C of R. For each x ∈ |X|, let (Vx, πx) ∈
Repsmooth(Gx,C). Assume that for almost all x ∈ |X|, one has dimC(V Kx

x ) = 1, and
choose S0 ⊂ |X| such that this condition is satisfied for all x ∈ |X| \ S0. |X| \ S0

is called the “unramified set”. For each x ∈ |X| \ S0, choose a distinguished vector
0
vx ∈ V Kx

x \ {0}. For each finite subset S ⊂ |X| containing S0, we get

(VS :=
⊗
x∈S

Vx, πS :=
⊗
x∈S

πx) ∈ Repsmooth(GS)
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Definition The restricted tensor product
⊗res

x∈|X|(Vx, πx, (
0
vx)x∈|X|\S0) is the ob-

ject (V, π) ∈ Rep(
∏

x∈|X|(Gx, Kx)), where V = lim−→S0⊂S ⊂
finite

|X| VS as a complex rep-

resentation, with transitions given for all S, S ′ satisfying S0 ⊂ S ⊂ S ′ ⊂
finite
|X| by⊗

x∈S Vx →
⊗

x∈S′ Vx via (
⊗

x∈S Vx)⊗ (
⊗

x∈S′\S
0
vx). fix me

• for any vS ∈ VS, denote its image in V by vS ⊗
0
vS

• for any finite S ⊂ |X|, any gS ∈ GS, k
S ∈ KS (giving gS×kS ∈

∏
x∈|X|(Gx, Kx)),

and any vS ∈ VS (giving vS⊗
0
vS ∈ V ), set π(gS×kS)(vS⊗

0
vS) := (πS(gS)vS⊗

0
vS ∈

V .

Lemma (V, π) is well defined, and an object in Repsmooth(
∏

x∈|X|(Gx, Kx)).

Lemma If S∞ ⊂ |X| with (
∞
v x)x∈|X|\S∞ is another choice, then

res⊗
x∈|X|

(Vx, πx, (
0
vx)x∈|X|\S0)

∼=
canonically

res⊗
x∈|X|

(Vx, πx, (
∞
v x)x∈|X|\S∞)

We may assume S0 ⊂ S∞ or vice versa.

Proposition If every (Vx, πx) is

{
admissible

admissible and irreducible

}
, then the same is

true for
⊗res

x∈|X|(Vx, πx).

This is a way to cook up admissible irreducible representations of a restricted
product. Unfortunately, the automorphic part is harder. (Someone asks, “Does every
admissible irreducible representation come from such a product?” Cheewhye says,
“Yes for GLr(A), given certain hypotheses.”)

Theorem (Flath) Suppose for almost all x ∈ |X|, the Hecke algebra eKx ∗H(Gx)∗eKx
is commutative (N.B. By Satake’s isomorphism, this is true for GLr(Fx), GLr(Ox)).
Let (V, π) ∈ Repadm(G) be irreducible. then for all x ∈ |X|, there exists (Vx, πx) ∈
Repadm(Gx) irreducible, such that for almost all x ∈ |X|, dimC(V Kx

x ) = 1, and such
that (V, π) =

⊗res
x∈|X|(Vx, πx) ∈ Repadm(G). If for all x ∈ |X|, (V ′

x, π
′
x) ∈ Repadm(Gx)

with the same properties, then for all x ∈ |X|, (Vx, πx) ∼= (V ′
x, π

′
x) in Repadm(Gx).

The unramified principal series for GLr(local field)

Let F be a non-archimedean local field, let k be its residue field, p = char(k),
q = #k. By normalizing the valuation, we get an exact sequence

1→ O×
F → F× vF→ Z→ 0.

12



Let r ≥ 1 be an integer. We get a Borel (maximal connected solvable) subgroup
Br ⊂ GLr (for groups that aren’t GLr, look for a split or quasi-split form). We have
a split exact sequence:

1→ Nr → Br → Ar → 1,

where Nr is the unipotent radical of Br, and Ar, the Levi component, is the maximal
torus. The Levi splitting Ar → Br is noncanonical. Let δBr : Br(F ) → R>0 be the
modular (quasi-)character of Br(F ) (i.e., for any left Haar measure dx, then for any
b ∈ Br(F ), d(bxb−1) = δBr(F )(b)dx. In fact, this map factors as Br(F ) � Ar(F ) →
qZ → R>0, and

δBr(F )(b) =
∣∣detAdLie(Nr)(b)∣∣F

=

∣∣∣∣∣∣
∏

α∈Φ(Br,Ar)

α(b)

∣∣∣∣∣∣
F

=
∏
i<j

∣∣∣∣ biibjj
∣∣∣∣
F

= q−((r−1)vF (b11)+(r−3)vF (b22)+···+(1−r)vF (brr)),

where b11, . . . , brr are the diagonal entries of the upper triangular matrix b, and
Φ(Br, Ar) is the set of roots of Br with respect to Ar.

Choose a square root p1/2 ∈ C. Then we get a q1/2 ∈ C canonically.

Definition The parabolic induction functor

indGLrBr,Ar
: Repsmooth(Ar(F ))→ Repsmooth(GLr(F ))

(Vχ, χ) 7→ (Vind(χ), ind(χ))

Vind(χ) is the complex vector space of all uniformly locally constant (i.e., invariant
under right translation by some open compact subgroup) functions GLr(F ) → Vχ
such that for any a ∈ Ar(F ), any n ∈ Nr(F ), and any x ∈ GLr(F ), φ(anx) =

δ
1/2
Br(F )(a)χ(a)φ(x), and ind(χ) : GLr(F ) → GL(Vχ) is given by right translation:

g 7→ (φ 7→ (x 7→ φ(xg))). The correction term δ
1/2
Br(F )(a) = δ

1/2
Br(F )(an) is to preserve

unitarity.

Definition The Jacquet restriction functor

resGLrBr,Ar
: Repsmooth(GLr(F ))→ Repsmooth(Ar(F ))

(Vπ, π) 7→ (Vres(π), res(π))

Vres(π) := Nr(F )-coinvariants of Vπ

= Vπ/〈π(n)v − v〉n∈Nr(F ),v∈Vπ

13



res(π) : Ar(F )→ GL(Vres(π)) takes a 7→ δ
−1/2
Br(F )(a)π(a). The δ term is necessary only

for unitarity.

Proposition The functors Repsmooth(GLr(F ))
res

�
ind

Repsmooth(Ar(F ))

1. are exact.

2. form an adjoint pair (Frobenius reciprocity).

3. send admissibles to admissibles.

The adjunction takes the form

HomRep(Ar(F ))(res(π), χ) � HomRep(GLr(F ))(π, ind(χ))
α 7→ (v 7→ (x 7→ α([π(x)v])))

([v] 7→ β(v)(I ∈ GLr(F ))) ←[ β

By adjunction, res is naturally right exact. To see why it is left exact, use Hecke
algebras. A representation of G naturally extends to a representation of H(G). given
an idempotent eI , make a smaller Hecke algebra eI ∗H(G) ∗ eI . The map V 7→ V ∗ eI
gives right modules. ?

Definition Let χ : Ar(F ) → C× = GL(Vχ) be a smooth (quasi-)character (i.e., the
kernel is open), so (Vχ, χ) ∈ Repsmooth(Ar(F )). The principal series representa-
tion of GLr(F ) associated to χ is (Vind(χ), ind(χ)) ∈ Repsmooth(GLr(F )).

By theorems of Casselman and independently by Bernstein and Zelevinsky, this
representation has finite length, that is in fact bounded by #Weyl(GLr, Ar) = r!.

Definition A representation (Vπ, π) ∈ Repsmooth(GLr(F )) is unramified if and only

if it is irreducible, smooth, and V
GLr(OF )
π 6= 0.

It turns out the dimension of the above space is one in this case.

Lemma-Definition Let χ : Ar(F ) → C× be an unramified quasi-character (i.e.,
Ar(OF ) ⊂ ker(χ)). Consider the principal series representation (Vind(χ), ind(χ)).

1. One has dimC(V
GLr(Of )

ind(χ) ) = 1.

2. There exists a unique irreducible subquotient of (Vind(χ), ind(χ)) that is unram-
ified, which we denote as (Vπ(χ), π(χ)).

Sketch of proof For the first, consider the decompositions

GLr(F ) ∼= Br(F ).GLr(OF ) (Iwasawa)

Ar(F ) ∩GLr(OF ) = Ar(OF ) (not Iwasawa).

14



The C-linear map V
GLr(OF )
ind(χ) → C given by φ 7→ φ(1 ∈ GLr(F )) is injective and

surjective (just need to check the torus). To prove the second claim, use the exactness check
of the functor Mod(H)→Mod(HGLr(OF ) defined by V 7→ V ∗ eGLr(OF ).

Theorem (Satake) Consider the map{
unramified quasi-

characters of Ar(F )

}
→
{

unramified represen-
tations of GLr(F )

}/
∼=

χ 7→ (Vπ(χ), π(χ))

1. This map is surjective.

2. χ and χ′ on the left are such that (Vπ(χ), π(χ)) ∼= Vπ(χ′), π(χ′)) in Rep(GLr(F ))
if and only if there exists w ∈ Weyl(GLr, Ar) ∼= Sr such that χ′ = w(χ).

Proposition Let $ ∈ mF be a uniformizer of OF . Then we have a bijection:{
unramified quasi-

characters of Ar(F )

}
� (C×)r

χ 7→

χ


$
1

. . .

1

 , . . . , χ


1

. . .

1
$





 a1

. . .

ar

 7→ r∏
i=1

zvF (ai)

 =: χ(z1,...,zr) ←[ (z1, . . . , zr)

Let Weyl(GLr, Ar) := NGLr(Ar)/Ar act on (C×)r by transport of structure:

Sr → Weyl(GLr, Ar)

σ 7→ wσ := δσ(i),j

Then

(wσ)
−1 ·

 a1

. . .

ar

 = w−1
σ

 a1

. . .

ar

wσ =

 aσ(1)

. . .

aσ(r)
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wσ(χ(z1,...,zr)

 a1

. . .

ar

 7→ r∏
i=1

z
vF (ai)
i ) =

= (

 a1

. . .

ar

 7→ r∏
i=1

z
vF (aσ(i))

i

=
r∏
i=1

z
vF (ai)

σ−1(i)) = χzσ−1(1),...,zσ−1(r)

Corollary (Satake’s parametrization) The following map is a bijection.

Sr\(C×)r →
{

unramified irreducible
representations of GLr(F )

}/
∼=

(z1, . . . , zr) 7→ (Vπ(χ(z1,...,zr)
), π(χ(z1,...,zr)))

Definition Let (Vπ, π) ∈ Repadm(GLr(F )) be unramified (N.B. Jacquet showed that
irreducible and smooth implies admissible forGLr). The multiset of Satake parame-
ters of π is the unique unordered r-tuple of nonzero complex numbers z1(π), . . . , zr(π)
such that (Vπ, π) ∼= (Vπ(χ(z1,...,zr)

), π(χ(z1,...,zr))).

September 20, 2002

Supplimentary remarks Let F be a nonarchimedean local field, and r ≥ 1 an
integer, so we get a category Repsmooth(GLr(F ),C).

Proposition Let (V, π) ∈ Repsmooth(GLr(F ),C), and assume dimCV < ∞. Then
SLr(F ) ⊂ ker(π).

Corollary If in addition π is irreducible, then π factors as GLr(F )
det→ Gm(F )

π→
C× = GL(V ).

Proof Pick a basis E ⊂
finite

V . Then ker(π) =
⋂
v∈E StabGLr(F )(v) is an open normal

subgroup of GLr(F ). Choose subgroups:

Nr � u

''PPPPPPPPP unip. rad.

Borel Br
� � //

'' ''OOOOOOOOO GLr

max. torus ArT4

ggOOOOOOOOO
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e.g.

Nr(F ) =


 1 ∗

. . .

0 1


 Ar(F ) =


 ∗ 0

. . .

0 ∗




ker(π) ∩Nr(F ) is an open subgroup of Nr(F ) stable under conjugation by Ar(F ) =
Br(F )/Nr(F ), so it is equal to Nr(F ), which is then contained in ker(π). Then ker(π)
contains the subgroup of GLr(F ) generated by all GLr(F )-conjugates ofNr(F ), which
is equal to [GLr(F ), GLr(F )] (this equals SLr(F ) when F is infinite).

Question: What do the Satake parameters of one dimensional smooth representa-
tions of GLr(F ) look like?

Suppose (V, π) is an unramified, smooth, (irreducible) one dimensional representa-

tion of GLr(F ). Then π factors as GLr(F )
det→ Gm(F )→ Gm(F )/Gm(O) ∼= Z→ C×,

i.e., the representations are parametrized by a complex numberz, with the last map
defined by 1 7→ z. Now consider the representation of Ar(F ) ⊂ GLr(F )

π→ C×

defined by

 a1

. . .

ar

 7→ z
P
v(ai). ResGLrBr,Ar

(V, π) = (Vres(π), res(π)) given by

Vres(π) = V (since Nr(F ) acts trivially on V , making all elements coinvariant), and

res(π) : Ar(F )→ C× taking a 7→ δ
−1/2
Br(F )(a)π(a). res(π) is also written χ

(q
r−1
2 z,...,q

1−r
2 z)

as it takes

 a1

. . .

ar

 7→ (q
r−1
2 z)v(a1) . . . (q

1−r
2 z)v(ar)

Frobenius reciprocity says that

HomRep(Ar(F ))(res(π), χ
(q
r−1
2 z,...,q

1−r
2 z)

) ∼=
∼= HomRep(GLr(F ))(π, ind

GLr
Br,Ar

(χ
(q
r−1
2 z,...,q

1−r
2 z)

)),

and we know these are nonzero, so there is an injection π ↪→ χ
(q
r−1
2 z,...,q

1−r
2 z)

. We

have just exhibited an unramified subquotient (in fact a subrepresentation), so by

uniqueness, the Satake parameters of π must be (q
r−1
2 z, . . . , q

1−r
2 z), where q is the

size of the residue field of F .

For example, the trivial representation is “as unramified as possible” with Satake
parameters (q

r−1
2 , . . . q

1−r
2 ), and weights −(r − 1),−(r − 3), . . . , r − 1.

Theorem (L. Lafforgue, Ramanujan-Petersson Conjecture) For any function field F ,

any r ≥ 1, any π ∈ Ar(F,C) =


isomorphism classes of cuspidal automorphic

irreducible representations of GLr(AF )
with finite order central character

,

and any place x ∈ |F |, the representation πx ∈ Repadm(GLr(Fx)) is tempered.

17



N.B. If πx is unramified, then the tempered condition is equivalent to |zi(πx)|C = 1
for all i. James Arthur formulated the “correct” generalization of this notion after
examining the failure of the Ramanujan-Petersson conjecture in the symplectic case.
The induction process requires this theorem to be proved in concert with Langlands
correspondence.

Theorem (Casselman, Bernstein-Zelevinsky) indGLrBr,Ar
(χ

(q
r−1
2 z,...,q

1−r
2 z)

) as a represen-

tation of GLr(F ) has a unique irreducible subobject (in this case trivial), and a
unique irreducible quotient object (in this case the Steinberg representation).

Proposition If (V, π) ∈ Repsmooth(GLr(A)) with dimC(V ) < ∞, then SLr(A) ⊂
ker(π).

This says something like, “orbital integrals use O.” ?

Corollary If (V, π) is also cuspidal, then r = 1.

So much for the automorphic side.

Galois side l-adic Galois representations.

Let F be any field. Choose a separable closure F of F . We get a profinite
topological group Gal(F/F ). Choose a prime number l. We get Ql. Choose an
algebraic closure Ql of Ql.

Definition A (finite dimensional) l-adic Galois representation of Gal(F/F ) is a pair
(V, σ), where V is a finite dimensional Ql vector space with the l-adic topology (which
is not locally compact), and σ : Gal(F/F ) → GL(V/Ql) is a continuous homomor-
phism.

We get a category Repfin(Gal(F/F ),Ql) whose objects are pairs (V, σ) as above,
and whose morphisms are Ql-linear maps of vector spaces intertwining the respective
Galois actions. This is a Ql-linear abelian tensor category.

Note This category is not semisimple (No Haar measure, and no positive definite
inner product).

Counterexample Let F = Q, and let E be an elliptic curve over Spec Z[1/N ] for
some suitable integer N . Let S be the zero section, let T be a fiberwise disjoint
section, and let X := E − S − T . The structure morphism f : X → Spec Z[1/N ]
is smooth, and R1f!Ql is a lisse Ql sheaf of rank 3, so it corresponds to a rank 3
representation of Gal(Q/Q). The cohomology long exact sequence from the diagram

X
j
↪→ E

i←↩ S ∪ T is:

0
affine
= H0

c (X)→ H0
c (E)

diag→ H0
c (S ∪ T )→ H1

c (X)→ H1
c (E)→ H1

c (S ∪ T )
codim 1

= 0

The nonzero terms have rank 1, 2, 3, and 2, respectively. H1
c (E) is the Tate module,

or its dual, depending on who you ask, but it’s self-dual for elliptic curves. [I seem

18



to have missed the argument for why the sequence doesn’t split.] Kronecker-Weber fix

implies Gal(Q/Q)ab ∼= Gal(Qab/Q) ∼= Ẑ× � Ẑ. There is a Poincaré duality pairing
H1
c (X)×H1(X)→ Ql(−1).

Why Ql and not C? The main reason is that any complex Lie group has a neigh-
borhood of the identity that contains no nontrivial subgroups. The preimage of such
a neighborhood under the representation map is an open subset of the Galois group,
which is compact. This implies the representation factors through a finite quotient,
i.e., it is rather trivial. In particular, monodromy groups are all zero dimensional.

Note If F
′
is another separable algebraic closure of F , then we get another group,

Gal(F
′
/F ), and there exists an isomorphism φ : Gal(F

′
/F ) → Gal(F/F ). Then we

have an isomorphism

Rep(Gal(F/F ))
∼→ Rep(Gal(F

′
/F ))

(V, σ) 7→ (V, σ ◦ φ)
(V, σ′ ◦ φ−1) � (V, σ′)

and the sets of isomorphism classes of irreducible objects are in canonical bijection.

Blah blah Katz-Sarnak remark 9.3. fix

Gal
∀ //

∃ $$I
IIIIIIIII

also ∃

��7
77

77
77

77
77

77
77

77
7 GLr(Ql)

GLr(Eλ)
?�

OO

GLr(Oλ)
?�

OO

For any homomorphism σ : Gal(F/F )→ GLr(Ql), there is a finite extension Eλ/Ql

such that σ factors through GLr(Eλ), and given a properly chosen basis, it factors
through GLr(Oλ), where Oλ is the ring of integers in Eλ.

Local field case

Let F be a nonarchimedean local field, k its residue field, and choose F , l, and Ql

as above. This gives us a representation category. Let F ur be the maximal unramified
extension of F in F . We get an exact sequence of profinite groups:

1 // Gal(F/F ur) // Gal(F/F ) // Gal(F ur/F ) // 1

I(F/F ) Gal(k/k)

I(F/F ) is the absolute inertia group of F/F . k is the residue field of F ur, and it
is an algebraic closure of k.
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We have a canonical isomorphism Ẑ ∼→ Gal(k/k) given by 1 7→ Geometric Frobe-
nius := (x 7→ x#k)−1 ∈ Gal(k/k).

Definition A Galois representation σ is unramified if and only if I(F/F ) ⊂ ker(σ),
i.e., the inertia group acts trivially. This is also sometimes called spherical.

In this case, σ will factor as Gal(F/F ) → Gal(k/k)
σ→ GL(V/Ql), and we get a

representation (V, σ) ∈ Rep(Gal(k/k)).

Definition If (V, σ) ∈ Rep(Gal(F/F )) is unramified, then its Frobenius eigenval-
ues are the eigenvalues of σ(Frobk ∈ Gal(k/k)) ∈ GL(V/Ql).

These give us an unordered r-tuple of elements of Ql
×
, where r = rank(V ). Since

we can always factor the Galois representation through some GLr(Oλ), we have an
isomorphism{

isomorphism classes of unramified semisimple
r-dimensional representations of Gal(F/F )

}
∼→ Sr\(Z

×
l )r

[The Weil group is briefly mentioned here, but it will appear later.]

Function field

Let k be a finite field, and F a function field over k. Assume k is algebraically
closed in F (otherwise, we can replace k by its algebraic closure in F

X oo ///o/o/o/o/o/o/o/o/o/o/o

��

∃ ''PPPPPPP F

Spec(k′)

wwoooooo
∃k′

``BBBBB

Spec(k) k

??~~~~~

OO

Stein factorization [ref. EGA III 4.3.3] implies the structure map of a smooth curve
with function field F factors through Spec of the algebraic closure of k in F ). Choose
F , l, and Ql as above. Let k be the algebraic closure of k in F .

F

kF
tt II

F JJ kvv

F ∩ k
k
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We have an exact sequence of Galois groups:

1 // Gal(F/kF ) // Gal(F/F ) // Gal(kF/F )

∼=
��

// 1

Galgeom(F/F ) Frobk Gal(k/k)

1
_

OO

Ẑ

∼=

OO

We call Galgeom(F/F ) the geometric Galois group of F/F . The sequence is exact
at Gal(kF/k) precisely because k is algebraically closed in F .

Let x ∈ |F | be a place of F . We get Fx the completion of F at x, and κx the
residue field of Fx. Choose a separable algebraic closure Fx of Fx. We get a category
Rep(Gal(Fx/Fx)), F

ur
x the maximal unramified extension of Fx in Fx, and κx, the

residue field of Fx. κx is also an algebraic closure of κx and of k. We get another
exact sequence:

1→ I(Fx/Fx)→ Gal(Fx/Fx)→ Gal(κx/κx)→ 1

We have a canonical embedding F ↪→ Fx. Choose an F -embedding F
jx
↪→ Fx. This

choice induces a well-defined continuous injective homomorphism Gal(Fx/Fx)
(jx)∗→

Gal(F/F ) given by g 7→ (a 7→ j−1
x (g(jx(a)))). The map is injective because of

Krasner’s lemma (Fx = jx(F ) · Fx). If j′x is another choice of embedding, then
(jx)∗ and (j′x)∗ are conjugate in Gal(F/F ), i.e., isomorphism classes of pulled-back
representations do not change. We get a commutative diagram with exact rows:

1 // I(Fx/Fx) //
� _

(jx)∗
��

Gal(Fx/Fx) //
� _

(jx)∗
��

(Gal(κx/κx)� _

��

Ẑ)
∼=oo

� _

deg(x)
��

// 1

1 // Galgeom(F/F ) // Gal(F/F ) // (Gal(k/k) Ẑ)
∼=oo // 1

where deg(x) = [κx : k] ∈ Z>0.

Let (V, σ) ∈ Rep(Gal(F/F )), so for all x ∈ |F | we get σx : Gal(Fx/Fx)
(jx)∗
↪→

Gal(F/F )
σ→ GL(V/Ql). This gives us (V, σx) ∈ Rep(Gal(Fx/Fx)), and if it is

unramified, then its Frobenius eigenvalues are called the Frobenius eigenvalues of
σ at x.

Recall that

Gr(F,Ql) :=


isomorphism classes of continuous irreducible

representations of Gal(F/F ) on a Ql vector space
of rank r that are almost everywhere unramified,

and whose determinant characters have finite order

 .
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π ∈ Ar(F,C) and σ ∈ Gr(F,Ql) are in Langlands correspondence with respect to
ι : Ql

∼→ C if and only if for any x ∈ |F | such that both π and σ are unramified at x,
one has {z1(πx), . . . , zr(πx)} = ι{z1(σx), . . . , zr(σx)}.

September 27, 2002

Local class field theory

Let F be a nonarchimedean local field, v : F× � Z its valuation, O its ring of
integers (the maximal compact subring of F ), O× = ker(v) the ring if units, and k
the residue field. We have a short exact sequence of topological groups

1→ O× → F× → Z→ 1

.

Local Weil Groups

Choose a separable algebraic closure F of F . We get F ur the maximal unramified
extension of F in F and k, the residue field of F ur, which is also an algebraic closure
of k. We have a short exact sequence of profinite groups:

1 // Gal(F/F ur) // Gal(F/F ) // Gal(F ur/F ) //

∼=
��

1

I(F/F ) Gal(k/k) Ẑ
∼=oo

Frobk 1
�oo

where I(F/F ) is called the absolute inertia group, and Frobk is the geometric
Frobenius.

The Weil group of k/k is W (k/k) := (Frobk)
Z ⊂ Gal(k/k). It is isomorphic to

Z, with the discrete topology. The degree homomorphism is defined as

Gal(F/F )
deg //

∼=
��

Ẑ

Gal(F ur/F )
∼= // Gal(k/k)

∼=

OO

Note that I(F/F ) = ker(deg).

The Weil group of F/F is the preimage of W (k/k) (or Z, depending on your
definition) under deg, given the unique topology such that I(F/F ) ⊂ W (F/F ) is a
maximal compact open subgroup.
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In fact, W (F/F ) is noncanonically isomorphic to a semidirect product I(F/F )o
Z, with the action given by conjugation in Gal(F/F ).

Let IW ab(F/F ) denote the image of I(F/F ) in W (F/F )ab. Then we have a
commutative diagram with exact rows:

1 // I(F/F ) //

��

W (F/F )
deg //

��

W (k/k) //

∼=
��

0

1 // IW ab(F/F ) //W (F/F )ab
deg // Z // 0

Note that the canonical map Iab � IW ab is not necessarily an isomorphism.

Theorem (local class field theory)

1. There exists a unique homomorphism of (abstract) abelian groups

ψF : F× → Gal(F/F )ab

such that

(a) the following diagram commutes

F× v //

ψF
��

Z

��
Gal(F/F )ab

deg // Ẑ

(b) for any finite abelian extension E/F in F/F , the norm groupNE/F (E×) ⊂
F× lies in the kernel of F× ψF→ Gal(F/F )ab � Gal(E/F ).

2. The homomorphism ψF has the following properties:

(a) It is continuous.

(b) For any finite abelian extension E/F in F/F , let ψE/F : F×/NE/F (E×)→
Gal(E/F ) be defined by:

F×/NE/F (E×) // Gal(E/F )

F×

OO

ψF // Gal(F/F )ab

OOOO

Then ψE/F is an isomorphism.
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3. From 1(a) and 2(a), we get a commutative diagram with exact rows:

1 // O× //

ψF
��

F× v //

ψF
��

Z // 1

1 // IW ab(F/F ) //W (F/F )ab // Z // 1

Assertion: The homomorphisms ψF : O× → IW ab(F/F ) and ψF : F× →
W (F/F )ab are isomorphisms of topological abelian groups.

Definition The terms local reciprocity map and local Artin map refer to ψF :
F× ∼→ W (F/F )ab and anything canonically deduced from it.

Construction of the homomorphism ψF : F× → Gal(F/F )

Step 1 Theorem The inflation map

H2(F ur/F ) // H2(F/F )

H2(Gal(F ur/F ), (F ur)×) H2(Gal(F/F ), F
×
) =: Br(F ) “Brauer group”

is an isomorphism. Note that injectivity follows from Hilbert’s Theorem 90. This
is proved using a Hochschild-Serre spectral sequence:

•
•
•

Step 2 We have an exact sequence

1→ (Our)× → (F ur)×
v→ Z→ 1

Proposition If Fj/F is the unique unramified extension of F of degree j in F ur, then

Ĥq(Gal(Fj/F ),O×
j ) = 0 for all q ≥ 0.

Ĥq denotes Tate cohomology, which is defined by:

Ĥq = Hq for q ≥ 1

Ĥ−q = Hq−1 for q ≥ 2

Ĥ0(G,A) = AG/NG(A)

Ĥ−1(G,A) = ker(NG:A→A)
IG(A):=ker(Z[G]→Z)
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Corollary The map H2(F ur/F )
v∗→ H2(Gal(k/k),Z) is an isomorphism.

Step 3 Consider the exact sequence

0→ Z→ Q→ Q/Z→ 0.

Proposition Ĥq(Ẑ,Q, trivial action) = 0

Corollary The map H1(Ẑ,Q/Z, trivial action)
δ→ H2(Ẑ,Z, trivial action) is an iso-

morphism.

Step 4 The isomorphism invF is defined as follows:

Br(F ) := H2(F/F )

invF ∼=
��

H2(F ur/F )
(Step 1)

∼=oo
(Step 2)

∼= // H2(Gal(k/k),Z, trivial action)

Q/Z Hom(Gal(k/k),Q/Z)
ev. at Frobk

∼=oo

∼=��

H1(Gal(k/k),Q/Z, trivial action)

(Step 3) ∼=
OO

Ẑ

Step 5 Theorem For E/F a finite Galois degree n extension in F , the following
diagram commutes:

Br(F ) res //

invF ∼=
��

Br(E)

invE ∼=
��

Q/Z multn // Q/Z

Step 6 Theorem The canonical map H2(E/F ) := H2(Gal(E/F ), E×) → Br(F )
given E/F as above, induces an isomorphism: H2(E/F )

∼→ ker(Br(F )
res→ Br(E))

Definition The fundamental class uE/F ∈ H2(E/F ) is characterized by its image:
invF (uE/F ) = [1/n] via the diagram

0 // H2(E/F ) //

invF ∼=
��

Br(F ) //

invF ∼=
��

Br(E)

invE ∼=
��

0 // 1
n
Z/Z � � // Q/Z multn // Q/Z

Step 7 Theorem (Tate) For E/F a finite Galois extension of degree n in F/F , we
have an isomorphism:

Ĥ−2(Gal(E/F ),Z, trivial action)
−∪uE/F−→ Ĥ0(Gal(E/F ), E×)
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In fact, the map “cup product with uE/F” is an isomorphism if we replace 0 by any
integer q.

Definition The local reciprocity map ψE/F : F×/NE/F (E×) → Gal(E/F )ab for
E/F as above is defined by the composition:

F×/NE/F (E×)
ψE/F // Gal(E/F )ab H1(Gal(E/F ),Z, trivial action)

∼=oo

Ĥ0(Gal(E/F ), E×) Ĥ−2(Gal(E/F ),Z, trivial action)
(Tate)

∼=
oo

Step 8 For E ′/F ⊃ E/F finite Galois extensions in F/F , the diagram commutes:

F×

����
F×/NE′/F (E/×)

����

∼=

ψE′/F // Gal(E ′/F )ab

����
F × /NE/F (E×) ∼=

ψE/F // Gal(E/F )ab

If we pass to the limit, we have a unique map ψF : F× → Gal(F/F )ab, but it is no
longer an isomorphism.

Global class field theory for function fields

Let k be a finite field of characteristic p, let F be a function field over k, let
|F | be the set of places of F , and let A be the ring of adèles. We define the degree
homomorphism A× → Z by (ax)x∈|F | 7→

∑
x∈|F | deg(κ(x)/k)vx(ax), where vx : F×

x �
Z is the valuation map. Let (A×)0 := ker(deg).

Lemma Let k′ be the algebraic closure of k in F . Then the image of deg : A → Z
has index [k′ : k].

This is not true for number fields. ??

From now on, we assume k is algebraically closed in F . This is saying that the
curve X → Spec(k) with function field F is geometrically connected. [Something
about Stein factorization again here: X → Spec(k′) → Spec(k)] We get an exact
sequence of locally compact Hausdorff topological groups:

1→ (A×)0 → A× deg→ Z→ 0

The topology on A×is induced from the topoloical ring structure on A via A× =
Gm(A).
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Lemma (Product formula) The diagonal embedding F× ↪→ A× factors as F× ↪→
(A×)0 ↪→ A×.

Proposition

1. The embedding F× ↪→ (A×)0 identifies F× as a discrete subgroup of (A×)0.

2. The quotient F×\(A×)0 with the quotient topology is compact.

Passing to quotients, we get the following exact sequence of topological groups:

1→ F×\(A×)0 → F×\A× → Z→ 0

where F×\(A×)0 is profinite (in particular, compact), F×\A× is locally compact and
Hausdorff, and Z is discrete.

Global Weil group

Choose a separable algebraic closure F of F , and let k be the algebraic closure of
k in F . We have the exact sequence:

1 // Gal(F/kF ) // Gal(F/F ) // Gal(kF/F ) //

∼=��

1

Galgeom(F/F ) Gal(k/k) Ẑ
∼=oo

Frobk 1
�oo

The degree homomorphism deg : Gal(F/F )→ Ẑ is defined as the composition

Gal(F/F ) � Gal(kF/F ) ∼= Gal(k/k) ∼= Ẑ where the last isomorphism takes Frobk
to 1.

Definition The Weil Group of F/F is W (F/F ) := deg−1(FrobZ
k ⊂ Gal(k/k)) ⊂

Gal(F/F ), endowed with the unique topology such that Galgeom(F/F ) ⊂ W (F/F )
is a maximal compact (profinite) open subgroup.

We get an exact sequence:

1→ Galgeom(F/F )→ W (F/F )
deg→ Z→ 0.

To pass to the abelianization, we let GalgeomW
ab(F/F ) := image of Galgeom(F/F ) in

W (F/F )ab. Then we have an exact sequence of abelian topological groups:

1→ GalgeomW
ab(F/F )→ W (F/F )ab

deg→ Z→ 0

Lemma-Definition
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• For each x ∈ |F |, we get the completion Fx, and an inclusion F×
x ↪→ A×.

• Choose a separable closure Fx of Fx. Then we get a group Gal(Fx/Fx) and a
local reciprocity map ψx : F×

x → Gal(Fx/Fx)
ab.

• Choose an F -embedding F
jx
↪→ Fx. This induces homomophisms

(jx)∗ : Gal(Fx/Fx) ↪→ Gal(F/F )
(jx)∗ : Gal(Fx/Fx)

ab → Gal(F/F )ab.

Then:

1. For each (ax)x∈|F | ∈ A×, the product
∏

x∈|F |(jx)∗ψx(ax ∈ F×
x ) is well-defined,

and independent of our choices above.

2. The map ψF : A× → Gal(F/F )ab defined by (ax) 7→
∏

x∈|F |(jx)∗ψx(ax) is a

homomorphism of (abstract) abelian groups.

3. The homomorphism ψF : A× → Gal(F/F )ab is the unique homomorphism of
(abstract) abelian groups such that the diagram

F×
x� _

��

ψx // Gal(Fx/Fx)
ab

(jx)∗
��

A× ψF // Gal(F/F )ab

commutes for all x ∈ |F | (this is independent of the choice of jx).

Theorem (Global class field theory)

1. The homomorphism ψF : A× → Gal(F/F )ab of (abstract) abelian groups in-
duces a homomorphsim ψF : F×\A× → W (F/F )ab of abstract abelian groups
such that the diagram

A×

����

ψF // Gal(F/F )ab

F×\A× ψF //W (F/F )ab
?�
dense

OO

commutes.

2. ψF : A× → Gal(F/F ) and ψF : F×\A× have the following properties:

(a) They are continuous.
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(b) Given any finite abelian field extension E/F in F/F , the norm groups
NE/F (A×

E) ⊂ A×
F and NE/F (E×\A×

E) ⊂ F×\A×
F lie in the kernels of the

compositions ker(A×
F

ψF→ Gal(F/F )ab → Gal(E/F )) and ker(F×\A×
F

ψF→
W (F/F )ab → Gal(E/F )), respectively.

(c) The induced map ψE/F : F×\A×
F/NE/F (A×

E) → Gal(E/F ) makes the dia-
gram

F×\A×
F/NE/F (A×

E)
ψE/F // Gal(E/F )

F×\A×
F

OOOO

ψF //W (F/F )ab

OOOO

commute, and ψE/F is an isomorphism of abelian groups.

3. One obtains from 1 and 2b the diagram

1 // F×\ (A×
F )0 //

ψF
��

F×\A×
F

deg //

ψF
��

Z // 0

1 // GalgeomW
ab(F/F ) //W (F/F )ab

deg // Z // 0

commutes. The continuous homomorphisms ψF are isomorphisms of topological
abelian groups.

Definition The terms global reciprocity map and global Artin map refer to
ψF : F×\A× ∼→ W (F/F )ab and anything canonically deduced from it.

October 4, 2002

r = 1 case of Langlands correspondence (Existence claims only - uniqueness
requires L-function formalism)

Let k be a finite field of characteristic p > 0, let F be a function field over k, and
let A be the ring of adèles of F . Choose an algebraic closure C of R, and get a set
Ar(F,C). Choose l 6= p, Ql, and F a separable closure of F , and get Gr(F,Ql).

Theorem

1. For any isomorphism of fields ι : Ql → C, global class field theory in F induces a
bijection A1(F,C)

∼↔ G1(F,Ql). Call this the class field theory correspondence.

2. Let π ∈ A1(F,C) and σ ∈ G1(F,Ql) be in class field theory correspondence.
Then

(a) Sπ = Sσ ⊂ |F |.
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(b) π and σ are in Langlands correspondence with respect to ι.

Proof We may assume k is algebraically closed in F . By global class field theory, we
have a map given by the composition:

GL1(A)

����

ψF

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Gal(F/F )

����
GL1(F )\GL1(A)

ψF

global CFT iso.
//W (F/F )ab

� �

dense
// Gal(F/F )ab

Then we have the following bijections:

G1(F,Ql)


isomorphism classes of irreducible

continuous representations of

Gal(F/F ) on a Ql vector space of
rank 1, almost everywhere

unramified and of finite order


OO
∼=
��



Gal(F/F )

↓
Gal(F/F )

ab

↓ χσ
Ql
×

↓ ∼=
V σ


 quasi-characters

Gal(F/F )ab → Ql
×

of finite order


∼=
��

χσ_

��

_

OO

χσ_

��

 quasi-characters

W (F/F )ab → Ql
×

of finite order


∼=CFT

��


W (F/F )

ab

↓ dense

Gal(F/F )
ab

↓ χσ
Ql
×




GL1(F )\GL1(A)

∼= ↓ ψF
W (F/F )

ab

↓ χσ
Ql
×

∼= ↓ ι
C×


 quasi-characters
GL1(F )\GL1(A)→ C×

of finite order


OO

∼=

��

χπ_

��

A1(F,C)


isomorphism classes of (cuspidal)
automorphic irreducible complex
representations of GL1(A) with a

finite order central character




C · (χπ as
a function
on GLr(A))
∩

Acusp(GLr(A),C)
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Note that the cuspidality condition collapses for r = 1. The last correspondence
can also be expressed by

(Vπ, π) �

GL1(A) π //

����

GL(Vπ)OO
∼=
��

GL1(F )\GL1(A)
χπ // C×

For any place x ∈ |F |, we get a completion Fx and a residue field κx. Choose a
separable algebraic closure Fx of Fx. We get Gal(Fx, Fx). Choose an F -embedding
jx : F ↪→ Fx. We get (jx)∗ : Gal(Fx/Fx) ↪→ Gal(F/F ). We have the following picture
of local-global correspondence (upward arrows are surjections):

$xS

		��
��
��
��

GL1(Fx) = F×
x

ψx
∼=
//

vx

wwwwoooooooo

��

W (Fx/Fx)
ab � � dense //

deg
zzzzttt

ttt

��

Gal(Fx/Fx)
ab

uuuullllll

��

Gal(Fx/Fx)oooo
� _

(jx)∗

��

Z Z � � dense // // Gal(κx/κx)

1
� // 1

� // Frobx

GL1(A)
ψF

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

����
GL1(F )\GL1(A)

ψF
∼=
//W (F/F )ab

� �

dense
// Gal(F/F )ab Gal(F/F )oooo

We need to check commutativity: Suppose π ∈ A1(F,C) and σ ∈ G1(F,Ql) are
in class field theory correspondence with respect to ι. Then for x ∈ |F |, one has:

x /∈ Sσ ⇔

(
σx : Gal(Fx/Fx)

(jx)∗
↪→ Gal(F/F )→ GL(Vσ) factors

through Gal(Fx/Fx) � Gal(Fx/Fx)
ab � Gal(κx/κx)

)

⇔

(
GL1(Fx) = F×

x ↪→ GL1(A) � GL1(F )\GL1(A)
πx→ GL(χπ)

factors through GL1(Fx) = F×
x

vx
� Z

)
⇔ x /∈ Sπ

Hence, Sσ = Sπ ⊂ |F |. Choose a uniformizer $x ∈ GL1(Fx). Its image under vx is 1,
and it is sent to Frobx ∈ Gal(κx/κx), the geometric Frobenius.

For each x ∈ |F | \ (Sπ = Sσ), we have

z1(σx) = eigenvalue of Frobx ∈ Gal(κx/κx) under σx

= image under σx of any lift of Frobx to Gal(Fx/Fx)

Now, apply ι : Ql
∼→ C.

ι(z1(σx)) = image under πx of any uniformizer $x of Fx

= z1(πx) ∈ C×
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So much for r = 1.

Future Program

1. Rankin-Selberg convolutions, L and ε factors

2. Converse theorem of Piatetski-Shapiro

3. Grothendieck’s l-adic cohomology

4. Grothendieck-Lefschetz-Verdier trace formula

5. Weil II

6. Product formula of Laumon and Grothendieck, L and ε functions

7. Arthur-Selberg trace formula (probably next term)

We have two different theories:

• Automorphic

– Tate’s Thesis - Generalized by Godement-Jacquet (groups of units in sim-
ple algebras), gives principal L, ε factors for GLr.

– Rankin-Selberg convolutions (Jacquet, Piatetski-Shapiro, Shalika) for??
(poles?) of automorphic representations (twistee and twistor), for converse ?
theorem (GLr ×GLr′).

– Langlands-Shahidi method - popular, very general, not necessary for us.

• Galois/cohomological(/motivic)

– Artin L-functions - Grothendieck (L-factors), Laumon (ε-factors)

Tate’s thesis (This can be found in the appendix to Cassels & Frohlich. It has been
souped up by Godement and Jacquet)

Let F be a nonarchimedean local field, and let v : F× � Z be a normalized
valuation. Let C∞

c (F ) be the complex vector space of functions that are smooth (=
locally constant) and have compact support. Choose a Haar measure d×x on F×.
Let χ : F× → C× be a smooth quasi-character of F×.

Definition The zeta integral of χ, Z(χ,−, T ) : C∞
c (F ) → C((T )) is the C((T ))-

valued distribution on F given by

φ 7→ Z(χ, φ, T ) :=

∫
F×

φ(x)χ(x)T v(x)d×x

=
∑
m∈Z

Tm
(∫

x∈F×,v(x)=m
φ(x)χ(x)d×x

)
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Key proposition Let Pχ ⊂ C[T ] ⊂ C((T )) be the C[T ]-ideal

Pχ := {P (T ) ∈ C[T ] : ∀φ ∈ C∞
c (F )P (T )Z(χ, φ, T ) ∈ C[T±1] ⊂ C((T ))}

Assertion: This is a non-zero ideal of C[T ].

Proof Computational. χ is either unramified (look at 1− χ(x)T ) or ramified (ideal
contains 1).

Note If Q(T ) ∈ C[T ] is such that TQ(T ) ∈ Pχ, then Q(T ) ∈ Pχ, so Pχ is generated
by some polynomial with constant term 1.

Definition The L-factor associated to χ is the unique element L(χ;T ) ∈ C(T )×∩
(1+TC[[T ]]) ⊂ C((T )) such that L(χ;T )−1 is the generator of Pχ with constant term
1.

Let ψ : F → C× be a nontrivial additive (unitary) character. This necessarily
falls on pth roots of unity.

Definition The conductor of ψ is c(ψ) := max {c ∈ Z : ψ|m−c is trivial }, where m

is the maximal ideal in the ring of integers O ⊂ F .

The conductor is large if and only if the character is more trivial. Note that ψ
induces an isomorphism of topological abelian groups F

∼→ F̂ := Homtop−ab(F,R/Z ⊂
C×) given by a 7→ (x 7→ ψ(ax)). Let dx be the unique Haar measure self-dual with U(1)?
respect to ψ (given by the normalization

∫
O dx = qc(ψ)/2, with q the order of the

residue field).

Definition The Fourier transform on C∞
c (F ) with respect to ψ is the map

C∞
c (F )→ C∞

c (F ) defined by φ 7→ φ̂ := (a 7→
∫
F
φ(x)ψ(ax)dx).

The measure dx is self dual with respect to ψ if and only if the Fourier inversion

formula takes the form
̂̂
φ(x) = φ(−x). If χ : F× → C× is a smooth quasi-character,

then we define the dual χ∨ of χ by a 7→ χ(a−1) = χ(a)−1.

Theorem (Local functional equation) There exists a unique function ε(χ, ψ;T ) ∈
C(T ) ⊂ C((T )) such that for any φ ∈ C∞

c (F ), one has

Z(χ∨, φ̂; 1
qT

)

L(χ∨; 1
qT

)
= ε(χ, ψ;T )

Z(χ, φ;T )

L(χ;T )

Moreover, ε(χ, ψ;T ) ∈ C[T±1], i.e., it is a monomial.

Definition The monomial defined above is called the ε-factor associated to χ
and ψ. Choose a q1/2 ∈ C×, and write ε(χ, ψ;T ) = q−c(ψ)/2b(χ, ψ)T a(χ,ψ). This
uniquely defines b(χ, ψ) ∈ C×, the local constant of χ, ψ, and a(χ, ψ) ∈ Z, the
local conductor of χ, ψ.
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Note None of L(χ;T ), ε(χ, ψ;T ), a(χ, ψ), or b(χ, ψ) depend on our choice of d×x.
Only b(χ, ψ) depends on our choice of q1/2.

Proposition There exists a unique nonnegative integer a(χ) ∈ Z≥0 such that for
any choice of nontrivial additive character ψ : F → C, a(χ, ψ) = a(χ) + c(ψ). Call
a(χ) the local conductor of χ.

Proposition Let χ : F× → C× be a smooth quasi-character, and let ψ : F → C× be
a nontrivial continuous additive character. Then:

L(χ;T ) =

{
1

1−χ($)T
if χ is unramified

1 if χ is ramified

a(χ) =

{
0 if χ is unramified

min{a ∈ Z≥1 : χ|1+ma⊂O×⊂F× is trivial} if χ if ramified

b(χ, ψ) =

{
χ($c(ψ))qc(ψ) if χ is unramified∫
z∈F,v(z)=−a(χ)−c(ψ)

χ−1(z)ψ(z)dz if χ is ramified

Here, we choose dz so
∫
O dz = 1.

Global story

Let k be a finite field of order q (not the same q as above), let F be a function
field over k, and let A be its ring of adèles. Assume k is algebraically closed in F .
Fix a unitary character χ : GL1(F )\GL1(A) → C×, and let ψ : F\A → C× be a
nontrivial additive character.

For each x ∈ |F | we get χx : F×
x → GL1(A) � GL1(F )\GL1(A)

χ→ C×, and

ψx : Fx → A � F\A ψ→ C× (nontrivial by strong approximation). Also we get local
factors: L(χx;T ) ∈ C(T )× ∩ (1 + TC[[T ]]) ⊂ C((T )) and ε(χx, ψx;T ) ∈ C[T±1]×.

Definition The global L-function associated to χ is

L(χ;T ) :=
∏
x∈|F |

L(χx;T
deg(x)) ∈ 1 + TC[[T ]].

The global ε-function associated to χ, ψ is

ε(χ, ψ;T ) :=
∏
x∈|F |

ε(χx, ψx;T
deg(x)) ∈ C[T±1]×.

The global conductor of χ, ψ is

a(χ, ψ) :=
∑
x∈|F |

deg(x)a(χx, ψx).

34



The global conductor of χ is

a(χ) :=
∑
x∈|F |

deg(x)a(χx) ∈ Z≥0.

The global constant of χ, ψ is

b(χ, ψ) :=
∑
x∈|F |

b(χx, ψx) ∈ C×.

These products and sums make sense, because χ is unramified almost everywhere.

Theorem (Global functional equation) Let χ : GL1(F )\GL1(A)→ C× be a smooth
unitary character, and let ψ : F\A→ C× be a nontrivial character. Then:

1. L(χ;T ) ∈ C(T ) ∩ (1 + TC[[T ]]) ⊂ C((T )) (rationality, analytic continuation)

2. L(χ;T ) = ε(χ, ψ;T )L(χ∨, 1
qT

) in C(T ) ⊂ C((T )) (functional equation)

Note that the functional equation requires k to be algebraically closed in F .

Corollary ε(χ, ψ;T ) = ε(χ;T ) is independent of our choice of additive character ψ.

October 11, 2002

Let k be a finite field of order q, F a function field over k, and let A be the ring of
adèles of F . Assume k is algebraically closed in F . Let χ : GL1(F )\GL1(A)→ C× be
a smooth quasicharacter (called an idèle class character), and let ψ : F\A → C×

be a nontrivial continuous additive character.

For each x ∈ |F |, we get characters χx : GL1(Fx) = F×
x → C× and ψx : Fx → C×

(nontrivial by strong approximation), L-factors L(χx;T ) ∈ C(T ) ∩ (1 + TC[[T ]]) ⊂
C((T )), and ε-factors ε(χx, ψx;T ) ∈ C[T±1]×.

Theorem Let χ be unitary.

1. (rationality, analytic continuation) The global L-function

L(χ;T ) :=
∏
x∈|F |

L(χx;T
deg(x)) ∈ 1 + TC[[T ]] ⊂ C((T ))

actually lies in C(T )× (This doesn’t require χ to be unitary).

2. (functional equation) L(χ;T ) = ε(χ, ψ;T )L(χ∨, 1
qT

), where we define the global
ε-function to be

ε(χ, ψ;T ) :=
∏
x∈|F |

ε(χx, ψx;T
deg(x)).
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Corollary The ε-function ε(χ, ψ;T ) = ε(χ;T ) is independent of ψ, so b(χ, ψ) =
b(χ) =

∏
x∈|F | b(χx, ψx) is independent of ψ.

The sum
∑

x∈|F | deg(x)c(ψx) is independent of ψ, and equals 2g(F )−2 ∈ Z. g(F )
is called the genus of F .

Equivalence of curves and function fields

Let k be any field.

Definition A (proper/smooth) curve over k is a k-scheme aX : X → Spec(k) such
that

1. X is integral (the generic point is denoted ηX).

2. The structure morphism aX is separated and of finite type (proper/smooth if
in statement).

3. For any closed point x ∈ |X|, the local ring OX,x has Krull dimension 1.

The last condition is equivalent to the statement: The residue field at the generic
point, κ(X) = κ(ηX) has transcendence degree 1 over k.

Lemma Let X/k be a curve. The following are equivalent:

1. X is normal.

2. X is regular.

3. (when k is perfect) aX : X → Spec(k) is smooth.

Definition A function field over k is a k-algebra F that is a field, finitely generated
as a k-extension, and of transcendence degree 1 over k.

Theorem Let k be a (perfect) field. The contravariant functor
Proper (smooth) normal

curves over k,
dominant morphisms over k

 −→
{

Function fields over k,
k-homomorphisms

}

X 7→ κ(ηX) = κ(X)
↓ ↑
Y 7→ κ(ηY )

is an anti-equivalence of categories.

This is well-defined, because any dominant morphism takes the generic point of X
to the generic point of Y . It is faithful because X is integral and Y is separated over
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k. It is full because Y is locally notherian (see EGA). It is essentially surjective for
the following reason: If F is an object on the right hand side, it is a finitely generated
extension of k. Let A = k[x1, . . . , xn]/P be a finitely generated domain over k, such
that F ∼= Frac(A). Let U = Spec(A), and U = the Zariski closure of U in Pn. If we
let Y be the normalization of U , F is isomorphic to the function field of Y .

Let X/k be a proper normal curve over k, and let F = κ(X). Let x ∈ X be a
closed point, so we get a discrete valuation ring OX,x ⊂ F . We get a valuation map
x() : F× � F×/O×

X,x

∼→ Z.

Proposition The map |X| → |F/k| given by x 7→ x() is a bijection.

The map is injective because of the chinese remainder theorem. It is surjective
by the valuative criterion of properness and the maximal property of valuation rings
with respect to the domination relation in F .

Residues on curves

Let k be a perfect field, X/k a proper smooth curve, and F := κ(X), the field of
functions.

Theorem (Existence of residues) For any x ∈ |X|, let Ox be the completion of OX,x
with respect to the x-adic topology, Fx = Frac(Ox) the completion of F with respect
to x, and Ω1

Fx/κ(x)
the Fx-vector space of continuous differentials of Fx over κ(x).

Then there exists a unique κ(x)-linear homomorphism of κ(x)-vector spaces

resx : Ω1
Fx/κ(x) → κ(x)

such that for any choice of isomorphism of fields κ(x)((T ))
∼→ Fx, and any f, g ∈ Fx

(with images f(T ) :=
∑

i>>−∞ aiT
i, g(T ) :=

∑
i>>−∞ biT

i ∈ Fx, ai, Bi ∈ κ(x)), one
has

resx(f · dg ∈ Ω1
Fx/κ(x)) = coefficient of T−1 in f(T )g′(T )

=
∑
i+j=0

jaibj ∈ κ(x)

Proposition

1. For any ω ∈ Ω1
Ox/κ(x) ⊂ Ω1

Fx/κ(x)
, resx(ω) = 0.

2. For any f ∈ F×
x and any n ∈ Z,

resx(f
ndf) =

{
0 if n 6= −1

image of vx(f) in κ(x) if n = −1

3. For any uniformizer tx ∈ Ox ⊂ Fx, we get dtx ∈ Ω1
Fx/κ(x)

, which generates

the one-dimensional Fx vector space Ω1
Fx/κ(x)

. For any ω ∈ Ω1
Fx/κ(x)

, and any

f =
∑

i>>−∞ ait
i
x, resx(f · dtx) = a−1.
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Theorem (Residue theorem) For any global differential ω ∈ Ω1
F/k, we have∑

x∈|X|

Trκ(x)/k(resx(ωx)) = 0 ∈ k,

where for each x ∈ |X|, ωx ∈ Ω1
Fx/κ(x)

is induced from ω by the commutative diagram

F
� � //

d
��

Fx

d
��

Ω1
F/k

// Ω1
Fx/κ(x)

Fix a nontrivial additive character ψk : k → R/Z (e.g., choose a nontrivial ψFp :
Fp → R/Z and set ψk(−) := ψFp(Trk/Fp(−))). We avoid U(1) so we don’t have to
choose an algebraic closure C of R.

Proposition Fix x ∈ |X|.

1. The homomorphism

Ω1
Fx/κ(x) → Homtop. ab. gp.(Fx,R/Z)

given by
ω 7→ (a 7→ ψk(Trκ(x)/k(resx(aω))))

is an isomorphism of topological abelian groups (Ω1
Fx/κ(x)

is noncanonically iso-

morphic to Fx).

2. If ψ ∈ Homtop. ab. gp.(Fx,R/Z) corresponds to ω ∈ Ω1
Fx/κ(x)

, the conductor

c(ψ) := max {c ∈ Z : ψ|m−c is trivial } is equal to vx(ω), where m is the
maximal ideal of Ox in Fx, vx(fdt) := vx(f) if f, t ∈ Fx and t is a uniformizer.

Proposition

1. The homomorphism

Ω1
F/k → Homtop. ab. gp.(F\A,R/Z)

given by

ω 7→ (a 7→ ψk(
∑
x∈|X|

Trκ(x)/k(resx(axωx))))

is an isomorphism of discrete topological abelian groups (note that the sum is
well-defined by the residue theorem, and the sequence 0→ F → A→ F\A→ 0
is Pontryagin self-dual).
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2. For any x ∈ |X|, the diagram

Homtop. ab. gp.(F\A,R/Z) // Homtop. ab. gp.(Fx,R/Z)

Ω1
F/k

∼=

OO

// Ω1
Fx/κ(x)

∼=

OO

commutes, with the top arrow taking ψ to ψx.

3. If ψ ∈ Homtop. ab. gp.(F\A,R/Z) corresponds to a nonzero ω ∈ Ω1
F/k, then∑

x∈|F | deg(x)c(ψ) =
∑

x∈|X| deg(x)vx(ωx) is independent of ψ, and equal to

C ·(2g−2) = k-degree of the canonical divisor K of X, where if k′ is H0(X,OX),
the algebraic closure of k in F , then C = [k′ : k] = dimkH

0(X,OX), g =
dimk′H

1(X,OX), and C · g = dimkH
1(X,OX).

Switch to GLr, r ≥ 2

The notable fact about the r ≥ 2 case is that the groups are non-abelian. For

r = 2, the unipotent radical has the form

(
1 ∗

1

)
∼= Ga which is abelian, so Fourier

analysis is straightforward. This is not so for r ≥ 3, and we use Whittaker models
instead.

Let r ≥ 1 be fixed. We get algebraic groups GLr ⊃ Br ⊃ Nr = upper triangulars
with ones on the diagonal. These are functors from commutative rings to groups.

Let

{
F be a nonarchimedean local field.

A be the adèles of a function field F/k, k finite.
Choose an algebraic closure

C of R, so we get an isomorphism R/Z ∼→ U(1) ⊂ C×. Let

{
ψ : F → C×

ψ : F\A→ C× be a

nontrivial additive character. Extend ψ to

{
Nr(F )→ C×

Nr(A)→ C× by


1 x1,2 ∗

. . . . . .
. . . xr−1,r

0 1

 7→ ψ(x1,2 + · · ·+ xr−1,r).

Definition A (smooth) Whittaker function on

{
GLr(F )

GLr(A)
with respect to ψ is

a function

{
w : GLr(F )→ C
w : GLr(A)→ C

that is uniformly locally constant (i.e., the smooth-
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ness is invariant under right translation by some open subgroup) such that for all{
n ∈ Nr(F ), x ∈ GLr(F ),

n ∈ Nr(A), x ∈ GLr(A),
w(nx) = ψ(n)w(x) ∈ C.

From now until the next theorem, we will just use local notation for convenience.
For the global statements, just replace F by A.

Let W(GLr(F ), ψ) := {all Whittaker functions on GLr(F ) with respect to ψ}.
This is a complex vector space, and GLr(F ) acts on it by right translation:

Rψ : GLr(F ) → GL(W(GLr(F ), ψ))
g 7→ (w 7→ (x 7→ w(xg)))

We get (W(GLr(F ), ψ), Rψ) = Ind
GLr(F )
Nr(F ) (Cψ, ψ) ∈ Repsmooth(GLr(F )).

Definition Let (Vπ, π) ∈ Repsmooth(GLr(F )) be an irreducible representation. If
there exists a nontrivial homomorphism in Rep:

(Vπ, π)→ (W(GLr(F ), ψ), Rψ)

(necessarily injective) then the image of (Vπ, π) is a Whittaker model of (Vπ, π), de-
notedW(π, ψ) ⊂ W(GLr(F ), ψ), and (Vπ, π) is called generic. There is a uniqueness
statement coming later.

Definition Let (Vπ, π) ∈ Repsmooth(GLr(F )) be irreducible. A Whittaker func-
tional on (Vπ, π) with respect to ψ is a C-linear homomorphism of complex vector
spaces Λ : Vπ → C such that for all n ∈ Nr(F ), ξ ∈ Vπ, one has Λ(π(n) · ξ) =

ψ(n) · Λ(ξ), i.e., Λ ∈ HomRepsmooth(Nr(F ))(Res
Glr(F )
Nr(F ) (Vπ, π), (Cψ, ψ)).

Proposition (Frobenius Reciprocity) The complex linear maps

HomRep(Nr(F ))(Res
GLr(F )
Nr(F ) (Vπ, π), (Cψ, ψ)) �

�HomRep(GLr(F ))((Vπ, π), Ind
GLr(F )
Nr(F ) (Cψ, ψ))

are inverse isomorphisms via

Λ 7→ (ξ 7→ wξ := (x 7→ Λ(π(x) · ξ)))

(ξ 7→ wξ(1 ∈ GLr(F ))) ←[
(
w− : (Vπ, π)→ (W(GLr(F ), ψ), Rψ)

ξ 7→ wξ

)

Theorem (Uniqueness of local Whittaker models - Gelfand-Kazhdan for nonar-
chimedean local fields, Shalika for archimedean case) Let (Vπ, π) ∈ Repsmooth(GLr(F ))
be irreducible, and let ψ : F → C× be a nontrivial character. Then

dimCHomRep(Nr(F ))(Res
GLr(F )
Nr(F ) (Vπ, π), (Cψ, ψ)) ≤ 1.
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The proof uses a detailed analysis of the Bruhat decomposition of GLr.

Corollary (Uniqueness of global Whittaker models) Let ψ : F\A → C× be a non-
trivial character. Then

dimCHomRep(Nr(A))(Res
GLr(A)
Nr(A) (Vπ, π), (Cψ, ψ)) ≤ 1.

Proof (main steps) Let Λ : Vπ → Cψ be a nontrivial global Whittaker functional.
Put it in the fridge for a while (we’ll use it later). By Flath,

(Vπ, π) ⊂
⊗
x∈|X|

((Vπx , πx),
0

ξx ∈ Vπx),

where (Vπx , πx) ∈ Repadm(GLr(Fx)) is irreducible (recall that Jacquet showed that

any smooth representation of GLr is admissible), and we may take
0

ξx ∈ Vπx to be

fixed by GLr(Ox) whenever πx is unramified, i.e., whenever dimCV
GLr(Ox)
πx = 1 (note

that πx is unramified for almost all x).

Adjust the distinguished vectors
0

ξx ∈ Vπx at finitely many x ∈ |F |. Then we may

assume
0

ξ =
⊗

x∈|F |

0

ξx ∈ Vπ is such that Λ(
0

ξ) = 1 ∈ C.

For each x ∈ |F |, we get an embedding Vπx ↪→ Vπ given by

ξx 7→ ξx ⊗ (
⊗

x′∈|F |,x′ 6=x

0

ξx′).

Precompose to get the local Whittaker functional: Λx : Vπx ↪→ Vπ
Λ→ C of Vπx with

respect to ψx satisfying Λx(
0

ξx) = 1. By local uniqueness, Λ is equal to
⊗

x∈|F | Λx :

Vπ → C given by
⊗

x∈|F | ξx 7→
∏

x∈|F | Λx(ξx), where ξx =
0

ξx for almost all x. This
gives us global uniqueness.

October 18, 2002

Remark Let (Vπ, π) ∈ Repadm(GLr(A)) be irreducible and generic, and let Λ : Vπ →
C be a nontrivial Whittaker functional with respect to ψ. Choose a decomposition

(Vπ, π) ∼=
⊗

x∈|F |(Vπx , πx;
0

ξx ∈ Vπx) such that Λ(
⊗

x∈|F |

0

ξx) = 1 ∈ Cψ. For each

x ∈ |F |, we have Λx : Vπx ↪→ Vπ
Λ→ C a nontrivial local Whittaker functional

with respect to ψx, that sends
0

ξx ∈ Vπx to 1 ∈ Cψx . We get a global Whittaker
model WΛ(π, ψ) := {wξ := (g 7→ Λ(π(g) · ξ))}ξ∈Vπ , and local Whittaker models
WΛx(πx, ψx) := {wξx := (gx 7→ Λx(πx(gx) · ξx))}ξx∈Vπx .
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For a pure tensor ξ =
⊗

x∈|F | ζx ∈ Vπ with ξx = ζx for almost all x ∈ |F |, using

global uniqueness, we get wξ =
∏

x∈|F |wξx . This is an equality of functions on GLr(A) fix

via wξ(g) =
∏
wξx(g).

Definition Let ψ : F\A → C× be a nontrivial additive character. For a cusp form
ψ ∈ Acusp(GLr(A),C) (in particular, an actual automorphic uniformly locally con-
stant admissible cuspidal function on GLr(A)), its associated Whittaker function
is Wφ := Wφ,ψ : GLr(A)→ C defined by

g 7→ Wφ,ψ(g) :=

∫
Nr(F )\Nr(A)

φ(ng)ψ−1(n)
dn

dµ
,

where dn
dµ

is the right Nr(A)-invariant measure on the compact space Nr(F )\Nr(A)
giving it total volume 1.

One has Wφ,ψ ∈ W(GLr(A), ψ), i.e., this is an actual Whittaker function, but it
may be 0. The C-linear homomorphism Acusp(GLr(A)) → W(GLr(A), ψ) given by
φ 7→ Wφ is GLr-invariant.

Theorem (Fourier-Whittaker expansion of cusp forms - Piatetski-Shapiro, Shalika)
Let ψ : F\A → C be any nontrivial additive character, r ≥ 2. Then for any φ ∈
Acusp(GLr(A)) with its associated ψ-Whittaker function Wφ,ψ ∈ W(GLr(A), ψ), we
have

φ(g) =
∑

γ∈Nr−1(F )\GLr−1(F )

Wφ,ψ(

(
γ

1

)
= g) ∈ C

This is locally uniformly absolutely convergent in C. (Note that the γ in the matrix
is r − 1 by r − 1.)

Corollary (Existence of global Whittaker models) Let (Vπ, π) ∈ Repadm(GLr(A)) be
a cuspidal automorphic irreducible representation. Then

dimCHomRepsmooth(Nr(A))(Res
GLr(A)
Nr(A) (Vπ, π), (Cψ, ψ)) = 1,

i.e., the space of ψ-Whittaker functionals on Vπ has dimension one.

Proof The function Λ : Vπ → C defined by

φ 7→ Wφ,ψ(1 ∈ GLr(A)) =

∫
Nr(F )\Nr(A)

φ(n)ψ−1(n)
dn

dµ

is a nonzero element of the space of ψ-Whittaker functionals on Vπ.

Theorem (Weak multiplicity one) Let (Vπ, π) ∈ Repadm(GLr(A)) be a cuspidal au-
tomorphic irreducible representation. Then

dimCHomRepsmooth(GLr(A))((Vπ, π), (Acusp(GLr(A)), Rcusp)) = 1.
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Proof Suppose (Vπ, π) has two embeddings (Vπ1 , π1) and (Vπ2 , π2) in (Acusp, Rcusp).
For φ ∈ Vπ, let φi ∈ Vπi be the image (an actual cusp form) under each embedding.
Choose any nontrivial ψ : F\A → C×, and get Whittaker functionals on Vπi with
respect to ψ given by Λi : Vπi → C, φ 7→ Wφ,ψ,i, which are nonzero by existence of
global Whittaker models. By uniqueness of global Whittaker models, Λ1 = cΛ2 for
some c ∈ C×, so for any g ∈ GLr(A), and any φ ∈ Vπ, Wφ,ψ,1(g) = Λ1(π(g) · φ) =
cΛ2(π(g) · φ) = cWφ,ψ,2(g). By the Fourier-Whittaker expansion formula, we have for
any g ∈ GLr(A) and any φ ∈ Vπ,

φ1(g) =
∑
γ

Wφ,ψ,1(

(
γ

1

)
g) = c

∑
γ

Wφ,ψ,2(

(
γ

1

)
g) = cφ2(g)

Hence, Vπ1 = Vπ2 as subspaces of Acusp.

Not-so-crucial part Mirabolic subgroups (miracle-parabolic)

Let ψ : F\A → C× be a nontrivial character, and extend it to ψ : Nr(A) → C×.
Let Pr ⊂ GLr be the mirabolic subgroup.

Definition A mirabolic subgroup of GLr is the stabilizer group of any nonzero
element of the standard or dual representation of GLr

Pn = {
(
h y
0 1

)
: h ∈ GLr−1, y ∈ Ar−1

col } ∼= Yr.GLr−1

where Yr = {
(
Ir−1 y
0 1

)
: y ∈ Ar−1} ∼= Gr−1

a . We have a unipotent radical Nr ⊂ Pr,

but Pr is not actually parabolic, since it does not contain a Borel (bottom right entry
can’t vary).

Definition A cuspidal function on Pr(A) is a function φ : Pr(A)→ C that is:

1. (automorphic) For any γ ∈ Pr(F ) and any x ∈ Pr(A), φ(γx) = φ(x)

2. (uniformly locally constant) There exists an open subgroup K ⊂ Pr(A) such
that for any k ∈ K and any x ∈ Pr(A), φ(xk) = φ(x).

3. (cuspidal) For any x ∈ Pr(A) and any U ⊂ Pr standard unipotent subgroup,∫
U(F )\U(A)

φ(ux)
du

dµ
= 0.

Facts If φ ∈ Acusp(GLr(A)), we can restrict φ to φ a cuspidal function of Pr(A).
Since Nr ⊂ Pr, we can define Whittaker functions associated to any cuspidal function
of Pr(A).
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Main theorem For any r ≥ 1, any cuspidal function φ on Pr(A), and any x ∈ Pr(A),

φ(x) =
∑

γ∈Nr−1(F )\GLr−1(F )

Wφ,ψ(

(
γ 0
0 1

)
· x) ∈ C

Rankin-Selberg theory (local theory) ref: Jacquet, Piatetskii-Shapiro, Shalika.
“Rankin-Selberg convolutions” Amer. J. Math 105 #2 (1983)

Let F be a nonarchimedean local field. We get 1 → O× → F× vF→ Z → 0. Let k
be the residue field, of order q and characteristic p. Let ψ : F → C× be a nontrivial
additive unitary character, and extend it to Nr(F ) for all r ≥ 1. At some point in
the future, we will choose p1/2 ∈ C×, and get q1/2 ∈ C×.

Definition Let r ≥ r′ ≥ 1 be integers. We get groups GLr and GL′r. Let (Vπ, π) ∈
Repsmooth(GLr(F )) and (Vπ′ , π

′) ∈ Repsmooth(GLr′(F )) be irreducible and generic.
We get Whittaker models W(π, ψ) and W(π′, ψ−1). These are spaces of Whittaker
functions. We also have the Schwartz-Bruhat space C∞

c (F r
rows). Choose left Haar

measures dg′ on GLr′(F ) and dn on Nr(F ). If r > r′ ≥ 1, define a C-bilinear map:

W(π, ψ) × W(π′, ψ−1) → C((T ))
w w′ 7→ Ψ(w,w′;T )

where

Ψ(w,w′;T ) :=

∫
Nr′ (F )\GLr′ (F )

w(

(
g′

1r−r′

)
)w′(g′)(q

r−r′
2 · T )vF (det(g′))dg

′

dn

=
∑
v∈Z

T v
∫
g∈Nr′ (F )\GLr′ (F ),vF (det(g′))=v

w(

(
g′

1r−r′

)
)w′(g′)q

r−r′
2

·v dg
′

dn

Note that ψ−1 is to cancel the contribution of Nr′(F ). If r = r′ ≥ 1, define a C-
trilinear map:

W(π, ψ) × W(π′, ψ−1) × C∞
c (Frows) → C((T ))

w w′ Φ 7→ Ψ(w,w′,Φ;T )

where

Ψ(w,w′,Φ;T ) :=

∫
Nr(F )\GLr(F )

w(g)w′(g)Φ(erg)T
vF (det(g)) dg

dn

Here, er = (0, . . . , 0, 1) is the last standard basis vector.

Lemma These are well-defined. (some kind of convergence argument)

Theorem (Rationality of Rankin-Selberg integrals)
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1. Let w ∈ W(π, ψ), and w′ ∈ W(π′, ψ−1). If r = r′, let Φ ∈ C∞
c (F r

rows) be given.
There exists ε > 0 and nontrivial functions Q(w,w′;T ) ∈ C(T ), and (if r = r′)
Q(w,w′,Φ;T ) ∈ C(T ) such that on the open punctured disc D := {t ∈ C : 0 <
|t| < ε},

(a) The integrals Ψ(w,w′; t) and Ψ(w,w′,Φ; t) converge locally uniformly and
absolutely on D

(b) On D, one has an equality of analytic functions:

Ψ(w,w′; t) = Q(w,w′; t)
Ψ(w,w′,Φ; t) = Q(w,w′,Φ; t)

2. (same as Tate’s thesis) Let I(π, π′) ⊂ C(T ) be the complex vector space, defined
by

(r > r′) I(π, π′) := C{Q(w,w′;T ) ∈ C(T ) : w ∈ W(π, ψ), w′ ∈ W(π′, ψ−1)}

(r = r′) I(π, π′) := C

Q(w,w′,Φ;T ) ∈ C(T ) :
w ∈ W(π, ψ)

w′ ∈ W(π′, ψ−1)
Φ ∈ C∞

c (F r
rows)


(a) Then, I(π, π′) ⊂ C(T ) is a C[T±1]-fractional ideal, independent of any

choice of dg′, dn, and ψ, i.e., the Qs have bounded denominators, except
for powers of T .

(b) There exist choices w ∈ W(π, ψ), w′ ∈ W(π′, ψ−1), Φ ∈ C∞
c (F r

rows) such
that Q(w,w′;T ) = 1 and Q(w,w′,Φ;T ) = 1, so the ideals I(π, π′) are
nonzero.

Definition The L-factor associated to the pair (π, π′) is the unique element
L(π × π′;T ) ∈ C(T )× ∩ (1 + TC[[T ]]) ⊂ C((T ))× such that we have an equality of
free ideals C[T, T−1]L(π × π′;T ) = I(π, π′) ⊂ C(T ).

Note L(π × π′;T )−1 ∈ C[T ] is a polynomial.

Remark The L-factor depends on p1/2, but not on dg′, dn, or ψ.

Remark One can verify that if r = r′, then L(π × π′;T ) = L(π′ × π;T ).

October 25, 2002

Let F be a nonarchimedean local field, and let k be its residue field of character-
istic p and order q. Choose C and p1/2 ∈ C×. We get q1/2 ∈ C. Let ψ : F → C× be a
nontrivial additive character. Fix r ≥ r′ ≥ 1.

Let (Vπ, π) ∈ Repsmooth(GLr(F )) and (Vπ′ , π
′) ∈ Repsmooth(GLr′(F )) be irre-

ducible and generic. Extend ψ to Nr(F ) and Nr′(F ) as before. We get Whittaker
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models W(π, ψ) and W(π′, ψ−1), which are spaces of functions. If r = r′, we also get
the Schwartz-Bruhat space C∞

c (F r
rows).

Choose Haar measures dg′ on GLr′(F ) and dn on Nr(F ). Let dx be the Haar
measure on M(r−r′−1)×r(F ) (for r > r′) that is self-dual with respect to the pairing
M ×M → F given by x · y 7→ Tr(xty).

Definition(Rankin-Selberg integrals) For r > r′, we get two homomorphisms:

W(π, ψ) × W(π′, ψ−1) → C((T ))
w w′ 7→ Ψ(w,w′;T )

w w′ 7→ Ψ̃(w,w′;T )

given by

Ψ(w,w′;T ) :=

∫
Nr′ (F )\GLr′ (F )

w

(
g′

1r−r′

)
w′(g′)(q

r−r′
2 T )vF (det(g′))dg

′

dn

Ψ̃(w,w′;T ) :=

∫
Nr′ (F )\GLr′ (F )

∫
Mr−r′−1×r′ (F )

w

 g′

x 1
1

 dx

×
× w′(g′)(q

r−r′
2 T )vF (det(g′))dg

′

dn

For r = r′, we have a trilinear map:

W(π, ψ) × W(π′, ψ−1) × C∞
c (F r

rows) → C((T ))
w w′ Φ 7→ Ψ(w,w′,Φ;T )

defined by ∫
Nr(F )\GLr(F )

w(g)w′(g)Φ(erg)T
vF (det(g)) dg

dn

Recall the rationality theorem:

1. For any w ∈ W(π, ψ), w′ ∈ W(π′, ψ−1), and Φ ∈ C∞
c (F r

rows), the functions

Ψ(w,w′;T ), Ψ̃(w,w′;T ), and Ψ(w,w′,Φ;T ) are elements of C(T ).

2. Let I(π, π′) be the complex vector space spanned by all of these Ψs. Then
I(π, π′) is a C[T, T−1]-fractional ideal, and contains 1 ∈ I ⊂ C(T ).

Definition An L-factor of the pair (π, π′) is the unique element L(π × π′;T ) ∈
C(T )× ∩ (1 + TC[[T ]]) ⊂ C((T ))× such that C[T, T−1] · L(π × π′;T ) = I(π, π′).

Remember that L(π × π′;T ) has the form 1/(polynomial with constant term 1).
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Definition For w ∈ W(π, ψ), set w̃ : GLr(F )→ C by g 7→ w(wr · tg−1), where wr := 0 1
. . .

1 0

 is the longest element of the Weyl group. Define w̃′ : GLr′(F ) → C

for each w ∈ W(π′, ψ−1) the same way.

Lemma w̃ ∈ W(π∨, ψ−1), and w̃′ ∈ W(π′∨, ψ).

Remark GLr(F ) acts on W(π, ψ) and on W(π∨, ψ−1) by right translation ρ. Set

wr,r′ :=

(
1r′

wr−r′

)
∈ GLr(F ),

where wr−r′ is the square matrix of size r − r′ with ones on the antidiagonal and
zeroes elsewhere. Then ρ(wr,r′) · w̃ is the function GLr(F )→ C given by

g 7→ w̃(g · wr,r′) := w(wr · tg−1wr,r′).

Definition The Fourier transform on C∞
c (F r

rows) with respect to ψ is the map

C∞
c (F r

rows) → C∞
c (F r

rows)

Φ 7→ Φ̂ := (y 7→
∫
F r

Φ(x)ψ(Tr(x · ty))dx)

Here, dx is the (unique) self-dual Haar measure on F r with respect to ψ, i.e., the

Fourier inversion formula
̂̂
Φ(x) = Φ(−x).

Theorem (Functional equation) There exists a unique rational function γ(π ×
π′;ψ;T ) ∈ C(T ) such that for any w ∈ W(π, ψ), w′ ∈ W(π′, ψ−1), and Φ ∈ C∞

c (F r
rows)

(giving functions w̃ ∈ W(π∨, ψ−1), w̃′ ∈ W(π′∨, ψ), and Φ̂ ∈ C∞
c (F r

rows)), one has the
following equalities in C(T ):

Ψ̃(ρ(wr,r′)w̃, w̃′;
1

qT
) = χπ′(−1)r−1γ(π × π′, ψ;T )Ψ(w,w′;T ) r > r′

Ψ(w̃, w̃′, Φ̂;
1

qT
) = χπ′(−1)r−1γ(π × π′, ψ;T )Ψ(w,w′,Φ;T ) r = r′

Definition The ε-factor associated to (π, π′) and ψ is defined by:

ε(π × π′, ψ;T ) := γ(π × π′, ψ;T )
L(π × π′;T )

L(π∨ × π′∨; 1
qT

)
∈ C(T )×

Corollary (Local Functional Equation) For any w ∈ W(π, ψ), w′ ∈ W(π′, ψ−1), and

Φ ∈ C∞
c (F r

rows), get the corresponding w̃, w̃′, and Φ̂. Then one has

Ψ̃(ρ(wr,r′)w̃, w̃′; 1
qT

)

L(π∨ × π′∨; 1
qT

)
= ε(π × π′, ψ;T )

Ψ(w,w′;T )

L(π × π′;T )
∈ C(T )
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If we throw some Φs in the numerators and denominators, we get a similar result for
r = r′.

Corollary ε(π × π′, ψ;T ) · ε(π∨ × π′∨, ψ−1; 1
qT

) = 1 ∈ C(T )×, and ε(π × π′, ψ;T ) ∈
C[T±1]× ⊂ C(T )×

Proof The first equation is clear. For the second statement, note that L(π × π′;T )
generates I(π, π′), so L(π × π′;T ) =

∑
i Ψ(wi, w

′
i;T ) for some wi, w

′
i. Hence, 1 =∑

i
Ψ()
L()

. We get ε(π × π′, ψ;T ) = χπ′(−1)r−1
∑

i

Ψ(fwi,fw′i; 1
qT

L(π∨×π′∨; 1
qT

∈ C[T±1]×.

We have a pairing:

W(π, ψ) × W(π′, ψ−1) → C(T )
w w′ 7→ Ψ(w,w′;T )

View this as a well-defined GLr ×GLr′-quasi-invariant.

Now, before we can calculate the global functional equation, we need to compute
the L and ε factors. In particular, we need to show that the ε-factors are almost all
1. We can exclude places where ψ is ramified and blah blah about π ?

Definition Let (Vπ, π) ∈

{
Repsmooth(GLr(F ))

Repsmooth(GLr(A))
be a representation (where F is a lo-

cal nonarchimedean field, and A is the ring of adèles of a global function field), and let

χ :

{
Gm(F )

Gm(A)
→ C× be a quasi-character. Then (Vπ, χπ) ∈

{
Repsmooth(GLr(F ))

Repsmooth(GLr(A))

is the representation on the same space Vπ, with χπ defined by g 7→ χ(det(g)) · π(g).
(Vπ, χπ) is called the χ-twist of π.

Theorem Let r ≥ r′ ≥ 1, and let (Vπ, π) ∈ Repsmooth(GLr(F )) and (Vπ′ , π
′) ∈

Repsmooth(GLr′(F )) be irreducible and generic. Assume that π and π′ are both un-
ramified, and let χ, χ′ : Gm(F )→ C× be quasi-characters. Then

1. (a)

L(χπ × χ′π′;T ) =

1 if χχ′ is ramified∏
1≤i≤r,1≤j≤r′

(1− z(χχ′)zi(π)zj(π
′)T )−1 otherwise

where z1(π), . . . , zr(π), z1(π
′), . . . zr′(π

′) are the Satake parameters of π and
π′, and z(χχ′) = χχ′($) is the Satake parameter of χχ′.

(b) If ψ : F → C× is an unramified (i.e., trivial on O) nontrivial character
(so we get π ∼= W(π, ψ), π′ ∼= W(π′, ψ−1), and dimCW(π, ψ)K=GLr(O) =
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dimCW(π′, ψ−1)K
′=GLr′ (O) = 1). Then there exist nonzero w0 ∈ W(π, ψ)K ,

w′
0 ∈ W(π′, ψ−1)K

′
such that w0(1) = w′

0(1) = 1, and

L(π × π′;T ) =

{
Ψ(w0, w

′
0;T ) r > r′

Ψ(w0, w
′
0,Φ0;T ) r = r′

where Φ0 is the characteristic function of Orrows ⊂ F r
rows.

2. If χ, χ′, ψ are all unramified, (also π, π′), then ε(χπ×χ′π′, ψ;T ) = 1(This is also
true for extremely ramified χ, π. Twisting with these can be very informative.)

Proof (sketch for 1(a).) We assume r = r′ and χ = χ′ = 1 for simplicity. Pick
χ : F → C× nontrivial unramified (i.e., ψ|O = 1). Let w0 ∈ W(π, ψ)K , w′

0 ∈
W(π′, ψ−1)K

′
as before, and Φ0 ∈ C∞

c (F r
rows). w0 and w′

0 are invariant under right
translation by K = K ′ = GLr(O) = GLr′(O), and they transform by ψ under
left translation by Nr(F ) = Nr′(F ). By the Iwasawa decomposition: GLr(F ) =
Nr(F ) ·Ar(F ) ·K, w0 and w′

0 are determined by their values on Ar(F ), the group of
diagonal matrices.

We want a formula for w0($
J :=

 $j1

. . .

$jr

) where J = (j1, . . . , jr) ∈

Zr.

Theorem(Shintani’s formula - Casselman, Shalika) Let T (r) := {J = (j1, . . . , jr) ∈
Zr : j1 ≥ · · · ≥ jr}. For J ∈ T (r), let PJ be the set of irreducible rational rep-

resentations of GLr with highest weight J (i.e.,

 t1
. . .

tr

 7→ tj11 . . . t
jr
r ). Let

Aπ :=

 z1(π)
. . .

zr(π)

 ∈ GLr(C), and let δBr(F ) : Br(F )→ R>0 be a modular

character of Br(F ). Then for any J ∈ Zr,

w0($
J) =

{
δ
1/2
Br(F )($

J) · Tr(PJ(Aπ)) if J ∈ T (r)

0 otherwise
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We compute:

Ψ(w0, w
′
0,Φ;T ) =

∫
Nr(F )\GLr(F )

w0(g)w
′
0(g)Φ(er · g)T vF (det(g)) dg

dn

(1)
=
∑
J∈T (r)

w0($
J)w′

0($
J)Φ(0, . . . , 0, $jr)T |J |δ−1

Br(F )($
J)

=
∑

J∈T (r),jr≥0

w0($
J)w′

0($
J)T |J |δ−1

Br(F )($
J)

(2)
=

∑
J∈T (r),jr≥0

Tr(ρJ(Aπ))Tr(ρJ(Aπ′))T
|J |

=
∑

J∈T (r),jr≥0

Tr(ρJ(Aπ)⊗ ρJ(Aπ′))T |J |

(3)
=
∑
d≥0

Tr(Symd(Aπ ⊗ Aπ′))T d

= det(1− Aπ ⊗ Aπ′ · T )−1

=
∏

1≤i≤r,1≤j≤r′
(1− zi(π)zj(π

′)T )−1

(1) is from the Iwasawa decomposition, (2) is from Shintani’s formula, and (3) comes
from Weyl’s formula:∑

J∈T (r),jr≥0,|J |=d

Tr(ρJ(Aπ)⊗ ρJ(Aπ′)) = Tr(Symd(Aπ ⊗ Aπ′))

Next time: global situation.

November 1, 2002

Let F be a nonarchimedean local field, and ψ : F → C× a nontrivial unitary
character. For r ≥ r′ ≥ 1, we get linear algebraic groups GLr ⊃ Br ⊃ Nr. Extend ψ
toNr(F )→ C×. Let (Vπ, π) ∈ Repsmooth(GLr(F )) and (Vπ′ , π

′) ∈ Repsmooth(GLr′(F ))
be irreducible and generic. We get Whittaker models W(π, ψ) and W(π′, ψ−1).

For r > r′, let Yr,r′ be the unipotent radical of the strict parabolic subgroup of GLr
associated to the (r′ + 1, 1, . . . , 1) partition of r, i.e.,

Yr,r; =




1r′+1 ∗

0

1 ∗
. . .

0 1


 ⊂ GLr.
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Theorem (Bernstein, Zelevinsky) Given π, π′ as above, fix t ∈ C×, and consider
the space of C-bilinear maps Bt :W(π, ψ)×W(π′, ψ−1)→ C satisfying the following
properties:

1. For any w ∈ W(π, ψ), any w′ ∈ W(π′, ψ−1), and any g′ ∈ GLr′(F ),

Bt(π

(
g′

1r−r′

)
w, π′(g′)w′) = q−

r−r′
2 t)vF (det(g′))B(w,w′) ∈ C.

2. For any w ∈ W(π, ψ), any w′ ∈ W(π′, ψ−1), and any y ∈ Yr,r′(F ),

Bt(π(y)w,w′) = ψ(y)Bt(w,w
′) ∈ C.

Then there exists a finite subset Exc ⊂ C such that for all t ∈ C \Exc, the complex
vector space {Bt satisfying 1 and 2 } has complex dimension at most 1.

The point of this is that the maps (w,w′) 7→ Ψ(w,w′; t ∈ C) ∈ C satisfy conditions
1 and 2 for those t ∈ C that are not poles of Ψ. Similarly, the maps (w,w′) 7→
Ψ(ρ(wr,r′)w̃, w̃′; 1

qt
) ∈ C satisfy 1 and 2 for ...

Rankin-Selberg convolutions: global theory

Let k be a finite field of order q and characteristic p. Let F be a function field
over k, and let A be the ring of adèles of F . Assume k is algebraically closed in F .
We get an exact sequence:

1→ Gm(F )\Gm(A)deg0 → Gm(F )\Gm(A)
deg→ Z→ 0

where the last part is surjective because k is algebraically closed in F . Choose C,
p1/2 ∈ C, and get q1/2 ∈ C. Let ψ : A � F\A→ C× be a nontrivial unitary character.
Let r ≥ r′ ≥ 1, and let (Vπ, π) ∈ Repadm(GLr(A)) and (Vπ′ , π

′) ∈ Repadm(GLr′(A))
be cuspidal automorphic irreducible representations. By Flath, we get factorizations:

(Vπ, π) =
⊗

x∈|F |(Vπx , πx,
0

ξx ∈ Vπx) where (Vπx , πx) ∈ Repadm(GLr(Fx))

(Vπ′ , π
′) =

⊗
x∈|F |(Vπ′x , π

′
x,

0

ξ
′

x ∈ Vπ′x) where (Vπ′x , π
′
x) ∈ Repadm(GLr′(Fx))

ψ ∼=
⊗

x∈|F | ψx where ψx : Fx → C× nontrivial, unitary

By existence of global Whittaker models (Fourier-Whittaker expansion formula),
(Vπ, π) and (Vπ′ , π

′) are generic, so for all x ∈ |F |, (Vπx , πx) and (Vπ′x , π
′
x) are generic.

Thus, we get L(πx×π′x;T ) ∈ C(T )×∩(1+TC[[T ]]) ⊂ C((T ))× and ε(πx×π′x, ψx;T ) ∈
C[T±1]× ⊂ C((T ))×.

Definition The global L-function associated to (π, π′) is

L(π × π′;T ) :=
∏
x∈|F |

L(πx × π′x;T deg(x)) ∈ 1 + TC[[T ]]
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The global ε-function associated to π, π′, and ψ is

ε(π × π′, ψ;T ) :=
∏
x∈|F |

ε(πx × π′x, ψx;T deg(x)) ∈ C[T±1]×

These are well-defined.

Key theorem (Rationality and functional equation)

1. The global L-function L(π × π′, T ) is a rational function, i.e., L(π × π′;T ) ∈
C(T )× ∩ (1 + TC[[T ]]) ⊂ C((T ))×.

2. Assume π and π′ are unitarizable (this is a normalizing condition). Then L(π×
π′;T ) = ε(π × π′, ψ;T )L(π∨ × π′∨; 1

qT
) ∈ C(T )×.

Key steps of proof (for r > r′)

Step 1 Projection operators of cuspidal functions. Let Yr,r′ ⊂ GLr be the unipotent
radical of the parabolic associated to the partition (r′ + 1, 1, . . . , 1) of r, i.e.,

Yr,r′ =

{(
1r′+1 ∗

0 Nr−r′−1

)}
Extend ψ : F\A→ C× to Nr(A)→ C× by

1 x1,2

. . . . . .
. . . xr−1,r

1

 7→ ψ(x1,2 + · · ·+ xr−1,r),

and restrict to ψ : Yr,r′ → C×.

Note

1. Yr′,r is normalized by GLr′+1 ⊂ GLr, i.e.,

(
GLr′+1 ∗

0 1

)
lies in the normalizer.

2. GLr′+1 acts on Yr,r′ by conjugation inside GLr.

3. The stabilizer in GLr′+1(A) of the character ψ of Yr,r′(A) is the mirabolic

subgroup Pr′+1 =

{(
GLr′ ∗

0 1

)}
⊂ GLr′+1
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Definition The projection operator Prr′ is the complex linear map

Prr′ : Acusp(GLr(A)) → Cts(Pr′+1(A))
φ 7→ Prr′φ

where Prr′φ : Pr′+1(A)→ C is defined by:

p 7→ q
r−r′−1

2
deg(det(p))

∫
Yr,r′ (F )\Yr,r′ (A)

φ(y

(
p 0
0 1r−r′−1

)
)ψ−1(y)

dy

dµ

and dy
dµ

is the right Yr,r′-invariant measure on Yr,r′(F )\Yr,r′(A) with volume 1.

Lemma For any φ ∈ Acusp(GLr(A)), Prr′φ ∈ Cts(Pr′+1(A)) is a cuspidal factor of
Pr′+1(A), i.e., it is:

1. invariant under left translation by Pr′+1(F )

2. uniformly locally constant

3. cuspidal for Pr′+1: for any p ∈ Pr′+1(A) and any standard unipotent subgroup
U ⊂ Pr′+1,

∫
U(F )\U(A)

(Prr′φ)(up)du
dµ

= 0.

Step 2 Fourier-Whittaker expansion formula for Pr′+1. For φ ∈ Acusp(GLr(A)), we
get Wφ,ψ ∈ W(GLr(A), ψ), which is a map GLr(A) → C given by g 7→ Wφ,ψ(g) :=∫
Nr(F )\Nr(A)

φ(ng)ψ−1(n)dn
dµ

where dn
dµ

is the right-Nr(A)-invariant measure with total

volume 1.

Lemma For any φ ∈ Acusp(GLr(A)) and any g′ ∈ GLr′(A),

(Prr′φ)

(
g′ 0
0 1

)
= q

r−r′−1
2

deg(det(g′))
∑

γ∈Nr′ (F )\GLr′ (F )

Wφ,ψ(

(
γ 0
0 1r−r′

)(
g′ 0
0 1r−r′

)
)

Step 3 Global cusp form integral. Choose a Haar measure dg′ on GLr′(A). Let dµ
be the counting measure on GLr′(F ).

Definition We define a complex-linear map

Acusp(GLr(A)) × Acusp(GLr′(A)) → (Anal(C×), pole at 0)
φ φ′ 7→ I(φ, φ′; t)

where

I(φ, φ′; t) :=

∫
GLr′ (F )\GLr′ (A)

(Prr′φ)

(
g′ 0
0 1

)
φ′(g′)qdeg(det(g

′))/2tdeg(det(g
′))dg

′

dµ
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One should verify that these integrals converge on C×, with only a pole at 0 (not an
essential singularity).

Theorem (Functional equation for Is) One can similarly define Ĩ(−,−; t) (e.g.,
by defining -̃projection operators) such that for any φ ∈ Acusp(GLr(A)) and φ′ ∈
Acusp(GLr′(A)), I(φ, φ′; t) = Ĩ(φ̃, φ̃′; t), where φ̃ := (g 7→ φ(tg−1)). A key point here
is the existence of the outer automorphism of GLr given by g 7→ tg−1. This makes it
difficult to do this construction for other groups.

Put this in the fridge.

Yr,r′ =

(
1r′+1 ∗

0 Nr−r′−1

)
Ỹr,r′ =

(
1r′+1 0
∗ Nr−r′−1

)
Pr′+1 =

(
GLr′ ∗

0 1

)
P̃r′+1 =

(
GLr′ 0
∗ 1

)
I and Ĩ have possible poles at 0 and∞, and are analytic elsewhere. limt→∞ I(φ, φ′; t)
exists in C.

Step 4 Global Rankin-Selberg integrals. Let dg′ be the same Haar measure on
GLr′(A) as above. Define a complex linear map

W(GLr(A), ψ) × W(GLr′(A), ψ−1) → Germmero(C)0 :=


Germs of

meromorphic
functions
at 0 ∈ C


w w′ 7→ Ψ(w,w′; t)

given by:

Ψ(w,w′; t) :=

∫
Nr′ (A)\GLr′ (A)

w

(
g′ 0
0 1r−r′

)
w′(g′)q

r−r′
2
deg(det(g′))tdeg(det(g

′)) dg
′

dn′

where dn′ is the left Haar measure on Nr′(A) such that dn′

dµ
on Nr′(F )\Nr′(A) has

volume 1. One has to verify that the integral converges in a punctured neighborhood
of 0, and has a pole at 0.

Proposition Let w ∈ W(GLr(A), ψ), and w′ ∈ W(GLr′(A), ψ−1). Suppose

w =
∏
x∈|F |

wx and w′ =
∏
x∈|F |

w′
x,

where wx ∈ W(GLr(Fx), ψx) and w′
x ∈ W(GLr′(Fx), ψ

−1
x ). Then

Ψ(w,w′; t) =
∏
x∈|F |

Ψ(wx, w
′
x; t),
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where the global integral is with respect to the Haar measure dg′, the local integrals
are with respect to Haar measures dg′x, and dg′ =

∏
x∈|F | dg

′
x.

Step 5 Equate I with Ψ.

Theorem (Euler factorization) For φ ∈ Acusp(GLr(A)), φ′ ∈ Acusp(GLr′(A)) (giv-
ing us the associated Whittaker functions Wφ,ψ ∈ W(GLr(A), ψ) and Wφ′,ψ−1 ∈
W(GLr′(A), ψ−1)), one has I(φ, φ′; t) = Ψ(Wφ,ψ,Wφ′,ψ−1 ; t) in Germmero(C)0. If
φ and φ′ are chosen so that Wφ,ψ =

∏
x∈|F |wx and Wφ′,ψ−1 =

∏
x∈|F |w

′
x, then

I(φ, φ′; t) =
∏

x∈|F | Ψ(wx, w
′
x; t

deg(x)) in Germmero(C)0.

Step 6 Local to Global considerations. Let (Vπ, π) ∈ Repadm(GLr(A)) and (Vπ′ , π
′) ∈

Repadm(GLr′(A)) be cuspidal automorphic irreducible representations, and let S =
{x ∈ |F | : πx, π′x, or ψx is ramified}, a finite subset of |F |.

We know that for any x ∈ |F | \ S, we can choose wx ∈ W(πx, ψx) and w′
x ∈

W(π′x, ψ
−1
x ) such that L(πx, π

′
x; t) = Ψ(wx, w

′
x; t) as germs of meromorphic functions

on C at 0, and that for any x ∈ S, we can choose wx ∈ W(πx, ψx) and w′
x ∈

W(π′x, ψ
−1
x ) such that Ψ(wx, w

′
x; t) 6≡ 0 as germs of meromorphic functions on C at 0

(i.e., don’t do anything stupid at the ramified places).

We get w :=
∏

x∈|F |wx ∈ W(π, ψ) and w′ :=
∏

x∈|F |w
′
x ∈ W(π′, ψ−1). This is

special to Whittaker functions and cannot be done with cusp forms in general.

By the Fourier expansion formula, we get φ ∈ Vπ ⊂ Acusp(GLr(A)) and φ′ ∈
Vπ′ ⊂ Acusp(GLr′(A)) such that Wφ,ψ = w, and Wφ′,ψ−1 = w′.

By step 5 (Euler factorization),

I(φ, φ′; t) =
∏
x∈|F |

Ψ(wx, w
′
x; t

deg(x))

= L(π × π′; t)
∏
x∈S

Ψ(wx, w
′
x; t

deg(x))

L(π × π′; tdeg(x))

The product on the end is a correction factor for the ramified places. Call the quotients
in the product e(wx, w

′
x; t

deg(x)).

Local Rankin-Selberg theory implies e(wx, w
′
x;T ) ∈ C[T±1] \ {0}. Hence, L(π ×

π′; t) = I(φ,φ′;t)Q
x∈S e(wx,w

′
x;t

deg(x))
. The numerator is analytic in C× with a possible pole at 0,

while the denominator is a finite product of Laurent polynomials, so L(π × π′; t) is
meromorphic on C.

From the functional equation of I and local functional equations of the Ψs, we
get L(π×π′; t) = ε(π×π′, ψ; t)L(π∨×π′∨; 1

qt
) as meromorphic functions on C×. Since

limt→(0 or ∞) L(π × π′; t) exists in C, L(π × π′) ∈Mero(C) ∼= C(t).

November 8, 2002
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No notes (no class?)

November 15, 2002

Wrap up Rankin-Selberg integration, then move on to converse theorem.

Let k be a finite field of order q and characteristic p, let F be a function field over
k, and let A be its ring of adèles. Assume k is algebraically closed in F , so we get an
exact sequence:

1→ Gm(F )\Gm(A)0 → Gm(F )\Gm(A)
deg→ Z→ 0.

Choose an algebraic closure C ∼= R[i], and choose a square root p1/2 ∈ C×, which gives
us (#κ(x))1/2 ∈ C× for all x ∈ |F |. Let ψ : F\A→ C× be a nontrivial unitary char-
acter, and let r ≥ r′ ≥ 1 be integers. Let (Vπ, π) ∈ Repadm(GLr(A), ψ) and (Vπ′ , π

′) ∈
Repadm(GLr′(A), ψ−1) be cuspidal automorphic irreducible representations. We get
L(π × π′;T ) ∈ 1 + TC[[T ]] ⊂ C((T ))× and ε(π × π′, ψ;T ) ∈ C[T±1]× ⊂ C((T ))×.

Theorem

1. L(π × π′;T ) is rational, i.e., it lies in C(T ) ∩ (1 + TC[[T ]]) ⊂ C((T ))×.

2. Assume π and π′ are unitarizable. Then

L(π × π′;T ) = ε(π × π′, ψ;T )L(π∨, π′∨;
1

qT
).

Theorem (Location of poles of global L-functions - a bit like the Riemann Hypoth-
esis) Assume π and π′ are unitarizable.

1. If r > r′, then L(π × π′;T ) has no pole in C, i.e., L ∈ 1 + TC[T ].

2. Suppose r = r′. Let T (π, π′) := {α ∈ U(1) ⊂ C× : π ∼= π′∨ ⊗ αdeg(det(−))} (so
if α ∈ C×, then GLr(A) → C× given by g 7→ αdeg(det(g)) is a quasi-character of
GLr(A)). Then the poles of L(π×π′;T ) in C are { 1

α
: α ∈ T (π, π′)}∪{ 1

qα
: α ∈

T (π, π′)}, and each is a simple pole.

Corollary Assume π and π′ are unitarizable. Then T = 1 and T = 1
q

are poles of

L(π × π′∨;T ) if and only if π ∼= π′.

Theorem (Strong multiplicity one) Let r ≥ 1 be an integer, and let (Vπ, π), (Vπ′ , π
′) ∈

Repadm(GLr(A)) be unitarizable cuspidal automorphic irreducible representations.
Suppose there exists a finite set of places S ⊂ |F |, such that for any x ∈ |F | \ S,
πx ∼= π′x in Repadm(GLr(Fx)). Then π ∼= π′ in Repadm(GLr(A)).
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Proof (Looks like Čebotarev) Define LS(−;T ) :=
∏

x∈|F |\S L(−x, T deg(x)) ∈ 1 +

TC[[T ]]. Then by assumption, LS(π × π′∨;T ) :=
∏

x∈|F |\S L(πx × π′∨x ;T deg(x)) is

equal to LS(π × π∨;T ) :=
∏

x∈|F |\S L(πx × π∨x ;T deg(x)). For x ∈ S, consider L(πx ×
π′∨x ;T deg(x)) as 1

element of 1+TC[T ]
, so it has no zeroes in C. Furthermore, this has no poles

in {t ∈ C : |t| ≤ 1
q
} (this is nontrivial - it uses norm estimates of local Rankin-Selberg

integrals). Hence, LS(π × π′∨;T ) has a pole at T = 1
q

if and only if L(π × π′∨;T )

does, and LS(π × π∨;T ) has a pole at T = 1
q

if and only if L(π × π∨;T ) does. As we

noted above, LS(π × π′∨;T ) = LS(π × π∨;T ), and by the corollary, L(π × π∨;T ) has
a pole at T = 1

q
, so L(π × π′∨;T ) also has a pole there. By the corollary again, this

implies π ∼= π′ in Repadm(GLr(A)).

Main converse theorem references: Cogdell, Piatetski-Shapiro. Publ. Math.
IHES 79 (1994), and J. Reine Angew. Math. 517 (1999).

We have the same situation as before, but no representations. Let r ≥ r′ ≥ 1 be
integers, so we get groups GLr ⊃ Br ⊃ Nr with maximal torus (and Levi quotient)
Ar ⊂ Br. Extend the additive character ψ to Nr(A)→ C× via

1 x1,2

. . . . . .
. . . xr−1,r

1

 7→ ψ(x1,2 + · · ·+ xr−1,r),

Recall that if (Vπ, π) ∈ Repadm(GLr(A)) and (Vπ′ , π
′) ∈ Repadm(GLr(A)) are irre-

ducible generic representations, then we can define L(π × π′;T ) ∈ 1 + TC[[T ]] ⊂
C((T ))× and ε(π× π′, ψ;T ) ∈ C[T±1]× ⊂ C((T ))× in the same way as when π and π′

are cuspidal automorphic.

Theorem (Converse theorem) Let r ≥ 2, and let (VΠ,Π) ∈ Repadm(GLr(A)) be
irreducible and generic with respect to ψ. Assume:

1. The central quasi-character of Π is automorphic, i.e., χΠ : Z(GLr(A)) ∼=
Gm(A)→ C× factors through Z(GLr(F ))\Z(GLr(A)).

2. Suppose there exists a finite set S ⊂ |F | of places, such that for any r′ < r
(strictly) and any cuspidal automorphic irreducible (Vπ′ , π

′) ∈ Repadm(GLr′(A))
that is unramified at S, the L-function L(Π× π′;T ) is nice, i.e., L(Π× π′;T )
and L(Π∨×π′∨;T ) lie in 1+TC[T ] (instead of just 1+TC[[T ]]) and satisfy the
functional equation L(Π× π′;T ) = ε(Π× π′, ψ;T )L(Π∨ × π′∨; 1

qT
).

Then there exists an automorphic irreducible (Vπ, π) ∈ Repadm(GLr(A)) such that for
any x ∈ |F | \S, one has (VΠ,Π) ∼= (Vπ, π) in Repadm(GLr(Fx)). Furthermore, if the
finite set S ⊂ |F | is actually empty, i.e., if for any r′ < r and any cuspidal automorphic
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irreducible (Vπ′ , π
′) ∈ Repadm(GLr′(A)), L(Π × π′;T ) is nice, then (VΠ,Π) ∼= (Vπ, π)

and is also cuspidal.

Note that on the Galois side we have L(Σ ⊗ σ′;T ) = 1−TFrobH1
c (x⊗T,Σ⊗σ)

H0
c (... )H2

c (... )
with

H2
c (Σ⊗ σ)blah ∼= Hom(Σ⊗ σ′∨)(−1) or something like that. ?

Suppose (VΠ,Π) ∈ Repadm(GLr(A)) were actually cuspidal automorphic. Em-
bed VΠ ↪→ Acusp(GLr(A)), and get a Fourier-Whittaker expansion: For any φ ∈
Acusp(GLr(A)) and any g ∈ GLr(A)),

φ(g) =
∑

γ∈Nr−1(F )\GLr−1(F )

Wφ,ψ(

(
γ 0
0 1

)
g)

=
∑

δ∈Nr(F )\Pr(F )

Wφ,ψ(δ · g),

where Wφ,ψ : GLr(A)→ C is given by g 7→
∫
Nr(F )\Nr(A)

φ(ng)ψ−1(n)dn
dµ

, and

Pr =

{(
∗ ∗
0 1

)}
⊂ GLr

is the mirabolic subgroup. We have maps:

Acusp(GLr(A))
W−,ψ→ W(GLr(A), ψ)

FW−exp.→ Acusp(GLr(A))
φ 7→ Wφ,ψ 7→ φ

Now, stop assuming (VΠ,Π) is cuspidal.

Start with (VΠ,Π) a generic irreducible representation of GLr(A). We get a

global Whittaker model (embedding) (VΠ,Π)
∼
↪→ W(Π, ψ) ⊂ W(Glr(A), ψ) given by

ξ 7→ wξ. the basic idea is to use the Fourier-Whittaker expansion formula to define
the embedding of VΠ into Acusp.

The mirabolic embeds in the parabolic subgroup ofGLr associated to the partition
r = (r − 1) + 1:

Pr :=

{(
∗ ∗
0 1

)}
⊂ P ′

r :=

{(
∗ ∗
0 ∗

)}
Define for each ξ ∈ VΠ, a function uξ : GLr(A)→ C by

uξ(g) =
∑

δ∈Nr(F )\Pr(F )

wξ(δ · g)

=
∑

γ∈Nr−1(F )\GLr−1(F )

wξ(

(
γ 0
0 1

)
g)

Lemma The above sums are finite sums for any given g ∈ GLr(A), so uξ is well-
defined.
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Proposition uξ is invariant under left translation by Pr(F ) (this is clear), and by
Z(GLr(F )) (because wξ is, by assumption 1), so uξ is invariant under left translation
by P ′

r(F ). uξ is invariant under right translation by some open subgroup of GLr(A)
(because the defined sum is finite, and the wξ are smooth).

Lemma For any g ∈ GLr(A), such that wξ(g) 6= 0, there exists n ∈ Nr(A) such that
uξ(ng) 6= 0. In particular, if ξ 6= 0 in VΠ, then uξ is not the zero function.

Idea (opposite construction to bring out Π∨) Let wr :=

 1
. . .

1

 ∈ GLr(F ) be

the longest element of the Weyl group, and let

αr := wr

(
wr−1 0

0 1

)
=


1

1
. . .

1

 ∈ GLr(F ).

We have:

Pr := t(Pr)
−1 =

{(
∗ 0
∗ 1

)}
opposite mirabolic

P ′
r := t(P ′

r)
−1 =

{(
∗ 0
∗ ∗

)}
opposite parabolic

Nr := α−1
r Nrαr =




1 ∗
. . .

0 1

0

∗ 1


 ⊂ Pr

Definition For any ξ ∈ VΠ, consider the map w̃ξ : GLr(A) → C defined by g 7→
wξ(wr

tg−1). One checks that w̃ξ ∈ W(GLr(A), ψ−1). Define for any ξ ∈ VΠ the
funtion vξ : GLr(A)→ C given by: g’?

vξ(g) :=
∑

δ∈Nr(F )\Pr(F )

wξ(αr · δg)

=
∑

γ∈Nr−1(F )\GLr−1(F )

wξ(αr

(
γ 0
0 1

)
g)

=
∑

γ′∈Nr−1(F )\GLr−1(F )

w̃ξ′(

(
γ′ 0
0 1

)
g′)

Now, everything works as before by formal comparison. Previous lemmata hold
with u replaced by v, and bars placed over Pr, P

′
r, and Nr.
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Key technical theorem Under the hypotheses of the converse theorem, assumption
2 (niceness), we have: If ξ = ⊗x∈|F |ξx ∈ VΠ is a decomposable factor, and if for any
x ∈ S ⊂ |F |, ξx ∈ VΠx is fixed by GLr−1(Ox) ⊂ GLr(Ox), then uξ(1 ∈ GLr(F )) =
vξ(1 ∈ GLr(F )) in C.

We assume the key theorem above, and finish the proof in the case S = ∅. It
is clear that P ′

r(F ) and P ′
r(F ) generate GLr(F ). By the key theorem above, since

S = ∅, for any decomposable vector ξ = ⊗ξx ∈ VΠ, uξ(1) = vξ(1) ∈ C. Hence, for any
g ∈ GLr(A), uξ(g) = uΠ(g)ξ(1) = vΠ(g)ξ(1) = vξ(g), so uξ = vξ as functions on GLr(A),
so they are invariant under left translation by GLr(A). Also, they are invariant under
right translation by some open subgroup of GLr(A). From the definition of uξ as a
Fourier-Whittaker expansion, one can show that uξ is a cuspidal function, and uξ
generates an admissible subrepresentation of C(GLr(A),C). Hence, uξ is a cusp form
on GLr(A) and lies in Acusp(GLr(A),C), so the map ξ 7→ uξ defined on decomposable
ξ extends to a GLr(A)-equivariant embedding VΠ ↪→ Acusp(GLr(A)). Thus, (VΠ,Π)
is cuspidal automorphic.

Next time: Grothendieck’s six operations.

November 22, 2002

Definition An additive category is a category C equipped with abelian group
structures on all hom-sets, such that:

1. there exists a zero object 0, i.e., for any object X ∈ C there exist unique
morphisms X → 0 and 0→ X.

2. all binary (hence finite) products and coproducts exist.

3. composition is a bilinear map on hom-sets.

[The abelian group structure on hom-sets is not actually an additional piece of data.
If we decree the obvious map X ⊕ X → X × X defined by the diagonal matrix of
identity maps to be an isomorphism for all X, then addition of maps f, g : X → Y

arises from X
(id,id)−→ X ×X ∼→ X ⊕X diag(f,g)−→ Y × Y ∼→ Y ⊕ Y → Y . Then we need

only ask for existence of additive inverses.] A functor between additive categories is
additive if it maps zero objects to zero objects, and takes hom-sets to hom-sets via
homomorphisms of abelian groups.

Definition A triangulated category D = (D, {[n]}n∈Z,∆) is a triple, where:

1. D is an additive category (objects are called “complexes” but shouldn’t be
mistaken for them).

2. For all n ∈ Z, [n] : D → D is a covariant additive functor [most people ask for
this to be an equivalence, but Cheewhye seemed to think it detrimental], such
that for all m,n ∈ Z, we have an equality of functors [n] ◦ [m] = [n+m].
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3. ∆ is a collection of diagrams in D of the form K
u→ L

v→ M
w→ K[1], called

distinguished triangles.

satisfying the following axioms:

1. For any K ∈ D, K
idk→ K

0→ 0
0→ K[1] is a distinguished triangle.

2. If an arbitrary triangle K → L → M → K[1] is isomorphic to a distinguished
triangle, then it is also distinguished. Note that morphisms between triangles
are given by the obvious commutative diagram. One could study categories of
triangles etc., but it’s not important here.

3. Any morphism K
u→ L in D can be completed to a distinguished triangle

K
u→ L → M → K[1]. The object M is often written cone(u), and axiom 5

implies the completion is unique up to non-unique isomorphism.

4. If K
u→ L

v→ M
w→ K[1] is distinguished, then L

v→ M
w→ K[1]

−u[1]→ L[1] is
distinguished. The minus sign is very important.

5. If

K //

f

��

L //

g

��

M // K[1]

f [1]
��

K ′ // L′ //M ′ // K ′[1]

is a commutative diagram, whose rows are distinguished triangles, then there
exists a morphism h : M → M ′ making the diagram commute. Note that h is
not necessarily unique.

6. (Octahedron axiom) Given an upper cap:

K ′

[1]

��

[1]

  @
@@

@@
@ Moo

a

	 L

??������

~~~~
~~

~~
	a

M ′
[1]
// K

__??????

OO

there exists a lower cap:

K ′

[1]
��

Moo

}}||
||

|
	a
L′

aaCCCCC

[1]

!!B
BB

BB

a

	
M ′

=={{{{{

[1]
// K

OO
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where 	 denotes a commuting triangle,
a

denotes a distinguished triangle, and
[1] indicates a degree shift.

[ The last axiom gave me a headache. Here’s an alternative formulation: For any
pair of morphisms K

u→ L
v→M , if we take cones:

cone(u)

[1]

{{vvvvvvvvv
cone(v)

[1]

{{wwwwwwwww

w[1]oo

K
u // L

ccGGGGGGGGG
v //M

ccHHHHHHHHH

then the morphism w : cone(v) → cone(u)[1] defined by composing the maps in the
middle satisfies cone(w) ∼= cone(vu)[1]. Here, a [1] over an arrow indicates a degree
shift. One can make an octahedral diagram by wrapping the above diagram about a
vertical axis and adding a few arrows:

cone(vu)

%%

[1]

��

cone(u)

[1]

��

88

cone(v)w[1]oo

[1]

��

K
u

''

vu //M

OO

YY

L

v

88

YY

so that K → L → M forms a commutative triangle on the bottom, and cone(u) →
cone(vu) → cone(v)

w→ cone(u)[1] forms a distinguished triangle on the top. Un-
fortunately, most of the problems people have understanding this axiom seem to
come from thinking in terms of octahedra. It may be better to think of the octa-
hedron axiom as some vague composition law on triangles, or as the statement that
M/L ∼= (M/K)/(L/K), which is true if u and v are monomorphisms and quotients
exist - often the category is nice enough that one can apply some kind of cofibrant
replacement to L and M , e.g., by mapping cylinders, to make this hold in general (see
also [BBD] and Verdier’s article in SGA 4.5 for other presentations). The octahedron
axiom is apparently not strong enough for some purposes, and this seems to come
from cones being insufficiently well-defined. Several attempts have been made to fix
this, but I won’t mention them here.]

Definition If D and D′ are triangulated categories, a covariant functor F : D → D′

is triangulated if
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1. F is additive.

2. F commutes with [n] for all n ∈ Z, i.e., F ◦ [n] = [n]′ ◦ F .

3. F takes distinguished triangles to distinguished triangles.

Definition Let D be triangulated, and A abelian. A cohomological functor H :
D → A is a covariant additive functor such that for any distinguished triangle K

u→
L

v→M
w→ K[1], the sequence H(K)

H(u)→ H(L)
H(v)→ H(M) is exact in A.

Definition Given a homological functor H, and an integer n, we write Hn(−) :=
H(−[n])

This gives rise to long exact sequences, spectral sequences, and spectral objects
(introduced by Verdier, but not widely used).

Grothendieck’s formalism of six operations This isn’t really written down
anywhere, so use at your own risk. I heard it from Deligne, who heard it from
Grothendieck.

Let S be a category with fiber products (e.g., S = (Sch/S) or some suitable
subcategory). Consider the following data:

• For each object X ∈ S, give a triangulated category D(X) (e.g., D(X) will
eventually be Db

c(X,Ql), the bounded derived category of constructible Ql-
sheaves).

• Give 6 families of functors:

– For any object X ∈ S, −
L
⊗X− : D(X)×D(X)→ D(X), “tensor product”

– For any object X ∈ S, RHomX(−,−) : D(X)op ×D(X)→ D(X), “inter-
nal hom”

– For any morphism f : X → Y in S, f ∗ : D(Y )→ D(X), “inverse image”

– For any morphism f : X → Y in S, Rf∗ : D(X)→ D(Y ), “direct image”

– For any morphism f : X → Y in S, Rf! : D(X) → D(Y ), “direct image
with proper support”

– For any morphism f : X → Y in S, Rf ! : D(Y )→ D(X), “extraordinary
inverse image”

• For each object X ∈ S, define canonical objects:

– RX ∈ D(X), “constant sheaf”

– DX ∈ D(X), “dualizing sheaf”
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These data must satisfy the following axioms A, B, C, D, E, F: fix

RHom(−,−)
com4

oooooooo com2
PPPPPPP

adj1

f ! bc2

adj2’

Rf∗

adj2

Rf!
bc1

com3
NNNNNNN f ∗

com1oooooooo

−
L
⊗−

• Adjunction. f : X → Y ∈ S, K,K1, K2 ∈ D(X), L,L1, L2 ∈ D(Y ))

– global:

∗ adj1: HomX(K1

L
⊗X −, K2) ∼= HomX(K1, HomX(−, K2)).

∗ adj2: HomX(f ∗L,K) ∼= HomY (L,Rf∗K).

∗ adj2’: HomY (Rf!K,L) ∼= HomX(K, f !L).

– local:

∗ adj1: RHomX(K1

L
⊗X −, K2) = RHomX(K1, RHomX(−, K2)).

∗ adj2: Rf∗RHomX(f ∗L,K) = RHomY (L,Rf∗K).

∗ adj2’: RHomY (Rf!K,L) = Rf∗RHomX(K, f !L).

• Base change. If

X ′ g //

f
��

X

f

��
Y ′

g
// Y

is cartesian (i.e., a pullback diagram) in S, then

– bc1: g∗Rf! = Rf!g
∗ as functors D(X)→ D(Y ′) (proper base change).

– bc2: g!Rf∗ = Rf∗g
! as functors D(X)→ D(Y ′) (smooth base change).

Equality here is actually only up to canonical isomorphism.

• Commutativity.

– com0: (K1

L
⊗X −)

L
⊗X K2 = K1

L
⊗X (−

L
⊗X K2).

– com1: f ∗(L1

L
⊗Y L2) = f ∗L1

L
⊗X f ∗L2.

– com2: Rf∗RHomX(f ∗L,K) = RHomY (L,Rf∗K). (same as local adj2)
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– com3: Rf!(f
∗L

L
⊗X K) = L

L
⊗Y Rf!K.

– com3’: Rf!(K
L
⊗X f ∗L) = Rf!K

L
⊗Y L.

– com4: f !RHomY (L1, L2) = RHomX(f ∗L1, f
!L2).

• Duality. For any X ∈ S, define a dualizing functor D : D(X)op → D(X) by
K 7→ RHomX(K,DX). There is an isomorphism of functors id

∼↔ D ◦ D.

• Exchange. D exchanges RHomX(K,−) with K
L
⊗X −, Rf∗ with Rf!, and f ∗

with f !, e.g. D(Rf∗K) = Rf!(DK). In particular, D exchanges axioms: adj1
with com0, adj2 (= com2) with com3, adj2’ with com3’, com1 with com4, and
bc1 with bc2.

• Functoriality. For X
f→ Y

g→ Z in S,

– (g ◦ f)∗ = f ∗ ◦ g∗, and id∗ = id

– R(g ◦ f)∗ = Rg∗ ◦Rf∗, and R(id)∗ = id

– R(g ◦ g)! = Rg! ◦Rf!, and R(id)! = id

– (g ◦ f)! = f ! ◦ g!, and id! = id

The functors:

– K 7→ RX

L
⊗X K

– K 7→ RHomX(RX , K)

are isomorphic to the identity functor D(X)→ D(X).

A large portion of SGA 4 and 5 is devoted to showing that Db
c(X,Ql) satisfies

the formalism of six operations given above, and Deligne showed that the category
Db
m(X,Ql) of mixed sheaves admits the formalism in section 6 of Weil II.

Now we can put SGA 4 away.

November 29, 2002

Thanksgiving break.

December 6, 2002

Some quick notes about last time:
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• Recall the hexagon:
RHom(−,−)

nnnnnnnn
PPPPPPP

f ! Rf∗

Rf!

OOOOOOO f ∗

ooooooo

−
L
⊗−

• D exchanges ! with ∗.

• When you have a bifunctor, D only cares about the second variable.

• If you want to get local monodromy a la Weil I and II, you need more input
than just six operations.

• [Ogus asks if
L
⊗ satisfies the pentagon axiom instead of com0.] We can pretend

the = signs are actually equality, but that would be too strong for the examples
in nature. The truth requires isomorphisms and a big mess of compatibility
conditions that haven’t been written down. This issue is not raised in the
literature! [Ogus remarks that this sort of negligence has led to a number of
proofs of wrong theorems to be published.]

Profinite fundamental groups (SGA 1)

Let X be a connected scheme, and let η → X be a geometric point. Let FinEtX
be the category of X-schemes which are finite ètale over X. Then we have a “fiber”
functor fibη : FinEtX → FinSets given by (Y → X) 7→ HomX(η, Y ) = Y (η) =
fibη(Y ).

Definition The profinite fundamental group of (X, η) is

π1(X, η) := AutFinEtX→FinSets(fibη),

the automorphism group of the fiber functor.

This is a profinite group, as it is a subgroup of
∏

Y ∈FinEtX Perm(fibη(Y )) defined
by closed conditions.

Theorem A group G is compact and totally disconnected if and only if there exists
a system {Gi} of finite groups such that G ∼= lim←−Gi.

Note that it is not true that every finite index subgroup of a profinite group is
open, i.e., there may exist discontinuous homomorphisms to finite groups. Possibly
the simplest example comes from Gal(Q({√p})/Q) ∼=

∏
p Z/2, where p runs over all
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primes. There are uncountably infinitely many index 2 subgroups of this group, since
such subgroups are in natural bijection with non-zero elements of the dual space of
an infinite dimensional vector space over F2. By the fundamental theorem of Galois
theory, the index 2 closed (hence open) subgroups of the Galois group are in bijection
with the degree 2 extensions of Q lying in Q({√p}), and there are only countably
many such extensions.

Let π := π1(X, η), and let π − FinSets be the category of finite sets with
continuous π-action. The objects are pairs (E, ρ), where E is a finite set and
ρ : π → Perm(E) is a continuous homomorphism. The morphisms are π-equivariant
maps ot sets. Then fibη : FinEtX → FinSets factorizes as:

FinEtX
fibη //gfibη
''PPPPPPPPPPPP FinSets

Y �

''OOOOOOOOOOOOOO π − FinSets

forget
66nnnnnnnnnnnnn
fibη(Y )

(fibη(Y ), evY )
.

77nnnnnnnnnnnn

where evY : π → Perm(fibη(Y )) is the evaluation homomorphism. This factor-
ization is an equality of functors.

Theorem (Grothendieck) The functor f̃ ibη : FinEtX → π − FinSets is an equiva-
lence of categories.

Properties of π1

1. Functoriality. π1 is a functor:
geometrically pointed

connected schemes with
pointed morphisms

 π→


profinite groups
with continuous
homomorphisms


2. Independence of base point. If η′ → X is another geometric point, then:

(a) The functors fibη, fibη′ ∈ (FinEtX → FinSets) are isomorphic.

(b) Any choice of isomorphism α : fibη
∼→ fibη′ induces an isomorphism α∗ :

π1(X, η)
∼→ π1(X, η

′) given by g 7→ α ◦ g ◦ α−1.

(c) If α and β are two choices of isomorphisms fibη
∼→ fibη′ , then there exists

a (nonunique) γ ∈ π1(X, η
′) such that α∗ = conjγ ◦β∗. In fact, there exists

a unique γ ∈ π1(X, η
′) = Aut(fibη′) such that α = γ ◦ β.
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Proposition Let k be a field, X := Spec(k), and η → X a geometric point. Then
there is a canonical isomorphism π1(X, η)→ Gal(ksep/k), where ksep is the separable
closure of k in Γ(η).

Analogy with GAGA: Consider a scheme X → Spec(C), connected and locally of
finite type, and let π := π1(X

an = X(C), η) be the topological fundamental group.
Then π1(X, η) = π̂, the profinite completion. [Note that this could be trivial, if
π is not residually finite. See Raynaud’s comments regarding Higman’s group and
Toledo’s construction at the end of SGA 1, Exp XII (new edition).]

Proposition Let X be a normal irreducible scheme, and F = κ(X) its function field.
Let F be some algebraically closed extension of F . This defines a geometric point
η → η := Spec(F ) ↪→ X.

1. The homomorphism Gal(F sep/F ) = π1(η, η) → π1(X, η) is surjective (normal-
ization is a functor).

2. Let F ur/X ⊂ F sep be the maximal unramified extension of F in F sep that is
unramified over X (a finite extension F ′/F is unramified over X if and only if
the normalization:

Spec(F ′) = η′ �
� //

finite
��

X ′

finite

��

normalization of X in η′

Spec(F ) = η � � // X

of X in F ′ is ètale over X). Then ker(Gal(F sep/F ) � π1(X, η)) is the normal
subgroup Gal(F sep/F ur/X).

Corollary Let X be a proper smooth connected curve over a finite field. Let
U ↪→

open,dense
X ←↩

closed
S = (X − U)red. For each x ∈ |X|, choose a separable clo-

sure Fx of Fx, choose an F -embedding αx : F ↪→ Fx, and get (αx)∗ : Gal(Fx/Fx) ↪→
Gal(F sep/F ). Then ker(Gal(F sep/F ) � π1(U, η)) is the normal subgroup generated
by (αx)∗(I(Fx/Fx)) as x runs over |U | = |X| \ S, where I(Fx/Fx) = Gal(Fx/F

ur
x ) is

the inertia group.

This corollary says that to study Langlands correspondence, we should try study-
ing π1(U, η) for some U . There exist representations which are everywhere ramified,
but we ignore those. One reason why we have the condition that S is finite is because
then U exists.

Theorem Let k be a field, and X a quasi-compact k-scheme. Let η → X be a
geometric point, and let k be the separable closure of k in Γ(η). Assume X is ge-
ometrically connected (i.e., X ⊗k k is connected). Then the following sequence is
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exact:
1→ π1(X ⊗k k, η)→ π1(X, η)→ π1(Spec(k), η)→ 1

The first term is called the geometric fundamental group, the second term is the
arithmetic fundamental group, and the last term is just Gal(k/k).

Corollary Let F be any field extension of k, and take X = Spec(F ). Let F be any
separably closed extension of F , and take η = Spec(F ). Let k be the separable closure
of k in F . Assume k is separably closed in F (so that Γ(X ⊗k k) = F ⊗k k = Fk in
F ).

η
$$I

II
II

++XXXXXXXXXXXXXXXXXXXXXX

X ⊗k k //

��

X

��

�

Spec(k) // Spec(k)

Then the above sequence becomes:

1→ Gal(F/Fk)→ Gal(F/F )→ Gal(Fk/F ) = Gal(k/k)→ 1

The moral is: π1 is much better behaved than Gal, even though they are the
same thing.

Etale sheaves

Let X be a quasi-compact quasi-separated scheme.

Definition The (small) étale site of X is the category Xét whose objects are X-
schemes that are étale over X and whose morphisms are X-morphisms (naturally
étale be a special property of étale maps), together with a notion of covering, where

a family of étale morphisms (Ui
φi−→ U)i∈I is a covering if and only if U =

⋃
i∈I φi(Ui).

What is an étale morphism?
X
f
��
Y

is


smooth

étale

unramified

if and only if f is locally of

finite presentation, and for any artinian ring A, any ideal I ⊂ A satisfying I2 = 0,

and any map Spec(A)→ Y , the canonical map X(A)→ X(A/I) is a


surjection

bijection

injection

.

X

f

��
Spec(A/I) � � // Spec(A) // Y
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Incidentally, this can be rephrased in terms of complete dvrs.

étale means deformations lift uniquely
smooth means deformations have lifts

unramified means if a deformation lifts, the lift is unique

An map is étale if and only if the target can be covered by affines, such that the
restricted maps have invertible derivatives. More precisely,

U Spec(A)

%%KKKKKKKKKKKKK
� � // X ×Y V

��

// X

��

�

V Spec(B) � � // Y

A/B is an extended étale algebra if and only if A = B[T1, . . . , Tn]/(f1, . . . fn) and the

matrix
(
∂fi
∂Tj

)
1≤i,j≤n

is invertible.

For convenience, we’re going to change the definition of proper to require finite
presentation, instead of just finite type.

Definition A presheaf on Xét (also called an étale presheaf of sets) is a con-
travariant functor Xét → Sets. A morphism of presheaves is a natural transforma-
tion. We get a category Preshv(Xét, Sets).

Definition A Sheaf on Xét is a presheaf F on Xét such that for any covering (Ui
φi→

U)i∈I in Xét, the following sequence is exact:

F(U)→
∏
i∈I

F(Ui)
[i]

⇒
[j]

∏
i,j∈I

F(Ui ×U Uj)

This means the image of the first map is {x : [i]x = [j]x}.
We get a full subcategory Shv(Xét, Sets) of Preshv(Xét, Sets), called the étale

topos of X. The “s” in “topos” is silent. There exists a left adjoint of the inclusion
functor, called the “associated sheaf” functor. It is exact, but inclusion is only left
exact.

Definition Assume X is locally noetherian, and let F ∈ Shv(Xét, Sets).

1. F is constant if and only if F is the sheaf associated to the presheaf given by
Y 7→ E for some fixed set E. This is the sheaf Xét → Sets given by Y 7→ Eπ0(Y ).

2. F is locally constant if and only if there exists a covering (Ui → X)i∈I in Xét

such that F|Ui is constant.

3. F is finite if for any U ∈ Xét, F(U) is a finite set. [This may not be quite
correct.]
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4. If η → X is a geometric point, then the stalk (or fiber) of F at η is Fη :=
lim−→F(U), where the limit is taken over all diagrams:

U

étale
��

η

??��������
// X

F has finite fibers if for any geometric point η → X, Fη is a finite set. [This
also may not be quite correct.]

5. F is lisse if and only if F is locally constant and

{
finite

finite fibers
. Either one

works. [The correct definition: there exists a covering (Ui → X)i∈I in Xét such
that F|Ui is constant, and each F(Ui) is a finite set.]

6. F is constructible if and only if X can be partitioned into a disjoint union∐
i∈I Xi of locally closed subschemes Xi ⊂ X, such that each F|Xi is lisse in

Shv((Xi)ét, Sets). Such a partition is called a (quasi-)stratification.

What is F|Xi for nonopen Xi? Consider Xi
i
↪→ X locally closed, and let f : U →

Xi be étale. Commutative diagrams of the form

U
j //

étf

��

Vj

étg

��
Xi

� � i // X

form the objects of a filtered subcategory of Xét, so we can define a presheaf by
pre(F|Xi)(U) := lim−→F(Vj), and take the associated sheaf. check

Proposition Let X be a connected normal scheme (locally noetherian), and η → X
a geometric point (giving us π1(X, η)). Then the functor

{lisse sheaves on Xét} → π1(X, η)− FinSets
F 7→ (Fη, automorphism)

is an equivalence of categories.

The point is that every lisse sheaf is representable.

Proposition The functors{
X-schemes

étale over X

}
→

{
locally constant
sheaves on Xét

}
∪ ∪

FinEtX =

{
X-schemes finite

étale over X

}
→ {lisse sheaves on Xét}

Y 7→ HomX(−, Y )
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are equivalences of categories.

Variant Replace “Sets” everywhere above with “R-modules” for a fixed commutative
ring R (keep Zl and Oλ ⊂ K/Ql in mind).

• We get R-linear abelian categories Shv(Xét, R−mod) ⊂ Preshv(Xét, R−mod).
Once we have nice abelian categories, we can do cohomology.

• We get a full subcategory Shvc(Xét, R − mod) ⊂ Shv(Xét, R − mod) of con-
structible sheaves. This is also R-linear and abelian, but we can’t do coho-
mology, since there aren’t enough injectives.

• We get a full subcategory LisseShv(Xét, R − mod) ⊂ Shvc(Xét, R − mod) of
lisse sheaves. This category is R-linear, abelian, and equivalent to the category
of π1-representations on (set-theoretically) finite R-modules.

December 13, 2002

No notes (finals week?)

January 28, 2003

Recall the program from last term:

• Class field theory (Langlands over GL1)

• Cuspidal automorphic representations of GLr(A)

• L- and ε-factors of automorphic representations

• Converse theorem

• Galois representations

• l-adic cohomology theory

• L- and ε-factors of Galois representations

• Twisting results (Deligne, et al.)

• Product formula (Laumon, et al.)

• G → A and A → G
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Recall the diagram:

Lafforgue,
Arthur-Selberg
trace formula

(
moduli stacks

of shtukas

) l-adic cohomology,
Grothendieck-Lefshetz-
Verdier trace formula

Geometric(
automorphic

representations

) ↗ ↘
Spectral Algebraic
↖ ↙

(
Galois

representations

)
Analytic

converse theorem,
Rankin-Selberg
convolutions

(
L-functions,
ε-factors

)
Deligne’s Weil II (RH),

product formula

Bottom row: Rankin-Selberg theory lets us construct automorphic representa-
tions from L- and ε-factors and functions. In order to construct such representations,
we need information on L- and ε-factors, given by Grothendieck’s and Laumon’s
product formula.

Let X be a connected normal scheme. Arithmetic π1 is defined by π1(X, η) =
AutFinEtX→FinSets(fibη), where fibη is defined by:

FinEtX
fibη−→ FinSets Y

↓
X

 7→ Y (η)X := HomX(η, Y )

This factors through f̃ ibη : FinEtX → π1−FinSets, whose image is Y (η)X endowed
with an action of π1.

Let R be a commutative ring. Then we can define R-linear abelian categories:
Shv(Xét, R −mod) ⊃

full
Shvc(Xét, R −mod) ⊃

full
Shvlisse(Xét, R −mod), with the last

equivalent to the category of set theoretically finite R-modules with continuous π1-
action.

Now we fit this formalism into the framework of 6 operations.

Derived category of an abelian category

Let A be an additive category. Cplx(A) is the additive category of complexes over
A. We get a canonical functor A→ Cplx(A) taking K to · · · → 0→ K → 0→ . . . ,
where K is placed in the degree 0 spot. If A is abelian, we get cohomological functors:

H i : Cplx(A)→ A defined by K 7→ H i(K) := ker(di)
im(di−1)

for all i ∈ Z.
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Definition Let A be an abelian category. A morphism f : K → L in Cplx(A)
is a quasi-isomorphism if and only if for i ∈ Z, H i(f) : H i(K) → H i(L) is an
isomorphism in A.

Definition Let A be additive. For n ∈ Z, the shift functor [n] : Cplx(A)→ Cplx(A)
is defined by:

K = (Ki, diK)
f //_

[n]

��

L = (Li, diL)

K[n]
f [n]

// L[n]

where K[n]i = Kn+i, diK[n] = (−1)ndn+i
K , and f [n]i = fn+i.

Definition If f : K → L is a morphism in Cplx(A), then we define the mapping
cylinder of f , written Cyl(f) ∈ Cplx(A), by:

Cyl(f)i+1 := Ki+1 ⊕ K[1]i+1 ⊕ Li+1

Cyl(f)i

dCyl(f)

OO

:= Ki

diK

OO

⊕ K[1]i

−1

eeKKKKKKKKKKK
=−di+1

K
di
K[1]

OO
f

99sssssssssss
⊕ Li

diL

OO

We can write the differential in shorthand as:

((ki, ki+1, li) 7→ (dki − ki+1,−dki+1, f(ki+1) + dli)).

There is a spectral sequence picture.

Ki+1

OO

// Li+1

OO

Ki

OO

// Li

OO

•oo

��

// • //

One reason to call it a cylinder:

K[1]

55lllllllllll //

))RRRRRRRRRRR55kkkkkkkkkkk //

))TTTTTTTTTTT

55

K

uuuuuu

IIIIII

44 55kkkkkkkkkkk55jjjjjjjjjjj

L
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The motivation from topology comes from a “top hat” picture. K is the top. L is
the brim.

Definition If f : K → L is a morphism in Cplx(A), the mapping cone of f ,
C(f) ∈ Cplx(A) is defined by:

C(f)i+1 := K[1]i+1 ⊕ Li+1

C(f)i

dC(f)

OO

:= K[1]i

=−di+1
K

di
K[1]

OO
f

99sssssssssss
⊕ Li

diL

OO

We have a collection of canonical morphisms:

f : K → Cyl(f) given by k 7→ (k, 0, 0)
α : L→ Cyl(f) l 7→ (0, 0, l)
β : Cyl(f)→ L (ki, ki+1, li) 7→ f(ki) + li

π : Cyl(f)→ C(f) (k, k′, l) 7→ (k′, l)
i : L→ C(f) l 7→ (0, l)
∂ : C(f)→ K[1] (k, l) 7→ k

so every morphism f : K → L in Cplx(A) gives rise to a diagram:

K
f // L

K
f // Cyl(f)

β

OO

π // C(f) // 0

0 // L

α

OO

i // C(f) ∂ // K[1] // 0

and if A is abelian, then the rows are exact, and α and β are quasi-isomorphisms.

Definition A distinguished triangle in Cplx(A) is a sequence of maps of the form

K
f→ Cyl(f)

π→ C(f)
∂→ K[1]

for some morphism f in Cplx(A). We do not allow isomorphic triangles to be
distinguished. [what goes wrong?]

We get ∆Cplx(A), a collection of distinguished triangles in Cplx(A).

Note (Cplx(A), {[n]}n∈Z,∆Cplx(A)) is not in general a triangulated category.

References: Verdier’s thesis, Des categories abeliennes et des categories derivees.
Asterisque 2??. BBD, Faisceaux Pervers. Asterisque 100.
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Working with derived categories is like quantum mechanics. An object in a derived
category is like a wave function, and taking homology is like making an observation
- it messes up the wave function. No matter how many observations you make by
taking spectral sequences, you can’t reconstruct the original object.

February 4, 2003

Let A be an additive category. Last time, we defined the additive category
Cplx(A) of complexes in A, with a shift functors [n], n ∈ Z, and a class ∆Cplx(A)

of distinguished triangles.

Definition The homotopy category K(A) has the same objects as Cplx(A), and
morphisms are defined by

HomK(A)(K,L) := HomCplx(A)(K,L)/(null-homotopies),

where f : K → L is a null-homotopy if and only if there exists a sequence of mor-
phisms hi : Ki → Li−1 in A for all i ∈ Z, such that f i = hi+1 ◦ diK + di−1

L ◦ hi.
This weakens the notion of isomorphism. Here’s a potentially helpful diagram:

Ki−1 //

f i−1

��

Ki //

f i

��

hi

||yy
yy

yy
yy

Ki+1

f i+1

��

hi+1

||yy
yy

yy
yy

y

Li+1 // Li // Li+1

We get a canonical functor Cplx(A)→ K(A) that is identity on objects. We can
define shift functors [n] : K(A) → K(A) via pushforward. Let ∆K(A) := essential
image of ∆Cplx(A). This means we take anything isomorphic to an image object.

Proposition (K(A), {[n]}n∈Z,∆K(A)) is a triangulated category.

From now on, we assume A is an abelian category. We get factorizations of
cohomology functors for all i ∈ Z:

Cplx(A) Hi
//

&&NN
NNN

A

K(A)

<<yyyyy

This is an equality of functors. Thus, it makes sense to speak of quasi-isomorphisms
in K(A).

Big Theorem-Definition There exists an additive category D(A) with an additive
functor δ : K(A)→ D(A) such that:

1. δ is identity on objects.
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2. For any quasi-isomorphism f in K(A), δ(f) is an isomorphism in D(A).

3. If F : K(A) → E is an additive functor to an additive category E , such that
for any quasi-isomorphism f in K(A), F (f) is an isomorphism in E , then there
exists a unique functor F : D(A)→ E such that F = F ◦ δ:

D(A) F // E

K(A)
δ

eeKKKK
F

<<yyyyy

Note that this is an equality of functors, which is necessary for uniqueness to
make sense.

D(A) is called the derived category of A.

References: Verdier’s thesis. Asterisque 2??. Gelfand and Manin wrote two books
on homological algebra. The thin one has lots of errors and no proofs. The thick one
has an even higher error density than the thin one.

The shift functors [n] in D(A) are defined by the following diagram commuting
as an equality of functors:

D(A)
[n] // D(A)

K(A)

δ

OO

[n] // K(A)

δ

OO

∆D(A) is defined to be the essential image of ∆K(A) under δ.

Proposition (D(A), {[n]}n∈Z,∆D(A)) is a triangulated category.

Proposition The inclusion functor A
deg 0→ Cplx(A)→ K(A)→ D(A) is fully faithful,

the essential image is D(A)deg 0 := {K ∈ D(A) : H i(K) = 0 for all i 6= 0}, and
H0 : D(A)→ A is the quasi-inverse.

There are some variants to the basic derived category. Let ∗ ∈ {∅,+,−, b}. then
we can define Cplx∗(A), K∗(A), and D∗(A) by restricting to complexes that are:

∅ arbitrary (· · · → ∗ → ∗ → ∗ → . . . )
+ bounded below (· · · → 0→ 0→ ∗ → ∗ → . . . )
− bounded above (· · · → ∗ → ∗ → 0→ 0→ . . . )
b bounded + ∩ −

Each of the categories K∗(A) and D∗(A) is triangulated.

Let A and B be abelian categories, and let F : A → B be an additive func-
tor. For ∗ ∈ {∅,+,−, b}, F induces Cplx∗(F ) : Cplx∗(A) → Cplx∗(B) by mapping
componentwise. This respects null-homotopy, so it induces K∗(F ) : K∗(A)→ K∗(B).
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Definition Suppose F is left-exact. Then the right derived functor of F (unique
if it exists) consists of a triangulated functor RF : D+(A)→ D+(B), and a morphism
of functors rF : δB ◦K+(F )⇒ RF ◦ δA (the arrow goes between the functors, not the
categories)

K+(A)
K+(F )//

δA
��

K+(B)
rF

t|
δB
��

D+(A)
RF // D+(B)

with the following universal property:

• For any triangulated functor φ : D+(A)→ D+(B), and any morphism of func-
tors ε : δB ◦K+(F )⇒ φ ◦ δA:

K+(A)
K+(F )//

δA
��

K+(B)
ε

u} sssssssss

sssssssss
δB
��

D+(A)
φ // D+(B)

there exists a unique morphism of functors Rε : RF ⇒ φ:

D+(A)

RF
**

φ

44
⇓Rε D+(B)

such that ε = (Rε ∗ idδA) ◦ rF :

K+(A)
K+F //

φ◦δA

--

RF◦δA

��

K+(B)

δB

��

rF

v~

ε

jr

Rε∗idδA

y�

D+(B)

The ∗ in the last equation denotes horizontal composition of natural transforma-
tions, which composes maps on functors between different categories.

There is an analogous definition for left derived functors of right exact functors.
[In fact, LF = R(F op)op, where −op denotes the functor naturally induced on oppo-
site categories. Neither definition actually need the exactness properties, but they
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are necessary in order for the next definition to agree with the usual hyper-derived
functors.]

Definition RiF (−) := H i
D+(B) ◦RF (−). The image lies in B.

Proposition Suppose A has enough injectives, and B is abelian. Then for any
left exact functor F : A → B, the right derived functor RF : D+(A) → D+(B)
exists. [Dually, the left derived functor of a right exact functor exists, given enough
projectives.]

So much for abstract nonsense.

Definition and Theorems for 6 operations in l-adic cohomology

Let S be a notherian, separated, regular scheme of dimension leq1. Let (Sch/S)
be the category of S-schemes which are separated of finite type/presentation over S,
with S-morphisms. Let l be a prime, and assume l is invertible in S. Let Oλ be the
ring of integers in some finite extension Eλ of Ql. Let R = Oλ/λn for some fixed
n ≥ 1. Then R is a finite order torsion local ring with residue characteristic l.

For any X ∈ (Sch/S), we get the topos Xét and the category Shv(Xét, R) which
is abelian and has enough injectives and projectives. We get the derived category
D(Shv(Xét, R)), and Db

c(Xét, R), the full subcategory of Db(Shv(Xét, R)) whose ob-
jects K are such that for all i ∈ Z, H i(K) ∈ Shvc(Xét, R), i.e., complexes of sheaves
with constructible cohomology. Db

c(Xét, R) is triangulated.

One −
L
⊗−. Start from

Shv(Xét, R) × Shv(Xét, R) → Shv(Xét, R)
F G 7→ F ⊗ G

where F ⊗ G is the sheaf associated to the presheaf Xét → (R − mod) given by
U 7→ F(U)⊗ G(U).

If we fix one variable, this functor is right exact in the other, so we get the left
derived functor D−(Xét, R)×D−(Xét, R)→ D−(Xét, R) (actually, we would need to
verify its niceness as a bifunctor first).

Theorem This induces a functor Db
c(Xét, R)×Db

c(Xét, R)
L
⊗→ Db

c(Xét, R).

[Someone asks about the boundedness in the case X = Spec(C), R = Z/l2,
Z/l ⊗R Z/l in degree 0.]

Two RHom(−,−). Start from

Shv(Xét, R)op × Shv(Xét, R) → Shv(Xét, R)
F G 7→ Hom(F ,G)
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where Hom(F ,G) is the the sheaf (not just a presheaf - by descent) Xét → (R−mod)
given by U 7→ HomShv(Uét,R)(F|U ,G|U).

If we fix one variable, the functor is left exact in the other, so we get the right

derived functor D−(Xét, R)op ×D+(Xét, R)
RHom→ D+(Xét, R).

Next week: finiteness statements.

February 11, 2003

No notes (no class?)

February 18, 2003

More abstract nonsense. No l-adic sheaves for a little while.

Proposition-Definition Let C be any category, and let S ⊂Mor(C) be a collection
of morphisms. Then there exists a category C[S−1] and a functor i : C → C[S−1] with
the universal property that:

1. i is the identity on objects.

2. For any morphism f ∈ S, i(f) is an isomorphism in C[S−1].

3. If F : C → E is a functor such that F (S) ⊂ Isom(E), then there exists a
unique functor F : C[S−1]→ E such that F = F ◦ i, i.e., the following diagram
commutes:

C[S−1]
F // E

C

i

OO

F

<<yyyyyyyyyy

C[S−1] is called the localization of C with respect to S.

Example Let A be an abelian category, C = Cplx(A) or K(A), and S = {quasi-
isomorphisms in C}. Then C[S−1] is the derived category D(A) of A.

Definition S ⊂Mor(C) is a localizing class if and only if:

1. idX ∈ S for all X ∈ Ob(C), and S is closed under composition (i.e., S is a
subcategory of C, bijective on objects).

2. For any f ∈Mor(C) and s ∈ S such that

Z

s

��
X

f // Y

, resp.
X

f //

s

��

Y

Z
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there exist g ∈Mor(C) and t ∈ S such that

W
g //

t
��

Z

s

��
X

f // Y

, resp.
X

f //

s

��

Y

t
��

Z
g //W

commute.

3. For any f, g : X → Y in Mor(C), there exists s ∈ S such that sf = sg if and
only if there exists t ∈ S such that ft = gt.

Proposition (Verdier) If S ⊂ Mor(C) is localizing, then C[S−1] has the following
description:

1. C[S−1] has objects = objects [C].

2. A morphism X → Y in C[S−1] is an equivalence class of “roof diagrams”
•

s
~~}}

} f
  @

@@

X Y
with s ∈ S, f ∈Mor(C), where two roofs

•
s
~~}}

} f
  @

@@

X Y
and

•
t
~~}}

} g
  @

@@

X Y

are equivalent if and only if there exists an upper roof giving a commutative

diagram

•
r
��~~

~ h
��@

@@

•
s
~~}}

}
f **TTTTTTTTTTT •

tttjjjjjjjjjjj g
  @

@@

X Y

.

3. idX in C[S−1] is the equivalence class of the “identity roof”
XidX

~~||
| idX

  B
BB

X X

4. Composition of the morphisms

( •
s
~~}}

} f
  @

@@

X Y

)
followed by

( •
t
~~~~

~ g
  @

@@

Y Z

)
is de-

scribed by applying axiom 2 to the diagram
• f
  @

@@
•

t
~~~~

~

Y
to get

•
r
~~||

| h
  B

BB

• f
  @

@@
•

t
~~~~

~

Y

, then

composing to get
•

sr
~~}}

} gh
  @

@@

X Z

From now on, the category A is abelian.

Note that in Cplx(A), S := {quasi-isomorphisms } is not a localizing class.

Proposition In K(A), S := {quasi-isomorphisms in K(A)} is a localizing class, so
K(A)[S−1] is isomorphic to D(A).

Definition Let F : A→ B be a

{
left

right
-exact functor between abelian categories.

A collection R of objects is called adapted to F if and only if:
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1. R is closed under ⊕.

2. F maps exact objects in Cplx±(R) to exact objects in Cplx(B).

3. Any object of A is a

{
sub-

quotient
object of some object of R (i.e., A has enough

R).

Example If F is exact, then Ob(A) is adapted to F .

Regard R as a full subcategory of A. By property 1, R is an additive subcategory.
We get a category K±(R) and an inclusion functor i : K±(R) → K±(A). Let SR =
{f ∈Mor(K±(R)) : i(f) ∈Mor(K±(A)) is a quasi-isomorphism}

Theorem

1. SR is a localizing class.

2. The induced functor K±(R)[S−1
R ]→ D±(A) is an equivalence.

3. The derived functor

{
RF

LF
: D±(A)→ D±(B) exists, and is constructed by:

• Choose an equivalence D±(A)→ K±(R)[S−1
R ].

• Apply K(F ) “term-by-term” to get K±(R)[S−1
R ]→ K±(B).

• Follow by K±(B)→ D±(B).

If A has enough

{
injectives

projectives
, then R = {all

{
injectives

projectives
} is adapted to any

additive functor F : A→ B.

So much for abstract nonsense.

Definitions and theorems of 6 operations functors and l-adic cohomology

Let S be a noetherian separated regular scheme of dimension at most 1 (most
of the time, S = Spec(field)). Let (Sch/S) be the category of S-schemes that are
separated, and of finite type over S. Morphisms are S-morphisms. Let l be a prime
in Γ(S,O×

S ) (i.e., invertible over S). Let Oλ be the ring of integers in some finite
extension Eλ of Ql, with λ ∈ Oλ the uniformizer. Set R = Oλ/λn for some n > 0.

For each X ∈ (Sch/S), we get Xét the small étale site, the abelian category
Shv(Xét, R) which has enough injectives (and enough projectives if and only if dim
X = 0), and a triangulated category D(Xét, R) := D(Shv(Xét, R)).
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Short-term goal We want to define a triangulated subcategory Db
ctf (Xét, R) ⊂

D(Xét, R). b = “bounded complexes”. c = “constructible cohomology”. tf = “of

finite Tor-dimension”. The last requirement is necessary for −
L
⊗ − to work nicely,

and for traces to be well-defined.

We start with

Shv(Xét, R) × Shv(Xét, R) → Shv(Xét, R)
F G 7→ F ⊗ G

where F ⊗ G is the sheaf associated to the presheaf Xét → (R − mod) given by
U 7→ F(U)⊗ G(U).

Definition A sheaf G ∈ Shv(Xét, R) is flat if and only if for any short exact sequence

0→ F ′ → F → F ′′ → 0

in Shv(Xét, R), the sequence

0→ F ′ ⊗ G → F ⊗ G → F ′′ ⊗ G → 0

is exact.

Proposition The collection of flat sheaves is adapted to −
L
⊗−.

We get a left derived functor D−(Xét, R)×D−(Xét, R)
−
L
⊗−−→ D−(Xét, R).

Definition An object K ∈ D−(Xét, R) is of finite Tor-dimension if and only if

there exists n ∈ Z such that for any F ∈ Shv(Xét, R) and any i < n, H i(F
L
⊗K) = 0.

Proposition-Definition Let K ∈ D−(Xét, R). The following are equivalent:

• There exists L ∈ D−(Xét, R) such that Li = 0 for all |i| � 0, Li is flat and
constructible for all i ∈ Z, and K ∼= L in D−(Xét, R) (L is then called a
strictly perfect complex, and K is perfect).

• K is of finite Tor-dimension, and H i(K) ∈ Shv(Xét, R) are constructible for all
i ∈ Z.

Let Db
ctf (Xét, R) ⊂ D−(Xét, R) be the full subcategory whose objects are perfect

complexes. This is a triangulated subcategory.

Move to 6 operations.

One −
L
⊗−.
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Theorem The derived functor D−(Xét, R) ×D−(Xét, R) → D−(Xét, R) induces
Db
ctf (Xét, R)×Db

ctf (Xét, R)→ Db
ctf (Xét, R).

Two RHom. Start from

Shv(Xét, R)op × Shv(Xét, R) → Shv(Xét, R)
F G 7→ Hom(F ,G)

Hom(F ,G) is actually a sheaf.

Lemma Fix F ∈ Shv(Xét, R). Then Hom(F ,−) is left exact.

We get a derived functor RHom(F ,−) : D+(Xét, R) → D+(Xét, R). If we fix
L ∈ D+(Xét, R), then we get a commutative diagram of induced functors:

Shv(Xét, R)op
RHom(−,L) //

((QQQQQQQQQQQQ
D(Xét, R)

K(Xét, R)op

33gggggggggggggggggggggggg
// D(Xét, R)op

77ooooooooooo

We have a “balanced theory”.

We get a bifunctor D(Xét, R)op ×D(Xét, R)
RHom(−,−)−→ D(Xét, R).

Theorem This induces a bifunctor Db
ctf (Xét, R)op ×Db

ctf (Xét, R)→ Db
ctf (Xét, R).

(Hard). The fact that inclusion is fully faithful requires a third description of
D(Xét, R), by killing the cones of quasi-isomorphisms.

Now, let f : X → Y be in Mor(Sch/S).

Three f ∗, “inverse image”. Start with

Shv(Yét, R) → Shv(Xét, R)
F 7→ f ∗F

where f ∗F is the sheaf associated to the presheaf Xét → (R −mod) given by U 7→
lim−→(V,a,b)

F(V ), with the limit taked over all diagrams

U
a //

ét
��

V

ét
��

X
f // Y

Proposition f ∗ is exact.

Hence, we get D(Yét, R)
f∗→ D(Xét, R). There is no L on f ∗, since no derivation

takes place. [Contrast this with the situation for coherent sheaves - there, the inverse
image is defined with a tensor product, so it is not exact.]

84



Theorem By Dévissage, this induces Db
ctf (Yét, R)

f∗→ Db
ctf (Xét, R).

Four Rf∗, “direct image”. Start from

Shv(Xét, R) → Shv(Yét, R)
F 7→ f∗F

where f ∗F is the sheaf (not just a presheaf) Yét → (R − mod) given by V 7→
F(f−1(V ) = X ×f,Y V ).

Lemma f∗ is left exact.

So we get a right derived functor D+(Xét, R)
Rf∗→ D+(Yét, R).

Theorem This induces Db
ctf (Xét, R)

Rf∗→ Db
ctf (Yét, R).

(Very hard. This is the hardest theorem in SGA 4. First prove for f proper, use
proper base change theorem. It’s proved in full generality in SGA 4.5)

Example Let a : X → Spec(C) be the structure map of a complex variety, and R
the constant sheaf of a commutative ring on Spec(C). Then:

H i(Xan, R) ∼= H i(Rf∗f
∗R)

Hi(X
an, R) ∼= H−i(Rf!f

!R)

H i
c(X

an, R) ∼= H i(Rf!f
∗R)

HBM
i (Xan, R) ∼= H−i(Rf∗f

!R)

Thus, we can use this framework to describe ordinary homology and cohomology,
along with cohomology with compact supports, and Borel-Moore homology.

February 25, 2003

Last time, we defined −
L
⊗−, RHom(−,−), f ∗, and Rf∗.

Five Rf!, “direct image with proper support”. First, assume f = j is étale (especially
an open immersion). Define j! : Shv(Xét, R) → Shv(Yét, R) (extension by zero) as
the left adjoint functor to j∗ : Shv(Yét, R)→ Shv(Xét, R).

Proposition This exists: for F ∈ Shv(Xét, R), j!F ∈ Shv(Xét, R) is the sheaf
associated to the presheaf:

Yét → (R−mod)
V 7→

⊕
φ∈HomY (V,X)F(V

φ→ X)

where φ varies over all possible ways of factoring:

V
φ

~~ ��
X

� � j

étale
// Y
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j! is exact, so we get (term-by-term) a functor j! : D(Xét, R) → D(Yét, R) for

X
j→ Y étale.

Theorem (Nagata) Let X
f→ Y be a morphism that is separated and of finite type,

and let Y be noetherian. Then there exists a proper Y -scheme X
f→ Y and an open

immersion X
j
↪→ X such that f = fj.

Basically, any separated finite type morphism can be compatified. Obviously, X
is not unique, for example, we could blow up a point in X \ j(X).

Given a morphism f : X → Y in Sch/S, apply Nagata’s theorem, and get j and
f . Define Rf! : D+(Xét, R)→ D+(Yét, R) as the composition

D+(Xét, R)
j!→ D+(X ét, R)

Rf∗→ D+(Yét, R)

Proposition [SGA 4, Exp XVII, 7.3.5] The functor Rf! is well-defined, and indepen-
dent of choice of j and f (up to canonical isomorphism). (We actually pass to a limit
over all compactifications.) [doesn’t seem necessary]

Theorem Rf! preserves Db
ctf , i.e., it induces Db

ctf (Xét, R)
Rf!→ Db

ctf (Xét, R).

This actually needs to be proved to show that Rf∗ preserves Db
ctf .

Six f !, “extraordinary inverse image”.

Theorem Let f : X → Y be a morphism in (Sch/S). The functor Rf! admits a

right adjoint functor D+(Yét, R)
f !

→ D+(Xét, R), i.e., for any K ∈ D+(Xét, R) and
L ∈ D+(Yét, R), HomD+(Yét,R)(Rf!K,L) ∼= HomD+(Xét,R)(K, f

!L).

This is hard to prove, and it only holds on the level of derived categories, not
for sheaves.

Theorem This induces Db
ctf (Yét, R)

f !

→ Db
ctf (Xét, R)

The proof is by dévissage.

Constant and dualizing sheaves

Define RS = DS := constant sheaf R on Sét ∈ Shv(Sét, R) ↪→
deg 0

Db
ctf (Sét, R).

For X
aX→ S in (Sch/S), define RX := a∗XRS and DX := a!

XDS.

Theorem (Main theorem of SGA 4 and 1
3

of SGA 41
2
) The formalism of 6 operations

holds for {Db
ctf (Xét, R), X ∈ (Sch/S)}.
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Dualizing For X ∈ (Sch/S), define

DX : Db
ctf (Xét, R)

contravariant→ Db
ctf (Xét, R)

− 7→ RHom(−, DX)

We get id→ DX ◦ DX , and this is an isomorphism of functors.

Note Poincaré duality pops out of this formalism. The trace formula does not.

Oλ-sheaves

Recall that Oλ is the ring of integers of a finite extension Eλ of Ql, with λ a
uniformizer. For X a noetherian (⇒ quasi-compact, quasi-separated) scheme, we get
the Oλ-linear abelian category Pro(Shv(Xét,Oλ)): Objects are projective systems
(Fn)n≥1 ∈ Shv(Xét,Oλ) of sheaves of Oλ-modules on Xét, and morphisms are given
by:

Hompro((Fn), (Gm)) := lim←−
m

lim−→
n

HomShv(Xét,Oλ)(Fn,Gm)

[“Infinity for me is on the right side”]

Definition A standard Oλ-sheaf on X is an object (Fn)n≥1 in Pro(Shv(Xét,Oλ)),
such that:

1. For any n ≥ 1, Fn is killed by λn (i.e., Fn “is” an Oλ/λn-sheaf).

2. For any n ≥ 1, Fn is constructible (i.e., Fn ∈ Shvc(Xét,Oλ)).

3. For any n ≥ 1, the transition morphism Fn+1 → Fn in Shv(Xét,Oλ) induces
an isomorphism Fn+1 ⊗Oλ/λn+1 Oλ/λn → Fn.

Definition The category Shvc(X,Oλ) of Oλ-sheaves on X is the full subcategory
of Pro(Shv(Xét,Oλ)) consisting of objects isomorphic to a standard Oλ-sheaf on X.

[Note the subtle difference between Shvc(X,Oλ), which was just defined, and
Shvc(Xét,Oλ), which was defined earlier in terms of the étale site on X.]

We get a functor Shvc(X,Oλ)
−⊗Oλ/λn−→ Shvc(Xét,Oλ/λn).

Definition An Oλ-sheaf is lisse if and only if for any n ≥ 1, F⊗Oλ/λn is lisse (here,
equivalent to locally constant).

Proposition

1. Shvc(X,Oλ) is an Oλ-linear abelian category. It is noetherian (i.e., increasing
sequences of subobjects stabilize). We can’t do good cohomology with it, as it
doesn’t have enough of anything.
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2. Let X be a connected normal scheme, and η → X a geometric point. Then the
functor

{lisse Oλ-sheaves on X} →
{

finitely generated Oλ-modules
with continuous π1-action

}
F 7→ Fη := lim−→n≥1

(F ⊗Oλ/λn)η

is an equivalence of categories.

3. If F ∈ Shvc(X,Oλ) is an Oλ-sheaf, then there exists a finite partition X =∐
i∈I Xi, where each Xi is locally closed, such that F|Xi is lisse on Xi.

Let X be a complete nonsinguular curve over Fq, and let η
j
↪→ X be the generic

point. We get a diagram:

LisseShvc(η,Oλ)
j∗ //

))

Shv(Xét,Oλ)

Shvc(X,Oλ)
?�

OO

Note that the top left category is equivalent to that of continuous Oλ-representations
of Gal(η/η), and the diagonal map doesn’t exist unless the Galois representation of
a given sheaf is unramified almost everywhere.

(How to make a Galois representation almost everywhere ramified? Take(
µµ ∗
0 1

)
,

and pass to the limit.) ??

Eλ-sheaves

Definition Shvc(X,Eλ) is the quotient of Shvc(X,Oλ) by the thick full subcategory
of torsion objects in Shvc(X,Oλ). This means:

1. We have a functor
Shvc(X,Oλ) → Shvc(X,Eλ)

F 7→ F ⊗ Eλ

2. HomShvc(X,Eλ)(F⊗Eλ,G⊗Eλ) = HomShvc(X,Oλ)(F ,G)⊗OλEλ. This kills torsion.

Propositon The analogues of statements 1, 2, and 3 from the previous proposition
hold.
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Ql-sheaves

Let Ql be an algebraic closure of Ql. For Ql ⊂
finite

Eλ ⊂
finite

Eλ
′ ⊂ Ql we get a

functor
Shvc(X,Eλ) → Shvc(X,Eλ

′)
F 7→ F ⊗ Eλ′

with HomShvc(X,Eλ
′)(F ⊗ Eλ′,G ⊗ Eλ′) = HomShvc(X,Eλ)(F ,G)⊗Eλ Eλ

′.

Definition Shvc(X,Ql) := 2-lim−−−→
Ql ⊂

finite
Eλ⊂Ql

Shvc(X,Eλ)

This means:

1. We have a functor
Shvc(X,Eλ) → Shvc(X,Ql)

F 7→ F ⊗Ql

Which induces isomorphisms

HomShvc(X,Ql)(F ⊗Ql,G ⊗Ql)
∼← HomShvc(X,Eλ)(F ,G)⊗Eλ Ql.

2. We have a canonical isomorphism of functors:

−⊗Ql
∼= (−⊗ Eλ′)⊗Ql

3. Every object in Shvc(X,Ql) is of the form F ⊗Ql for some F ∈ Shvc(X,Eλ).

We need the 2-structure to get a representing category. Otherwise, the transition
functors don’t match up.

Theorem (Main theorem of SGA 5 + ε · Weil II + Ekedahl [reference]) For each
X ∈ (Sch/S), there exist:

• A triangulated category Db
c(X,Oλ) with t-structure (D≤0

c , D≥0
c ). [“the usual

one - not perverse”]

• Triangulated functors Db
c(X,Oλ)

−⊗Oλ/λn−→ Db
ctf (X,Oλ/λn) for all n ≥ 1.

• Canonical objects RX , DX ∈ Db
c(X,Oλ).

• Triangulated functors

– Db
c(X,Oλ)×Db

c(X,Oλ)
−
L
⊗−−→ Db

c(X,Oλ)

– Db
c(X,Oλ)op ×Db

c(X,Oλ)
RHom(−,−)−→ Db

c(X,Oλ)
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For each morphism f : X → Y , there exist:

• Triangulated functors

– Db
c(Y,Oλ)

f∗→ Db
c(X,Oλ)

– Db
c(X,Oλ)

Rf∗→ Db
c(Y,Oλ)

– Db
c(X,Oλ)

Rf!→ Db
c(Y,Oλ)

– Db
c(Y,Oλ)

f !

→ Db
c(X,Oλ)

such that

1. The core of the t-structure (D≤0
c , D≥0

c ) is equivalent to Shvc(X,Oλ), i.e., there

exist functors Shvc(X,Oλ)
deg 0
↪→ Db

c(X,Oλ)
H0

→ Shvc(X,Oλ) composing to au-
toequivalence.

2. Each object of Db
c(X,Oλ) has finite cohomological amplitude, i.e., H i(K) = 0

for |i| � 0.

3. The family of functors Db
c(X,Oλ)

−⊗Oλ/λn−→ Db
ctf (X,Oλ/λn) is conservative,

i.e., objects are isomorphic in the source if and only if they are isomorphic in
the target.

4. The functors −
L
⊗ −, RHom(−,−), f ∗, Rf∗, f

!, and Rf! and the objects RX

and DX “commute” with −⊗Oλ/λn.

5. The formalism of 6 operations holds for {Db
c(X,Oλ)}.

Note Beilinson showed that this triangulated category is in fact equivalent to the
derived category of the abelian category of perverse Ql-sheaves. [reference]

(local monodromy theorem: finite index subgroup of inertia factors through a
unipotent.)

March 4, 2003

Function-sheaf correspondence.

Let S be a base scheme. We get a category (Sch/S), and for each object X,
we defined Db

c(X,Oλ), Db
c(X,Eλ), and Db

c(X,Ql). The 6 operations work for these.
(Deligne’s contribution in Weil II: defined a subcategory of mixed complexes, for
which the 6 operations hold. These have control over the behavior at archimedean
valuations. Lafforgue defined an even smaller category, of plain mixed complexes,
which also have control over non-archimedean valuations. If you want to approach a
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category of mixed motives, you can either try to get smaller and smaller categories
satisfying the 6 operations, or you can try to construct a category from scratch and
hope that it works. The problem with the second approach is that it might not work,
and then you’ve wasted a few years of your life. Voevodsky constructed the right
category for X zero dimensional.)

The vanishing cycles formalism is not a consequence of 6 operations. You need
an additional stability hypothesis.

Supplementary results

From the definition, for U
j
↪→ X étale, we get a morphism of functors j! → j∗ :

Shv(Uét, R) → Shv(Xét, R). In general, for X
f→ Y in (Sch/S), we get another

morphism of functors Rf! → Rf∗ : Db
c(Xét, R) → Db

c(Yét, R), the “forget support”
map.

Proposition If f : X → Y is proper, then Rf! → Rf∗ is an isomorphism.

Theorem (Dévissage) For U
j
↪→
open

X
i←↩

closed
Z a complementary pair, we get distin-

guished triangles:
j!j

! → id→ i∗i
∗ → [1]

i!i
! → id→ (Rj∗)j

∗ → [1]

in Db
c(X,Ql). These are dual, as duality exchanges ∗ with !. The Rs are omitted

when the functors are exact.

Theorem (Poincaré duality) If f : X → Y is smooth of relative dimension d, then
f ! = f ∗[2d](d).

Definition The Tate twist is given by:

Z/ln(1) = µµln in Shv(Xét,Z/ln)
Zl(1) = (µµln)n≥1 with lth power transitions in Shv(X,Zl)

Ql(1),Ql(1) defined by tensor products

F(d) :=

{
F ⊗Ql Ql(1)⊗d d ≥ 1

F ⊗Ql (Ql(1)∨)⊗(−d) d < 0

Theorem (Duality in dimension 1) Suppose X is noetherian, separated, regular, and

of pure absolute dimension 1. Let U
j
↪→ X be an open dense immersion, and let

F ∈ Shvc(U,Ql) be a lisse sheaf on U . Then

DX(j∗F) = j∗(DUF = F∨).
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The j∗F lies in Shv(X,Ql), which is included in Db
c(X,Ql) by the degree 0 map. The

F∨ is the lisse sheaf dual, which corresponds to the contragradient representation
of π1, and the j∗ on the right is not Rj∗, but we take the sheaf j∗ and view it in
Db
c(X,Ql).

This is what will give us the functional equation on a curve.

Theorem (Transcendental comparison) Assume R ∈ {Oλ/λn,Oλ, Eλ,Ql}, and S =

Spec(C). For X
aX→ S = Spec(C), p ∈ Z, define:

Hp(X,R) ∼= Hp(R(aX)∗a
∗
XRS)

Hp(X,R) ∼= H−p(R(aX)!a
!
XRS)

Hp
c (X,R) ∼= Hp(R(aX)!a

∗
XRS)

HBM
p (X,R) ∼= H−p(R(aX)∗a

!
XRS)

These are canonically isomorphic to the classical topological invariants of the analytic
space Xan = X(C). There exists a map φ : Xan → X of locally ringed spaces (this
requires GAGA comparisons) such that for F a sheaf on X, we get Hp(X,F)

∼→
Hp(Xan, φ∗F), i.e., φ is cohomologically trivial. (first for finite coefficient sheaves F .)

Function-sheaf correspondence “A nice function on a scheme is given by a sheaf.”
Let Fq be a finite field of characteristic p, and let Fq be an algebraic closure. We get
a topological isomorphism:

Ẑ→ Gal(Fq/Fq)
1 7→ FrobFq = geometric Frobenius

Choose l 6= p, and fix an algebraic closure Ql of Ql. Let (Sch/Fq) be the category of
separated, finite type schemes over Fq, with Fq-morphisms. For each X ∈ (Sch/Fq),
we get categories Shvc(X,Ql) ⊂ Db

c(X,Ql).

We get the Grothendieck group K(X,Ql) of Db
c(X,Ql): for K ∈ Db

c(X,Ql), let

[K] :=
∑
i

(−1)i[H i(K)] ∈ K(X,Ql)

We have 3 of the 6 operations:

−
L
⊗− : Db

c(X)×Db
c(X)→ Db

c(X) is triangulated, associative, and commutative
(need to have a field, or badness happens). This gives Db

c(X) the structure of an “acu

⊗-category” [in the sense of Saavedra Rivano] with RX a unit object for −
L
⊗−, and

gives K(X,Ql) the structure of a commutative ring.

For f : X → Y in (Sch/Fq), we get f ∗ : Db
c(Y ) → Db

c(x), satisfying the com-

mutativity relation f ∗(L1

L
⊗Y L2) = f ∗L1

L
⊗X f ∗L2. This gives a ring homomorphism

f ∗ : K(Y,Ql)→ K(X,Ql).
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For f : X → Y in (Sch/Fq), we get Rf! : Db
c(X) → Db

c(Y ), with commutativity

relation Rf!(K
L
⊗X f ∗L) = (Rf!K)

L
⊗Y L. This gives an additive group homomorphism

f! : K(X,Ql)→ K(Y,Ql) whose image is an ideal in K(Y,Ql).

For each X ∈ (Sch/Fq), we get Maps(X(Fq),Ql) := the Ql-algebra of all maps
X(Fq)→ Ql under pointwise addition and multiplication.

For f : X → Y in (Sch/Fq) we get a Ql-algebra homomorphism:

f ∗ : Maps(Y (Fq),Ql) → Maps(X(Fq),Ql)
φ 7→ (x 7→ φ(f(x)))

If X is an Artin motive (i.e., a product of field extensions of Fq), then this is its
Ql-realization.

For f : X → Y in (Sch/Fq), we get a Ql-vector space homomorphism:

f! : Maps(X(Fq),Ql) → Maps(Y (Fq),Ql)
φ 7→ (y 7→

∑
x∈X(Fq),f(x)=y φ(x))

whose image is an ideal in Maps(Y (Fq),Ql).

Definition (Function-sheaf correspondence) For each X ∈ (Sch/Fq) and each F ∈
Shvc(X,Ql), define 〈F〉 ∈Maps(X(Fq),Ql) by:

〈F〉 : X(Fq) → Ql

x 7→ 〈F〉(x) := Tr(Frobx;F)

= Tr(FrobFq ∈ Gal(Fq/Fq);x∗F)

Properties

The correspondence induces a homomorphism of abelian groups:

K(X,Ql) → Maps(X(Fq),Ql)
[K] 7→ 〈K〉

and the map K(X,Ql)→
∏

nMaps(X(Fqn),Ql) is injective. For K ′ → K → K ′′ →
[1] a distinguished triangle in Db

c(X), we get 〈K〉 = 〈K ′〉 + 〈K ′′〉. In particular,
〈K〉 =

∑
i(−1)i〈H i(K)〉.

For K1, K2 ∈ Db
c(X), 〈K1

L
⊗ K2〉 = 〈K1〉 · 〈K2〉 in Maps(X(Fq),Ql), i.e., the

additive map K(X,Ql)→Maps(X(Fq),Ql) is a ring homomorphism.

For f : X → Y in (Sch/Fq) and L ∈ Db
c(Y ), 〈f ∗L〉 = f ∗〈L〉 in Maps(X(Fq),Ql),

i.e., we have a commutative square of ring homomorphisms:

K(X,Ql)
〈−〉 //Maps(X(Fq),Ql)

K(Y,Ql)
〈−〉 //

f∗

OO

Maps(Y (Fq),Ql)

f∗

OO
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Theorem (Grothendieck-Lefschetz trace formula) For f : X → Y in (Sch/Fq) and
K ∈ Db

c(X), one has 〈Rf!K〉 = f!〈K〉 in Maps(Y (Fq),Ql), i.e., we have a commuta-
tive square of abelian group homomorphisms:

K(X,Ql)
〈−〉 //

f!
��

Maps(X(Fq),Ql)

f!
��

K(Y,Ql)
〈−〉 //Maps(Y (Fq),Ql)

Example For F ∈ Shvc(X,Ql),∑
i

(−1)iTr(FrobFq |H i
c(X ⊗Fq Fq,F)) =

∑
x∈X(Fq)

Tr(Frobx|Fx).

Special case: take F = Ql constant sheaf. Then:∑
i

(−1)iTr(FrobFq |H i
c(X ⊗Fq Fq,Ql))

= #X(Fq)
= #{fixed points of Frob : X ⊗Fq Fq → X ⊗Fq Fq}

Lefschetz considered the case of X a manifold, with f : X → X such that its graph
intersects transversely with the diagonal.

Proof uses dévissage and 6 operations. Reduce to F lisse, irreducible over X/Fq
curve (Reference: Katz. Gauss Sums, Kloosterman Sums, and Monodromy.) ?

We don’t have the other three operations, because no one knows what function
would give a dualizing complex.

Example over Q
Fix l, and choose z1, z2, · · · ∈ Q. For any n ≥ 1, define

En := Q(all lnth roots of unity, and all lnth roots of z1z
l
2 . . . z

ln−1

n )

Choose ζn, a primitive lnth root of 1, and xn, a lnth root of z1z
l
2 . . . z

ln−1

n , such that
ζ ln = ζn−1 and xln = xn−1 · zn.

For each σ ∈ Gal(En/Q), we get maps ζn 7→ ζ
an(σ)
n for an(σ) ∈ (Z/ln)× and

xn 7→ ζ
bn(σ)
n for bn(σ) ∈ Z/ln. This gives us a homomorphism:

Gal(En/Q) ↪→ GL2(Z/ln)

σ 7→
(
an(σ) bn(σ)

0 1

)
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We get a commutative diagram of (continuous) Galois representations:

Gal(Q/Q)
ρ //

����

GL2(Zl)

����
Gal(En/Q) � � ρn //

����

GL2(Z/ln)

����
Gal(En−1/Q) � � ρn−1 // GL2(Z/ln−1)

If we choose zi to be the primes, they all eventually ramify.

Let S = Spec(Z[1/l]) and let η
j
↪→ S be the generic point. Each ρn “is” a lisse

sheaf [ρn] on η. We get constructible sheaves Fn := j∗[ρn] on S. Note that the
canonical map Fn → Fn−1 does not factor through Fn ⊗Z/ln Z/ln−1. Let Sn be the
normalization of S in En, and Un ⊂ Sn an open subscheme, étale over S. The map
Sn → S is called “generically étale” since is is étale when restricted to some open
subset.

We evaluate at Un−1. Fn−1(Un−1 = (j∗[ρn−1])(Un−1) = [ρn−1](ηn−1) = trivial
(Z/ln−1)⊕2, as the representation is trivial here. However,

Fn(Un−1) = [ρn](ηn−1) = ((Z/ln)⊕2)ρn(Gal(Q/En−1)) = ((Z/ln)⊕2)Kn = ln−1(Z/ln)⊕2,

where

Kn := ker(

{(
a b
0 1

)}
→
{(

a b
0 1

)}
),

with the first group contained in GL2(Z/ln) and the second in GL2(Z/ln−1).

If we evaluate stalks at ramified points x ∈ Sn−1 \Un−1, we find that the stalk of
j! at such a point gives inertia invariants.

March 11, 2003

[Ogus: Can you characterize the image of K in Maps? Cheewhye: That ... is a
dream. If you could do that, it would impress ... at least 10 people in the world.]

Grothendieck’s theory of L- and ε-functions

Let Fq be a finite field of characteristic p, and let Fq be an algebraic closure.
Choose a prime l 6= p, so we get Ql and choose Ql. Let (Sch/Fq) be the category
of (separated finite-type) schemes over Fq, with Fq morphisms. For X ∈ (Sch/Fq),
we get Shvc(X,Ql) ⊂

deg 0
Db
c(X,Ql), and we get K(X,Ql). Recall that if K ∈ Db

c(X),

then [K] =
∑

i(−1)i[H i(K)] ∈ K(X,Ql).

Definition Let X ∈ (Sch/Fq), and F ∈ Shvc(X,Ql). For each x ∈ |X|, we get a map

Specκ(x)
x
↪→ X that is a closed immersion (we use the same letter for the point and the
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map), so we get x∗F , a lisse sheaf on Specκ(x) (note that no constructible non-lisse
sheaves on κ(x) exist). This corresponds to a representation of Gal(κ(x)/κ(x)) on Fx,
i.e., a Ql-representation. Given a choice of isomorphsim κ(x)→ Fq, we get an inclu-

sion Gal(κ(x)/κ(x)) ↪→ Gal(Fq/Fq), taking Frobx := Frobκ(x) to (FrobFq)
deg(κ(x)/Fq).

We get det(1− T · Frobx;F) := det(1− T · Frobx;x∗F) ∈ 1 + T ·Ql[T ].

This is multiplicative in F , so we get homomorphisms of abelian groups:

det(1− T · Frobx;−) : K(X,Ql)→ 1 + T ·Ql[[T ]]

Tr(Frobx;−) : K(X,Ql)→ Ql (coefficient of (−T ))

det(−T · Frobx;−) : K(X,Ql)→ Ql[T
±1]×

(
highest degree term in

inverse char. polynomial

)

Definition Let K ∈ Db
c(X). For x ∈ |X|, the local L-factor of K at x is:

L(K;T ) := det(1− T · Frobx;K)(−1) ∈ 1 + TQl[[T ]]

The Global L-function of K is:

L(X/Fq, K;T ) : =
∏
x∈|X|

L(K;T deg(x))

=
∏
x∈|X|

det(1− T deg(x)Frobx;K)(−1) ∈ 1 + T ·Ql[[T ]]

Theorem (Grothendieck, cohomological interpretation of L-functions)

Let (X
aX→ Spec(Fq)) ∈ (Sch/Fq), and K ∈ Db

c(X,Ql). Then:

L(X/Fq, K;T ) = L(Spec(Fq)/Fq, R(aX)!K;T ) ∈ 1 + T ·Ql[[T ]]

Corollary (Rationality of L-functions)

L(X/Fq, K, T ) =
∏
i

det(1− T · FrobFq , H
i
c(X ⊗Fq Fq, K))(−1)i+1

∈ Ql(T )× ∩ (1 + T ·Ql[[T ]]) ⊂ Ql((T ))×

Proof of Theorem

Remark If V is a finite dimensional Ql vector space and F ∈ EndQl(V ), then:

T
d

dT
log(det(1− TF )(−1)) =

∑
n≥1

Tr(F n)T n ∈ T ·Ql[[T ]]
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For the theorem, we note that

T
d

dT
log(left hand side) =

∑
n≥1

(
∑

x∈X(Fqn )

Tr(Frobx;K))T n

and

T
d

dT
log(right hand side) =

∑
n≥1

(Tr(FrobnFq ;R(aX)!K))T n

By the Grothendieck-Lefschetz trace formula, the coefficients of each T n are equal
(note that we need a characteristic zero cohomology theory to get equality from
equality of logarithmic derivatives).

Hence, we get a group homomorphism:

L(X/Fq,−, T ) : K(X,Ql) → Ql(T )× ∩ (1 + T ·Ql[[T ]]) ⊂ Ql((T ))×

K 7→ det(1− T · FrobFq ;R(aX)!K)(−1)

Definition For
X
aX��

Spec(Fq)
∈ (Sch/Fq), and K ∈ Db

c(X,Ql), the global ε-function

of K is:

ε(X/Fq, K;T ) := det(−T · FrobFq ;R(aX)!K)(−1) ∈ Ql[T
±1]×

Hence, we get a group homomorphism, ε(X/Fq,−;T ) : K(X,Ql)→ Ql[T
±1]×.

Corollary (Functional equation) Let
X
aX��

Spec(Fq)
∈ (Sch/Fq) be proper, and let K ∈

Db
c(X,Ql). Then:

L(X/Fq, K;T ) = ε(X/Fq, K;T )L(X/Fq,DK;
1

T
) ∈ Ql(T )×

Proof The left side can be analyzed using tools as above. By definition,

L(X/Fq,DK;T ) = det(1− T · FrobFq ;R(aX)!DK)(−1),

and R(aX)!DK = DR(aX)∗K = DR(aX)!K. Hence, we reduce to the case of X =
Spec(Fq), andK a lisse sheaf of rank 1 (because Fq has abelian absolute Galois group).
Equality then amounts to

(1− αT )−1 = (−αT )−1(1− α−1(
1

T
))−1,
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which is true.

Note X need not be a curve.

Deligne’s theory of weights: mixed complexes

Let X ∈ (Sch/Fq), and F ∈ Shvc(X,Ql).

Definition For each closed point x ∈ |X|, the eigenvalues of Frobx acting on F
are the reciprocals of roots of det(1−T ·Frobx;F) (as a multiset in Ql). Let ι : Ql

∼→ C
be an isomorphism of fields. Say F is pointwise ι-pure of weight w ∈ R if and

only if for all x ∈ |X|, and any α ∈ {eigenvalues of Frobx acting on F} ⊂ Ql
×
, one

has |ια|C = (#κ(x))w/2. Say F is pointwise pure of weight w ∈ Z if and only if
for any isomorphism ι : Ql → C of fields, F is pointwise ι-pure of weight w. Say F
is mixed of weight ≤ w ∈ Z if and only if there exists a finite filtration of F by
subsheaves, such that the successive subquotients are pointwise pure of weight ≤ w.

Pure objects are difficult to construct. Easy ones are constant sheaves and Tate
twists of them, e.g. for Ql(1), Frobx acts by q−1 = q−

2
2 , so it has weight −2. Deligne

says that the existence of interesting pure objects is one of the deepest concepts in
mathematics. It’s even more difficult to construct non-pure objects, because they
don’t exist (Lafforgue). ?

Recall (SGA 4, 4.5, 5, etc.) For X ∈ (Sch/Fq), −
L
⊗− sends Db

c ×Db
c into Db

c, and
RHom sends (Db

c)
op ×Db

c into Db
c. For f : X → Y in (Sch/Fq), f ∗, f !, Rf∗ and Rf!

send Db
c to Db

c.

Definition For X ∈ (Sch/Fq) and w ∈ Z, let Db
m(X,Ql) be the full triangulated

subcategory of Db
c(X,Ql) consisting of all K ∈ Db

c(X,Ql) such that for all i ∈ Z,
H i(K) ∈ Shvc(X,Ql) is mixed.

Db
≤w(X,Ql) is the full triangulated subcategory of Db

m(X,Ql) consisting of K ∈
Db
m(X,Ql) such that for all i ∈ Z, H i(K) is mixed of weight ≤ w + i.

Db
≥w(X,Ql) is the full triangulated subcategory of Db

m(X,Ql) consisting of K ∈
Db
m(X,Ql) such that DK ∈ Db

c(X,Ql) lies in Db
≤−w(X,Ql).

Note If K ∈ Db
m, a priori DK need not be in Db

m.

Theorem (Deligne, Weil II) For any w,w′ ∈ Z

• For any X ∈ (Sch/Fq),

– −
L
⊗− sents Db

≤w ×Db
≤w′ into Db

≤w+w′ .

– RHom sends (Db
≤w)op ×Db

≥w′ into Db
≥−w+w′ .
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• For f : X → Y in (Sch/Fq),

– f ∗ and Rf! send Db
≤w into Db

≤w.

– Rf∗ and f ! send Db
≥w into Db

≥w.

Proof for
L
⊗ is trivial. The proof for Rf! is the main theorem of Weil II, and uses

local monodromy. The proof for Rf∗ follows from Rf!, and is mostly dévissage.

Corollary The triangulated categories {Db
m(X,Ql) : X ∈ (Sch/Fq)} satisfy the

formalism of six operations.

Corollary If f : X → Y is a proper morphism, and K ∈ Db
m(X,Ql) is pure of

weight w ∈ Z (i.e., K ∈ Db
≤w ∩Db

≥w), then Rf!K = Rf∗K ∈ Db
m(Y,Ql) is also pure

of weight w.

Corollary (Weil’s conjecture: Riemann hypothesis) Let X/Fq be a proper smooth
variety over Fq. Then for any i ∈ Z, the polynomial det(1 − T · FrobFq ;H

i(X ⊗Fq

Fq,Ql)) can be written as
∏

i(1− α
(i)
j T ), where α

(i)
j ∈ Ql are algebraic numbers, and

for any | − | ∈ |Q(α
(i)
j )|∞ archimedean absolute value of Q(α

(i)
j ), |α(i)

j | = qi/2.

Why is this called the Riemann hypothesis? The zeta function is given by

Z(X/Fq;T ) =
∏
i

det(1− T · FrobFq ;H
i
c(X ⊗Fq Fq,Ql))

(−1)i+1

For example, with curves we have the weight distribution (1)
(0)(2)

. We can substitute

q−s for T . fix

Proof On X, we have the constant sheaf Ql[0] ∈ Db
≤0(X,Ql), and D(Ql[0]) =

Ql[2d](d) ∈ Db
≤0 by Poincaré duality, as X is smooth of relative dimension d. This

means Ql[0] is pure of weight 0 on X. We get R(aX)!Ql[0] = R(aX)∗Ql[0] is also
pure of weight 0 on Db

m(Spec(Fq),Ql), so for any i ∈ Z, any α ∈ {eigenvalues of
FrobFq acting on H i

c(X ⊗Fq Fq,Ql)}, and any field isomorphism ι : Ql → C, one has
|ια|C = qi/2. Thus, α is necessarily algebraic, and the conclusion holds.

March 18, 2003

L- and ε-functions on curves Let k be a finite field of order q and characteristic p.

Let X/k be a proper smooth connected curve over k, and let η
j
↪→ X be its generic

point (note: j is not necessarily of finite type). Let F = κ(X) = κ(η) be the function
field. Choose a prime l 6= p and an algebraic closure Ql of Ql, so we get Db

c(X,Ql)
and K(X,Ql) as before. Choose a separable algebraic closure F of F , equivalently a

geometric generic point η → η
j
↪→ X.
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We get an equivalence of categories: LisseShv(η,Ql)
η
∼→ Repfin(Gal(F/F ),Ql)

via L 7→ (Lη,monodromy action). We also get a functor j∗ : LisseShv(η,Ql) →
Shv(X,Ql) := Pro(Shv(X,Z/ln))⊗Ql.

Definition A

{
lisse Ql-sheaf L on η

continuous representation σ of Gal(F/F )
is almost everywhere

unramified if and only if

{
j∗L
j∗σ

is constructible on X, i.e., lies in Shvc(X,Ql) ⊂

Shv(X,Ql).

In this case, let Sσ = SL ⊂ |X| be the smallest subset such that (j∗L)|X\S is lisse

(i.e., the set of ramified places of

{
L
σ

).

Definition The

{
global L-function

global ε-function
of an almost everywhere unramified Galois

representation σ ∈ Repfin(Gal(F/F ),Ql) is:

L(σ;T ) := L(X/k, j∗σ;T ) =
∏
x∈|X|

det(1− T deg(x)Frobx, x∗j∗σ)

ε(σ;T ) := ε(X/k, j∗σ;T ) = det(−T · Frobk;R(aX)!(j∗σ))

Why j∗ and not Rj∗? Because of perverse sheaves. They are both artinian and ?
noetherian. Constructible sheaves are not necessarily artinian (remove one point and
iterate j!). Also, perverse sheaves “span” Db

c, in the sense that any object in Db
c can

be reached by iterated extensions of perverse sheaves. They also play nicely with
duality. [ref. [BBD]]

If L is a lisse sheaf on U regular of dimension d, with U
j
↪→ X locally closed, then

L[d] is perverse on U . For any perverse sheaf P on U , j!∗(P ) is perverse on X. This
is intermediate extension. If X is a curve, then j!∗ = j∗.

Artin already defined L-functions this way, with x∗j∗σ written σIx , i.e., inertia
invariants.

Note that R(aX)!(j∗σ) = R(aX)∗(j∗σ), but since j∗ is not Rj∗, we cannot compose
these to R(aXj)∗σ.

Theorem (Rationality and functional equation) Suppose σ ∈ Repfin(Gal(F/F )) is
almost everywhere unramified.

1. The global L-function is a rational function.
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2. One has L(σ;T ) = ε(σ;T )L(σ∨ 1
qT

).

For curves, this becomes

L(σ;T ) =
det(1− T · Frobk;H1(X ⊗ k, j∗σ))

det(1− T · Frobk;H0(X ⊗ k, j∗σ)) · det(1− T · Frobk;H2(X ⊗ k, j∗σ))

in Ql(T )× ∩ (1 + TQl[[T ]]) ⊂ Ql((T ))×.

Note that H i is pure of weight i. For α an eigenvalue of Frob on H0, |α| = qwt/2 =
1. q−s = 1/α gives Re(s) = w/2, so poles have real part 0, 1 and zeroes have real
part 1/2. If σ is pure of weight 0, then j∗σ ∈ Shvc(X,Ql) ⊂ Db

≤0 ∩Db
≥0 ⊂ Db

c(X,Ql).
Dualize, get D(j∗σ) = j∗(σ

∨) ∈ Db
≤0.

Recall from last time that for X proper,

L(X/Fq, K;T ) = ε(X/Fq, K;T )L(X/Fq,DK;
1

T
).

Observe that by duality, we have

L(X/Fq,D(j∗σ);T ) = L(X/Fq, j∗(σ∨)[2](1);T )

= L(X/Fq, j∗σ∨;
1

q
T )

since the shift by 2 does nothing, and the Tate twist divides by q. Thus,

L(X/Fq,D(j∗σ);
1

T
) = L(X/Fq, j∗σ∨;

1

qT
).

Rankin-Selberg tries to hard-wire � into L-functions. L(π � π′;T ) should be
L(π, π′;T ). These should correspond to σ ⊗ σ′. We can restrict σ to σx, a represen-
tation of the local decomposition group ∆x. [What was he getting at?] ?

Euler-Poincaré characteristics on curves Let k be a perfect field of characteristic
p ≥ 0. Let X, η, j, F , and l be as above.

For each x ∈ |X|, choose a separable algebraic geometric point x → x ∈ X. We
get:

strict henselization x

��

∈ X(x)

��

3 ηx

��

max.
unr. ext. ((R

RRRRRRRR ηx
choose sep.

geom. pt.
oo

F(x) = κ(ηx)
� � // Fx

henselization x ∈ Xx

��

3 ηx

��

decomp.

field ))RRRRRRRRR

F(x) = κ(ηx)

��

///o Fx

x ∈ X 3 η F
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From the Galois extension

ηx
Ix //

Dx
��

ηx

��
ηx

we get the exact sequnce

1 // Ix // Gx
// Gal(κ(x)/κ(x)) //

∼=
��

1

π1(ηx, ηx) π1(ηx, ηx) Ẑ

We also get an exact sequence for inertia:

1 // Px // Ix
t // Ẑ(1)′(k) // 1

where Px is the wild inertia group, which is the pro-p-Sylow subgroup of Ix.
Ẑ(1)′(k) is the tame quotient, defined as lim←−N µµN(k) with the limit taken over

all N satisfying (N, p) = 1. Here, k = Γ(x,Ox). Incidentally, the map t has a nice
formula.

For x ∈ |X| and F ∈ Shvc(X(x),Ql), we get the local monodromy of F , defined

as Fηx ∈ LisseShv(ηx)
∼→ Rep(Gx,Ql), and we get the fiber of F at x, defined as

Fx ∈ LisseShv(x)
∼→ Rep(Gal(κ(x)/κ(x))).

This gives us the generic rank rηx(F) := rank of Fηx , and the fiber rank
rx(F) := rank of Fx. These are additive in F , so we get homomorphisms rηx , rx :
K(X(x),Ql)→ Z, since we can describe ranks of complexes via alternating sum.

If F ∈ Shvc(X,Ql), then for any x ∈ |X|, rηx(F|X(x)
) is constant, so we define

this to be rη(F), the rank of Fη. This gives us a homomorphism rη : K(X,Ql)→ Z.

Fix x ∈ |X|. We have an upper ramification filtration on Ix:

Ix = I(0)
x ⊃ I(λ)

x ⊃ I(λ′)
x

for 0 ≤ λ ≤ λ′ in R≥0 (ref. Serre, Local Fields). For each λ ≥ 0, we define

I(λ+)
x :=

⋃
ε>0

I
(λ+ε)
x ⊂ I

where the overline indicates closure in I. We have the following properties:

• Each Iλx is a closed normal subgroup of Ix.

• I(λ+)
x ⊂ I

(λ)
x .
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• I(0+)
x = Px

•
⋂
ε>0 I

(λ−ε)
x = I

(λ)
x for all λ > 0 (left continuity).

•
⋂
λ>0 I

(λ)
x = {1}.

Lemma Let W ∈ Rep(Px,Ql). Then the action of Px factors through a finite quo-
tient.

This is because the automorphism group of a Ql vector space has a pro-l open
subgroup. As a consequence, I

(λ)
x ⊂ Px acts trivially for λ� 0, and W is semisimple

as a Px representation.

Definition Let W ∈ Rep(Px,Ql) be an irreducible representation. Then there

exists a unique λ ∈ R≥0 such that W I
(λ)
x = 0 and W I

(λ+)
x = W . This λ is called the

slope, or break of W .

In general, if W is not irreducible, the slopes of W is the set∧
(W ) = {λ ∈ R≥0 : λ is a slope of an irreducible piece of W}

so we get the slope decomposition for W :

W =
⊕

λ∈
V

(W )

Wλ ∈ Rep(Px,Ql)

where Wλ is the sum of all irreducible parts of W with slope λ. This smells like an
isotypic decomposition.

Definition For W ∈ Rep(Px,Ql), the Swan conductor of W is:

Swan(W ) :=
∑

λ∈
V

(W )

λ · rank(Wλ) ∈ R≥0

For W ∈ Rep(Ix,Ql), Swan(W ) := Swan(W |Px).

Example Let W ∈ Rep(Ix). Then Swan(W ) = 0 if and only if Px acts trivially if
and only if W is tame.

Theorem (Hasse-Arf) Let W ∈ Rep(Ix,Ql). Then the slopes of W are all rational
numbers, and for any λ ∈

∧
(W ), λ·rank(Wλ) is an integer. In particular, Swan(W ) ∈

Z≥0.

Definition For x ∈ |X| and F ∈ Shv(X(x),Ql), the Swan conductor of F at x is:

sx(F) := Swan(Fηx) ∈ Z≥0.
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We get sx : K(X(x),Ql)→ Z.

Definition Fix x ∈ |X| and F ∈ Shvc(X(x),Ql). The Artin conductor of F at x
is:

ax(F) = rηx(F)− rx(F) + sx(F) ∈ Z.
We get ax : K(X(x),Ql)→ Z. For example, if F is lisse on X(x), then ax(F) = 0.

Definition For K ∈ Db
c(X,Ql), the Euler-Poincaré characteristic of K is:

χ(K) := rank(R(aX)!K ∈ Db
c(Spec(k),Ql))

=
∑
i

(−1)idimQlH
i
c(X ⊗k k,K)

We get χ : K(X,Ql)→ Z.

Note that aX above denotes the structure morphism to Spec(k), not the Artin
conductor.

Theorem (Grothendieck-Néron-Ogg-Shafarevich Euler-Poincaré characteristic for-
mula – Raynaud says that Grothendieck’s name is the only one that really belongs)

Let X/k be a proper smooth connected curve over a perfect field k. Let K ∈
Db
c(X,Ql). Then:

χ(K) = χ(Ql) · rη(K)−
∑
x∈|X|

deg(x)ax(K)

Here, Ql is the constant sheaf, and we can write χ(Ql) = c(2 − 2g), since c =
dimk(H

0(X ⊗k k,OX⊗kk) and cg = dimkH
1(X ⊗k k,OX⊗kk).

March 25, 2003

No notes (spring break)

April 1, 2003

Local ε-factors on curves

Let k be a finite field of order q and characteristic p. Let X/k be a proper smooth
connected curve over k, and let F = κ(X) be its function field. Fix a nontrivial
additive character ψ0 : k → R/Z. [We use R/Z instead of U(1) so we don’t have to
choose a square root of minus one.] Recall [Oct 11 lecture] that for any x ∈ |X| the
following diagram commutes:

Homtop. ab. gp.(AF/F,R/Z) // Homtop. ab. gp.(Fx,R/Z)

Ω1
F/k

∼=

OO

// Ω1
Fx/κ(x)

∼=

OO
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The bottom left term is a one dimensional F vector space, with the discrete topology.
The maps are defined as follows:

ψ:=(a 7→ψ0(
P
x∈|X|Trκ(x)/k(resx(ax·ωx))))

� // ψx:=(ax 7→ψ0(Trκ(x)/k(resx(ax·ωx))))

ω
_

OO

� // ωx
_

OO

Souped up residue theorem: If ψx ∈ Hom(Fx,R/Z) corresponds to ωx ∈ Ω1
Fx/κ(x)

,

then the local conductor c(ψx) := max{c ∈ Z : ψX |m−cx is trivial} ∈ Z is equal to
vx(ωx) ∈ Z, where vx(fdπx) = vx(f) when πx is a uniformizer and f ∈ F×

x . If
ψ ∈ Hom(AF/F,R/Z) is nontrivial, then (here’s the assertion)∑

x∈|X|

deg(x) · c(ψx) =
∑
x∈|X|

deg(x)vx(ωx)

is a constant, equal to c(2g−2), where c = dimkH
0(X⊗k,OX) and c·g = dimkH

1(X⊗
k,OX) (Riemann-Roch).

Choose a prime l 6= p. We get Shvc(X,Ql) ⊂ Db
c(X,Ql) and K(X,Ql). Let η be

the generic point of X. For each x ∈ |X|, we have the henselization: x ∈ X(x) 3 ηx.
We get Shvc(X(x),Ql), D

b
c(X(x),Ql), and K(X(x),Ql).

Any nonzero ωx ∈ Ω1
Fx/κ(x)

corresponds to a nonzero ψx ∈ Hom(Fx,R/Z).

We want to define homomorphisms ε(X(x),−, ωx;T ) : K(X(x),Ql) → Ql[T
±1]×

called the local ε-factor of − with respect to

{
ψx

ωx
such that one can prove the

global statement (for any K ∈ Db
c(X,Ql)):

ε(X/k,K;T ) := det(−T · Frobk, R(aX)!K)(−1)

is equal to ∏
x∈|X|

ε(X(x), K|X(x)
, ωx;T

deg(x))

in Ql[T
±1]×.

Local conditions We already have homomorphisms for all x ∈ |X|:

vη(−) = vηx(−) : K(X,Ql)→ Z generic rank

vx(−) : K(X,Ql)→ Z fiber rank at x

sx(−) : K(X,Ql)→ Z Swan conductor at x

ax(−) : K(X,Ql)→ Z Artin conductor (= total rank drop)
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Definition The local conductor of x with respect to ωx is:

a(X(x),−, ωx) := ax(−) + rη(−)vx(ωx)

This is a homomorphism K(X(x),Ql)→ Z.

Local constant

Let Fx be the completion of F at x, and let C be an algebraic closure of R. Recall
Tate’s thesis [October 4]: He associated to every pair (χx, ψx), where χx : F×

x → C×

is a quasi-character and ψx : Fx → R/Z is a nontrivial additive character, an ε-factor
ε(χx, ψx;T ) ∈ C[T±1]× which has the form:

ε(χx, ψx;T ) =: qc(ψx)/2x · b(χx, ψx) · T a(χx,ψx)

where qx = #κ(x), a(χx, ψx) ∈ Z, and b(χx, ψx) ∈ C×.

Definition-Theorem (Deligne-Langlands) Let H be the set of pairs (S, ω), where
S = {η, s} is a henselian discrete valuation scheme (i.e., a “trait”, French for “dash”
or “hyphen”) of equal characteristic p > 0 with a finite residue field over k, and
ω ∈ Ω1dκ(η) \ {0}. Fix an isomorphism ι : Ql

∼→ C. Then there exists a unique

collection of homomorphisms {b(S,−, ω) : K(S,Ql)→ Ql
×}(S,ω)∈H} satisfying:

1. If K ∈ Db
c(S,Ql) is supported on closed points in S (i.e., Kη = 0), then

b(S,K, ω) = det(−Frobκ(S);K)(−1).

2. If η′/η is a finite separable extension, and S ′
f→ S is the normalization of S in

η′, and K ′ ∈ Db
c(S

′,Ql) is such that vη′(K
′) = 0 ∈ Z, then b(S,Rf!K

′, ω) =
b(S ′, K ′, f∗ω) ∈ Ql.

3. If L ∈ LisseShv(η,Ql) is of rank one (i.e., it is a multiplicative character by

class field theory), and χ : κ̂(η)
×
→ Ql

×
is the (unique) quasi-character of κ̂(η)

×

such that for any geometric point η → η the following composition is χ:

κ̂(η)
×

LCFT

∼= //W (η/η)ab � � // Gal(η/η)ab // GL(Lη)
∼= // Ql

×

Gal(η/η)

OOOO
[L]

monodromy rep.

::vvvvvvvvvv

and if ψ : κ̂(η)→ R/Z is the nontrivial additive character of κ̂(η) corresponding
to ω, then

b(S, j∗L, ω) = ι−1b(ι ◦ χ, ψ) ∈ Ql
×

where the b on the right is given by Tate’s thesis.
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Definition The local ε-factor with respect to ωx is:

ε(X(x),−, ωx;T ) := qrηx (−)·vx(ωx)/2
x · b(X(x),−, ωx) · T a(X(x),−,ωx)

This is a homomorphism: K(X(x),Ql)→ Ql[T
±1]×.

Theorem (Laumon’s product formula) Let X/k be a proper smooth connected curve
over a finite field k, and let F be its function field. Let ω ∈ Ω1

F/k be a nonzero

meromorphic 1-form on F . Then for any K ∈ Db
c(X),

ε(X/k,K;T ) := det(−T · Frobk;R(aX)!K)(−1)

=
∏
x∈|X|

ε(X(x), K|X(x)
, ωx;T

deg(x))

This gives an equality of homomorphisms K(X,Ql) → Ql[T
±1]×. The values

have the form qc · b · T a. Equating a amounts to the GNOSEP characteristic formula
[March 18], and equating c gives Riemann-Roch [Today].

* Now we have enough to state the structure of Lafforgue’s proof (Deligne’s
induction principle).

Let k be a finite field of order q and characteristic p. Let X/k be a proper smooth
connected curve over k (for the proof, without loss of generality, we assume X/k is
geometrically connected). Let F = κ(X) be the function field of X, and A its ring of
adèles. Let C be an algebraic closure of R. For each r ≥ 1,

Ar(F,C) :=


isomorphism classes of cuspidal automorphic

irreducible complex representations of GLr(A)
whose central quasi-character is of finite order


For each π ∈ Ar(F,C), let Sπ ⊂ |X| be the finite set of places ramified for π, and

for all x ∈ |X| \ Sπ, let {z1(πx), . . . , zr(πx)} ⊂ C× be the Satake parameters of πx
(also called Hecke eigenvalues of πx).

Choose a prime l 6= p, and let Ql be an algebraic closure of Ql. Choose a separable
algebraic closure F of F , and get Gal(F/F ). For r ≥ 1,

Gr(F,Ql) :=


isomorphism classes of irreducible continuous representations

of Gal(F/F ) on a Ql-vector space of rank r, almost
everywhere unramified, whose determinant is of finite order


For each σ ∈ Gr(F,Ql), let Sσ ⊂ |X| be the finite set of ramified places for σ. For

any x ∈ |X| \ Sσ, let {z1(σx), . . . , zr(σx)} ⊂ Ql
×

be the Frobenius eigenvalues of
σx.
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Fix a nonzero ψ ∈ Homtop. ab. gp.(A/F,R/Z) corresponding to a nonzero ω ∈
Ω1
F/k. For each pair (π, π′) ∈ Ar(F,C)×Ar′(F,C) for r, r′ ≥ 1 and for each x ∈ |X|,

we have local L- and ε-factors:

• L(πx × π′x;T ) ∈ C(T )× ∩ (1 + T · C[[T ]]) ⊂ C((T ))×

• ε(πx × π′x, ψx;T ) ∈ C[T±1]× ⊂ C((T ))×

These are associated to πx, π
′
x, and ψx via Rankin-Selberg convolutions (Jacquet,

Piatetski-Shapiro, and Shalika). For each pair (σ, σ′) ∈ Gr(F,Ql) × Gr
′
(F,Ql) for

r, r′ ≥ 1, and for each x ∈ |X|, we have local L- and ε-factors:

• L(σx ⊗ σ′x;T ) ∈ Ql(T )× ∩ (1 + T ·Ql[[T ]]) ⊂ Ql((T ))×

• ε(σx ⊗ σ′x;ωx;T ) ∈ Ql[T
±1]× ⊂ Ql((T ))×

associated to σx ⊗ σ′x and ωx according to Grothendieck and Deligne-Langlands.

Definition Let ι : Ql
∼→ C be an isomorphism of fields. One says that π ∈ Ar(F,C)

and σ ∈ Gr(F,Ql) are in Langlands correspondence with respect to ι if and
only if for any x ∈ |X| \ Sπ \ Sσ, {z1(πx), . . . , zr(πx)} = ι{z1(σ(x), . . . , zr(σx)} ⊂ C.

Definition For r ≥ 1 and ι : Ql
∼→ C, define the following assertions:

• (A ← G)rι : For any σ ∈ Gr(F,Ql), there exists a unique π ∈ Ar(F,C) such that
π and σ are in Langlands correspondence with respect to ι, and Sπ ⊂ Sσ.

• (A → G)rι : For any π ∈ Ar(F,C), there exists a unique σ ∈ Gr(F,Ql) such that
π and σ are in Langlands correspondence with respect to ι, and Sσ ⊂ Sπ.

• (Lε)rι : For any π ∈ Ar(F,C) and σ ∈ Gr(F,Ql) in Langlands correspondence
with respect to ι, any r′ satisfying 1 ≤ r′ ≤ r, any π′ ∈ Ar′(F,C) and σ′ ∈
Gr′(F,Ql) in Langlands correspondence with respect to ι, and any x ∈ |X|, one
has L(πx × π′x;T ) = ιL(σx ⊗ σ′x;T ) in C(T )× ∩ (1 + T · C[[T ]]), and ε(πx ×
π′x, ψx;T ) = ιε(σx ⊗ σ′x, ωx;T ) in C[T±1]×.

• (RP )r: For any π ∈ Ar(F,C) and any x ∈ |X|, πx ∈ Repadm(GLr(Fx),C) is
tempered.

• (P )rι : For any σ ∈ Gr(F,Ql) and x ∈ |X| \ Sσ, σx ∈ Repfin. cts.(Gal(Fx/Fx),Ql)
is pointwise ι-pure of weight 0 (i.e., |ιzi(σx)|C = 1 for all i = 1, . . . , r).

Proposition For any ι : Ql
∼→ C, (RP )1 and (P )1

ι hold.
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Theorem (Class field theory for X/k) For any ι : Ql
∼→ C, (A ← G)1

ι , (A → G)1
ι ,

and (Lε)1
ι hold.

The first two were covered on October 4. (Lε)1
ι needs treatment of the ramified

places (next time).

Theorem (Part 1 of Deligne’s principle of induction) Fix r ≥ 2 and ι : Ql
∼→ C.

Assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (Lε)r
′
ι hold. Then (A ← G)r)ι

holds.

Theorem (Lafforgue) Fix r ≥ 2 and ι : Ql
∼→ C. Assume for any r′ with 1 ≤ r′ < r,

(A ← G)r′ι , (A → G)r′ι , and (P )r
′
ι hold. Then (A → G)rι holds. Assume furthermore

that (A ← G)rι holds. Then (P )rι holds.

Theorem (Part 2 of Deligne’s principle of induction) Fix r ≥ 2 and ι : Ql
∼→ C.

Assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (RP )r
′
ι hold. Assume furthermore

that (A → G)rι and (P )rι hold. Then (RP )r and (Lε)rι hold. (Actually, we get (RP )r,
and then (RP )r implies (Lε)rι .)

Note that (A → G)rι and (P )rι together imply (RP )r at all unramified places.

April 8, 2003

[Q. What about number fields? A. Only the one dimensional case is fully known,
and not much else. Shimura-Taniyama is a special case of (A ← G)2

ι .]

Today we cover Deligne part 1.

Assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (Lε)r
′
ι hold. Let σ ∈ Gr(F,Ql)

be given, so we get Sσ ⊂ |X|, the finite set of ramified places. We want π ∈ Ar(F,C)
such that Sπ ⊂ Sσ, and in Langlands correspondence with respect to ι with σ.

We use the converse theorem to construct a candidate representation.

For each x ∈ |X|\Sσ, σx ∈ Rep(Gal(F/F ),Ql) is unramified, so we get Frobenius

eigenvalues {z1(σx), . . . , zr(σx)} ⊂ Ql
×
. Define πx ∈ Repadm(GLr(Fx),C) to be the

irreducible admissible unramified representation of GLr(Fx) with Satake parameters
{z1(πx), . . . , zr(πx)} = ι{z1(σx), . . . , zr(σx)} ⊂ C×.

Remark These need not be generic, but are “induced of Whittaker type”, so we
can apply Rankin-Selberg theory and the converse theorem. Recall that “generic”
means “has a Whittaker model”. All permutations of q

r−1
2 z1(πx), q

r−3
2 z2(πx), . . . give

distinct values. why?

What about ramified places? Throw in some garbage (nice garbage, though).

For x ∈ Sσ, choose πx ∈ Repadm(GLr(Fx),C) to be any irreducible admissible
generic representation of GLr(Fx), whose central character χπx ∈ Hom(F×

x ,C×) is

in local CFT correspondence with respect to ι with det(σx) ∈ Hom(Gal(Fx/Fx),Ql
×
).
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We provisionally define

π =
res⊗
x∈|X|

πx ∈ Repadm(GLr(A),C).

This is irreducible, admissible, and its central character χπ =
⊗

x∈|X| χπx is in global

CFT correspondence with respect to ι with det(σ).

Let χ =
⊗

x∈|X| χx ∈

{
G1(F,Ql)

A1(F,C)
. (Why twist by ramified characters? You get

more information.)

Key lemma Suppose χ is sufficiently ramified at all of the places x ∈ Sσ.
then for any r′ > r and any π′ ∈ Ar′(F,C) with Sπ′ disjoint from Sσ, one has:{
L(χπ × π′;T )

L(χ−1π∨ × π′∨;T )
lie in 1 + TC[T ], i.e., they are polynomials, and satisfy the

functional equation:

L(χπ × π′;T ) = ε(χπ × π′;T )L(χ−1π∨ × π′∨;T ) ∈ C[T±1]

Proof Later.

Assume the key lemma for now. By the converse theorem, after adjusting the
factors πx only for x ∈ Sσ, we get π̃ (the central character of χπ is χ · χπ). The
representation χ̃π of GLr(A) is automorphic, so π̃ is also automorphic (untwist). By
construction, Sπ ⊂ Sσ.

It remains to show that π̃ is cuspidal. Suppose it is not (but is still automorphic).
By Langlands’ classification, there exists a nontrivial partition r = r1 + · · ·+ rk, and
there exist cuspidal automorphic representations π1, . . . , πk of GLr1(A), . . . , GLrk(A)
respectively, all with Sπi ⊂ Sπ ⊂ Sσ, such that for all x ∈ |X| \ Sπ,

{z1(πx), . . . , zr(πx)} =
k∐
i=1

{z1(π
i), . . . , zri(π

i)} ⊂ C

By (A → G)riι , for each i = 1, . . . , k, there exists σi ∈ Rep(Gal(F/F ),Ql) irreducible
of rank ri, in Langlands correspondence with respect to ι with πi. Then

⊕k
i=1 σ

i is
rank r, reducible, and has the same set of Frobenius eigenvalues at every x ∈ |X| \Sσ
as our given irreducible σ. By Čebotarev density, they are isomorphic, and this is a
contradiction.

Proof of key lemma We have r′ < r and π′ ∈ Ar′(F,C) with Sπ′ disjoint from Sσ.
By (A → G)r′ι , there exists σ′ ∈ Gr′(F,Ql) in Langlands correspondence with respect
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to ι with π′, satisfying Sσ′ = Sπ′ . We have χ, which will be fixed at the end of the
proof. π′χ ∈ Ar′(F,C) and σ′⊗χ ∈ Gr′(F,Ql) are in Langlands correspondence with
respect to ι. By (Lε)r

′
ι , for any x ∈ |X| \ Sσ, we get product formulas:

L(πxχx × π′x;T ) = ιL(σx ⊗ χ⊗ σ′x;T )

L(π∨xχ
−1
x × π′∨x ;T ) = ιL(σ∨x ⊗ χ−1

x ⊗ σ′∨x ;T )

ε(πxχx × π′x, ψx;T ) = ιε(σx ⊗ χ−1
x ⊗ σ′∨x , ωx;T )

We want similar equalities at x ∈ Sσ. We achieve this by making χ very ramified at

Sσ with respect to

{
σ, ω

π, ψ
.

Digression

Theorem (Twist of Galois representations) Let F be a nonarchimedean local field.

1. Let σ ∈ Rep(Gal(F/F ),Ql) be of rank r, and let χ ∈ Hom(Gal(F/F ),Ql
×
) be

a quasi-character.

(a) If σ and χ are unramified, then L(χ⊗ σ;T ) = 1Q
1≤i≤r(1−zi(σ)·z(χ)·T )

.

(b) If σ is unramified and χ is ramified, then L(χ⊗ σ;T ) = 1.

(c) If σ is arbitrary, and χ is sufficiently ramified with respect to σ (e.g.,
Swan(χ) > Swan(σ). Other sufficient conditions also tend to involve
conductors.), then L(χ⊗ σ;T ) = 1.

2. In addition, let ω ∈ Ω1
F/k be a nonzero meromorphic 1-form (corresponding to

an additive character).

(a) If σ is unramified, χ is arbitrary, and ω is arbitrary, then ε(χ⊗ σ, ω;T ) =
ε(χ, ω;T )r−1ε(χ⊗ det(σ), ω;T ).

(b) If σ is unramified, χ is unramified, and ω is unramified, then ε(χ⊗σ, ω;T ) =
1.

(c) If σ is arbitrary, ω is arbitrary, and χ is sufficiently ramified with respect
to σ and ω, then ε(χ⊗σ, ω;T ) = ε(χ, ω;T )r−1ε(χ⊗ det(σ), ω;T ) (Deligne-
Henniart).

Theorem (Twist of local representations of) GLr. Let F be as above, and 1 ≤ r′ ≤ r.

1. Let π and π′ be as above. Turn Ql into C. Let χ ∈ Hom(GL1(F ),C) be a
quasi-character.
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(a) If π, π′ and χ are unramified, then

L(πχ× π′;T ) =
1∏

1≤i≤r,1≤j≤r′(1− zi(π)zj(π′)z(χ)T )
.

(b) similar to above

(c) similar to above

2. In addition, let ψ ∈ Hom(F,R/Z) be a nontrivial additive character.

(a) If π and π′ are unramified, χ is arbitrary and ψ is arbitrary, then ε(πχ ×
π′, ψ;T ) = ε(χ, ψ;T )rr

′−1ε(χ · χr′π χrπ′ , ψ;T ). Note the switched exponents.

(b) Same as above. Replace “ω unramified” with “c(ψ) = 0”. (Henniart)

(c) Same as above.

Back to proof of key lemma By choosing χ sufficiently ramified at Sσ, we get for
all x ∈ Sσ:

L(πxχx × π′x;T ) = ιL(σx ⊗ χx ⊗ σ′x;T )

L(π∨xχ
−1
x × π′∨x ;T ) = ιL(σ∨x ⊗ χ−1

x ⊗ σ′∨x ;T )

For all x ∈ |X|,

ε(πxχx × π′x;T ) = ε(χx, ψx;T )rr
′−1ε(χxχ

r′

πx × χ
r
π′x
, ψx;T )

= ιε(χx, ωx;T )rr
′−1ε(χxdet(σx)

r′det(σ′x)
r, ωx;T ) local CFT

= ιε(σx ⊗ χx ⊗ σ′x, ωx;T )

Combine what we had 1? page ago with the above:

L(πχ× π′;T ) = ιL(σ ⊗ χ⊗ σ′;T ) ∈ 1 + T · C[[T ]]

L(π∨χ−1 × π′∨;T ) = ιL(σ∨ ⊗ χ−1 ⊗ σ′∨;T ) ∈ 1 + T · C[[T ]]

and by Laumon’s ε-product formula,

ε(πχ× π′;T ) = ιε(σ ⊗ χ⊗ σ′;T ) ∈ C[T±1]×.

By Grothendieck’s cohomological interpretation of L-functions, L(σ⊗ χ⊗ σ′;T ) and
L(σ∨ ⊗ χ−1 ⊗ σ′∨;T ) are rational functions and satisfy a functional equation with
ε(σ ⊗ χ⊗ σ′;T ).

It remains to show that the L-functions are polynomials. Since

{
χ⊗ σ
χ−1 ⊗ σ∨

are

irreducible of rank r, while

{
σ′∨

σ′
are irreducible of rank r′ < r, the representations
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{
χ⊗ σ ⊗ σ′ ∼= Hom(χ⊗ σ, σ′∨)
χ−1 ⊗ σ∨ ⊗ σ′∨ ∼= Hom(χ−1 ⊗ σ∨, σ′)

have no πgeom1 −

{
invariants

coinvariants
(Recall

that L = H1

H0H2 ). Thus, the L-functions have no poles, and hence lie in 1 + T · C[T ].

April 15, 2003

Last time, we proved Deligne’s principle of induction, part 1. For r ≥ 2 and
ι : Ql

∼→ C, assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (Lε)r
′
ι hold. Then

(A ← G)r)ι holds.

Next goal: Deligne’s principle of induction, part 2. For r ≥ 2 and ι : Ql
∼→ C,

assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (RP )r
′
ι hold. Assume furthermore

that (A → G)rι and (P )rι hold. Then (RP )r and (Lε)rι hold.

Eventually: Lafforgue’s theorem. For r ≥ 2 and ι : Ql
∼→ C, assume for any r′ with

1 ≤ r′ < r, (A ← G)r′ι , (A → G)r′ι , and (P )r
′
ι hold. Then (A → G)rι holds. Assume

furthermore that (A ← G)rι holds. Then (P )rι holds.

Classification of irreducible representations of GLr over a local field
(Bernstein-Zelevinsky)

Let F be a nonarchimedean local field, k its residue field, p the characteristic of
k, and q the order of k. Fix r ≥ 1, so we get Repadm(GLr(F ),C).

Recall that (V, π) smooth means that for all v ∈ V , StabG(v) ⊂ G is open. For
(V, π) to be admissible, means that it is smooth and that for any open compact
subgroup K ⊂ G, V K is finite dimensional.

We have the following heirarchy of representations:

{supercuspidals} ⊂


essentially
square-

integrables

 ⊂
{

essentially
tempered

}
⊂
{

all irreducible
admissibles

}

Bernstein-Zelevinsky says: Each of the above sets can be classified in terms of
the previous, so it suffices to study supercuspidals.

Definition Let π ∈ Repadm(GLr(F )), so π∨ ∈ Repadm(GLr(F )). For each v ∈ Vπ and
v∨ ∈ Vπ∨ , the function φv∨,v : GLr(F )→ C given by g 7→ 〈v∨, π(g)v〉 = 〈π∨(g−1)v∨, v〉
is called a matrix coefficient of π.

Properties of matrix coefficients

• They are locally constant functions on GLr(F ).

• If π admits a central quasi-character χπ : Z(F ) → C× (e.g., π is irreducible),
then φv∨,v(zg) = χπ(z) · φv∨,v(g) for all z ∈ Z(F ), g ∈ GLr(F ).
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• If χπ is unitary (i.e., |χπ(z)| = 1 for all z ∈ Z(F )), then the function GL(F )→
R≥0 defined by g 7→ |φv∨,v(g)| is Z(F )-invariant under left or right translation,
so it defines function on Z(F )\GLr(F ).

Definition An irreducible admissible unitarizable (i.e., whose central character χπ is

unitary) representation (Vπ, π) ∈ Repadm(GLr(F )) is


supercuspidal unitarizable

square integrable

tempered

if and only if for any v ∈ Vπ and any v∨ ∈ Vπ∨ , the matrix coefficient φv∨,v
has compact support modulo center

is L2 modulo center

is L2+ε modulo center for all ε > 0

, i.e.,


there exists a compactKv∨,v ⊂ GLr(F ) such that Supp(φv∨,v) ⊂ Z(F )Kv∨,v.∫
Z(F )\GLr(F )

|φv∨,v(g)|2 dgdz <∞∀dg, dz Haar measure on GLr(F ), Z(F ).∫
Z(F )\GLr(F )

|φv∨,v(g)|2+ε dgdz <∞∀dg, dz Haar measure on GLr(F ), Z(F )∀ε > 0.

(V, π) is


supercuspidal

essentially square integrable

essentially tempered

if and only if there exists a quasi-character

χ : Z(F )→ C× such that (V, π ⊗ χ) given by g 7→ π(g)(χ(det(g)|v) is
supercuspidal unitarizable.

square integrable.

tempered.

Definition Consider the following subgroups: blocks

N = unipotent radical of P =

 I ∗
I

0 I


∩

P = parabolic ⊂ GLr =

 ∗ ∗
∗

0 ∗


↑↓

M = Levi quotient/subgroup =

 ∗ 0
∗

0 ∗


and let fix
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δP (F ) : P (F ) //

����

R×
>0

M(F ) // qZ
?�

OO
be the modular quasi-character.

d(pnp−1) = δP (F )(p)dn for any left Haar measure dn on N(F ). SP (F )(p) =
|det(Adp), Lie(N(F ))|F for all p ∈ P (F ). S stands for Satake.

Parabolic induction functor

We define

indGLrP,M : Repsmooth(M(F ))→ Repsmooth(GLr(F ))

(Vπ, π) 7→ (Iπ, ind(π))

where

• Iπ := the complex vector space of functions φ : GLr(F ) → Vπ such that φ is
uniformly locally constant (i.e., invariant under right translation by some open
subgroup K), and such that for any m ∈ M(F ), n ∈ N(F ), and x inGLr(F ),
φ(nmx) = SP (F )(nm)1/2π(m)φ(x). (The S factor preserves unitarity.)

• ind(π) : GLr(F )→ GL(Iπ) is given by g 7→ (φ 7→ (x 7→ φ(xg))).

Jacquet restriction functor

We define

resGLrP,M : Repsmooth(GLr(F ))→ Repsmooth(M(F ))

(Vπ, π) 7→ (Rπ, res(π))

where
Rπ = Vπ/spanC({π(n)v − v : n ∈ N(F ), v ∈ Vπ})

= N(F )-coinvariants of Vπ

and res(π) : M(F )→ GL(Rπ) is given by m 7→ δ
1/2
P (F )(m)(π(m)).

Theorem (resGLrP,M , ind
GLr
P,M) is a pair of exact functors that are left-right adjoint to

each other, and send admissibles to admissibles (Frobenius reciprocity).

Theorem (Bernstein-Zelevinsky) Let π ∈ Repadm(GLr(F )) be an irreducible admis-
sible representation. Then π is supercuspidal if and only if for any proper parabolic
P ( G, one has resGLrP,M(π) = 0 in Repadm(M(F )), i.e., supercuspidal representations

are precisely those irreducible representations that do not occur as a

{
quotient

constituent

i.e., they do not occur as an irreducible subquotient for any indGLrP,M .
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Roughly, if we regroup our partition of r into bigger chunks (for defining M , N ,
and P ), the supercuspidals are the new representations we get.

Definition (Tate twist) For any s ∈ R, we get GLr(F )→ C×, an unramified quasi-
character of GLr(F ) given by g 7→ q−vF (det(g))·s = |det(g)|sF . Denote this by 1(s).

If π is in a representation of GLr(F ), let π(s) := π ⊗ 1(s).

Definition A segment is a set of supercuspidals of some GLs of the form ∆ =
{ρ, ρ(1), . . . ρ(t − 1)}, t ≥ 1 an integer. [The numbers in parentheses refer to Tate
twists. For some reason, that wasn’t obvious to me.]

We can view segments as representations of (GLs(F ))t ⊂ GLr(F ).

Theorem-Definition (Bernstein-Zelevinsky) For any segment ∆ = {ρ, ρ(1), . . . ρ(t−
1)}, where r = st and ρ is supercuspidal of GLs(F ), we get the representation

ind
GLr(F )
P,(GLs(F ))t(ρ× ρ(1)× · · · × ρ(t− 1)).

1. This induced representation has a unique irreducible quotient, denoted Q(∆),
called the Langlands quotient of ∆. (Incidentally, Langlands didn’t come up
with this. He did the global theory ten years earlier.) [Drawing of 10 boxes,
stacked in a triangle]

2. Q(∆) is essentially square integrable.

3. Every

{
essentially square integrable

square integrable
irreducible representation is isomorphic

to some

{
Q(∆)

Q(∆). where ρ( t−1
2

) is unitarizable.

We have to deal with the ambiguity in partitions of r.

Definition Two segments ∆1 and ∆2 are linked if and only if ∆1 * ∆2, ∆2 * ∆1,
and ∆1 ∪∆2 is a segment.

Definition If ∆1 = {ρ1, . . . , ρ1(t1 − 1)} and ∆2 = {ρ2, . . . , ρ2(t2 − 1)} are two seg-
ments, then one says that ∆1 precedes ∆2 if and only if ∆1 and ∆2 are linked, and
there exists an integer t ≥ 1 such that ρ2 = ρ1(t).

Theorem-Defintion (Bernstein-Zelevinsky)

1. Let ∆1, . . . ,∆k be segments, such that for any i < j, ∆i does not precede ∆j.
Then the parabolic induced representation from Q(∆1) × · · · × Q(∆k) has a
unique irreducible quotient, denoted Q(∆1, . . . ,∆k).
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2. If ∆1, . . . ,∆k and ∆′
1, . . . ,∆

′
k′ both satisfy the “does not precede” condition,

then Q(∆1, . . . ,∆k) ∼= Q(∆′
1, . . . ,∆

′
k′) if and only if the sequences are the same

up to reordering.

3. Every irreducible admissible representation π ∈ Repadm(GLr(F )) is of the form
Q(∆1, . . . ,∆k) for some segments ∆1, . . . ,∆k satisfying the “does not precede”
condition.

Theorem (Jacquet) Let ∆1, . . . ,∆k be segments satisfying the “does not precede”
condition.

1. Suppose each Q(∆i) is square integrable (not just essentially). Then the repre-
sentation Q(∆1, . . . ,∆k) is tempered.

2. Every tempered irreducible π ∈ Repadm(GLr(F )) is isomorphic to some repre-
sentation of the form Q(∆1, . . . ,∆k), where each Q(∆i) is square integrable.

Example Take ∆1 = {1( r−1
2

)},∆2 = {1( r−3
2

)}, . . . ,∆r = {1(1−r
2

)}. Then ∆i and
∆i+1 are linked, but for all i < j, ∆i does not precede ∆j, and Q(∆1, . . . ,∆r) is the
trivial one dimensional representation of GLr(F ). By uniqueness, these are the only
segments that work.

Example Take ∆ = {1(1−r
2

), . . . ,1( r−1
2

)}. Then Q(∆) is the generalized Stein-
berg representation. It is very highly ramified.

Example Take ∆1, . . . ,∆r such that each is a singleton, made up of a single unrami-
fied quasi-character of GL1(F ). Assume that ∆1, . . . ,∆r are pairwise unlinked.
Then Q(∆1, . . . ,∆r) is the unramified principal series representation of GLr(F ),
whose Satake parameters are z(∆1), . . . , z(∆r).

April 22, 2003

Definition Let π ∈ Repadm(GLr(F )) be an admissible representation, which admits
a central quasicharacter χπ : Z(F )→ C× (e.g., π irreducible). Define |π| : Gm(F )→
R×
>0 ↪→ C× to be the unique unramified quasicharacter of Gm (which extends to

|π| : GLr(F )
det→ Gm(F ) → R×

>0 ↪→ C×) such that the central quasicharacter of
π ⊗ |π|−1 is unitary. Thus, |π| = |χπ|1/r : Gm(F ) = Z(F )→ R×

>0.

Definition Let ∆ = {ρ, . . . , ρ(t − 1)} be a segment (ρ is supercuspidal irreducible).
Define |∆| : Gm(F ) → R×

>0 an unramified quasicharacter of Gm(F ) by |∆| :=
|Q(∆)| = |ρ( t−1

2
)|.

Note By Jacquet’s theorem, for any segments ∆1, . . . ,∆k, such that ∆i does not
precede ∆j for any i < j, Q(∆1, . . . ,∆k) is tempered if and only if |Delta1| =
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· · · = |Deltak| = 1, the trivial quasicharacter of Gm(F ). In particular, if ∆1, . . . ,∆r

are unramified quasicharacters of GL1(F ) whose Satake parameters z(∆i) satisfy
|z(∆1)| = · · · = |z(∆r)| = 1 in C, then the unramified principal series representation
Q(∆1, . . . ,∆r) of GLr(F ) is tempered.

Theorem (Jacquet, Shalika) Let π ∈ Repadm(GLr(F ),C) be a irreducible admissi-
ble generic unramified unitarizable representation. Then its Satake parameters
z1(π), . . . , zr(π) satisfy q−1/2 < |zi(π)| < z1/2, i.e., the zi(π) ∈ C× have weights in
(−1, 1).

Theorem (Tadič) Let π ∈ Repadm(GLr(F ),C) be an irreducible admissible generic
unitarizable representaion, so π = Q(∆1, . . . ,∆k) for some segments ∆1, . . . ,∆k

(satisfying: ∆i does not precede ∆j for i < j, unique up to ordering). The Satake
parameters z(|∆1|), . . . , z(|∆r|) of the unramified quasicharacters |∆1|, . . . , |∆r| of
Gm(F ) satisfy q−1/2 < |z(|∆i|)| < q1/2.

Theorem (Jacquet, Piatetski-Shapiro, Shalika)

1. Let π = Q(∆1, . . . ,∆k) and π′ = Q(∆′
1, . . . ,∆

′
l) be arbitrary irreducible admis-

sible representations. Then

L(π × π′;T ) =
∏

1≤i≤k,1≤j≤l

L(Q(∆i)×Q(∆′
j);T ) ∈ 1 + TC[[T ]]

2. Let ∆ = {ρ, . . . , ρ(t− 1)} and ∆′ = {ρ′, . . . , ρ′(t′ − 1)} be segments with t′ ≤ t
(so ρ and ρ′ are supercuspidal irreducibles). Then

L(Q(∆)×Q(∆′);T ) =
∏

0≤i≤t′−1

L(ρ(t− 1)× ρ′(i);T ) ∈ 1 + TC[[T ]]

3. Let ρ ∈ Repadm(GLr(F )) and ρ′ ∈ Repadm(GLr′(F )) be supercuspidal irre-
ducible representations. Then L(ρ × ρ′;T ) =

∏
z(1 − z−1T )−1 in 1 + TC[[T ]],

where z runs over {α ∈ C× : (ρ′)∨ ∼= ρ ⊗ αv(det(−))}. Thus, {poles of L(ρ ×
ρ′∨;T )} = {α ∈ C× : ρ′ ∼= ρ⊗ αv(det(−))} is empty if r 6= r′.

Note For s ∈ R, qs×{poles of L(ρ× ρ′;T )} = {poles of L(ρ(s)× ρ′;T )} = {poles of
L(ρ× ρ′(s);T )}.

Proposition (Location of poles of local L-factors) Let π ∈ Repadm(GLr(F ),C) and
π′ ∈ Repadm(GLr′(F ),C) be irreducible admissible generic representations.

1. If both π and π′ are tempered, then for any poles z ∈ C× of L(π× π′;T ), one
has |z| ≥ 1.
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2. If one of π or π′ is tempered and the other is unitarizable, then for any
poles z ∈ C× pf L(π × π′;T ), one has |z| > q−1/2 (this is strict). In particular,
L(π × π′;T ) and L(π∨ × π′∨; 1

qT
) have no poles in common. (The poles of

L(π∨ × π′∨; 1
qT

) would satisfy |z| < q1/2/q = q−1/2.)

Proof Suppose π = Q(∆1, . . . ,∆k) is tempered/unitarizable, and π′ = Q(∆′
1, . . . ,∆

′
l)

is tempered.

• By part 1 of J-PS-S,

{poles of L(π × π′;T )} =
⋃
i,j

{poles of L(Q(∆i)×Q(∆′
j);T )}.

• The problem is reduced to

π = Q(∆), ∆ = {ρ, . . . , ρ(t− 1)}
π′ = Q(∆′), ∆′ = {ρ′, . . . , ρ′(t′ − 1)}

with

|z(|ρ(t− 1

2
)|)| = 1 or ∈ (q−1/2, q1/2) by Tadič

|z(|ρ′(t
′ − 1

2
)|)| = 1

By part 2 of J-PS-S,

{poles of L(Q(∆)×Q(∆′);T )} =

= {q
tmax−1

2 } · {q
1−tmin

2 , q
3−tmin

2 , . . . , q
tmin−3

2 , q
tmin−1

2 }·

· {poles of L(ρ(
t− 1

2
)× ρ′(t

′ − 1

2
);T )}

• By part 3 of J-PS-S, if z ∈ {poles of L(ρ( t−1
2

)× ρ′( t′−1
2

);T )}, then{
|z| = 1 if π is tempered.

|z| ∈ (q−1/2, q1/2) if π is unitarizable.

• So if z ∈ {poles of L(Q(∆)×Q(∆′);T )}, then{
|z| ≥ q

tmax−1
2 · q

1−tmin
2 · 1 ≥ 1 if π is tempered.

|z| > q
tmax−1

2 · q
1−tmin

2 · q−1/2 ≥ q−1/2 if π is unitarizable.
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Proposition (Analytic criterion for temperedness) Let π = Q(∆1 = (ρ1, . . . , ρ1(t1 −
1)), . . . ,∆k = (ρk, . . . , ρk(tk− 1))) ∈ Repadm(GLr(F ),C) be an irreducible admissible
generic unitarizable representation. Suppose for each j ∈ {1, . . . , k} the following
holds:

(∗)j



Let ρ be any unramified twist of ρj

such that |ρ| = 1 (trivial quasi-character of Gm(F ))

(so ρ is supercuspidal unitarizable, hence tempered).

Then for any z ∈ {poles of L(π × ρ∨;T )},
one has |z| ∈ (q1/2)Z ⊂ C×

Then π is tempered.

Proof By Jacquet’s theorem, it suffices to show:

For all j ∈ {1, . . . , k}, z(|∆j|) = 1 ∈ C×.

• Fix j, pick ρ to be any unramified twist of ρj with |ρ| = 1.

• By part 1 of J-PS-S, L(π × ρ∨;T ) =
∏k

i=1 L(Q(∆i)× ρ∨;T ).

• By part 2 of J-PS-S, this equals
∏k

i=1 L(ρi(ti − 1)× ρ∨;T ).

• By part 3 of J-PS-S, the jth factor of this product gives a pole z ∈ C× of
L(π × ρ∨;T ) with |z| = z(|ρj|) · qti−1 ∈ R×

>0.

• So hypothesis (∗)j implies z(|ρj|) ∈ (q1/2)Z, so

z(|∆j|) = z(|ρj(
tj − 1

2
)|) ∈ (q1/2)Z

• By Tadič, if π is unitarizable, then z(|∆j|) ∈ (q−1/2, q1/2), so z(|∆j|) = 1.

April 29, 2003

Results from last time

1. Location of poles of local L-factors Let πx ∈ Repadm(GLr(Fx)) and π′x ∈
Repadm(GLr(Fx)) be irreducible admissible generic representations (local). If
one of πx, π

′
x is tempered and the other is unitarizable, then L(πx × π′x;T ) and

L(π∨x ×π′∨x ; 1
qT

) have no poles in common. (consequence of a stronger result)

2. Analytic criterion for temperedness (local analogue of converse theorem)
Let πx ∈ Repadm(GLr(Fx)) be an irreducible admissible generic unitarizable rep-
resentation. Suppose for any r′ ≤ r, any ρ ∈ Repadm(GLr′(Fx)) supercuspidal

unitarizable, and any z ∈ {poles of L(πx × ρ∨;T )}, one has |z| = |q1/2
x |Z ⊂ C×.

Then πx is tempered.
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Note that if πx is unramified, then temperedness is equivalent to |zi(πx)| = 1, by
Jacquet.

Today Proof of Deligne’s principle of induction, part 2.

Theorem Let r ≥ 2, ι : Ql
∼→ C. Assume for all r′ with 1 ≤ r′ < r, that (A → G)r′ι

and (RP )r
′
ι hold. Assume further that (A → G)rι and (P )rι hold. Then (RP )r and

(Lε)rι hold.

Proof (Beginning) Let π ∈ Ar(F,C) be given. By (A → G)rι , we get σ ∈ Gr(F,Ql)
in Langlands correspondence with respect to ι with π, such that Sσ ⊆ Sπ. Let
ψ ∈ Homtop. ab. gp.(F\A,R/Z) \ {0}. By class field theory, we get a corresponding
meromorphic differential ω ∈ Ω1

F/k \ {0}.

Key lemma Let r′ ≤ r and π′ ∈ Ar′(F,C) be given. By (A → G)r′ι , we get
σ′ ∈ Gr′(F,Ql) in Langlands correspondence with respect to ι with π′, such that
Sσ′ ⊆ Sπ′ . Then for all x ∈ |X|,

L(πx × π′x;T )

ε(πx × π′x, ψx;T ) · L(π∨x × π′∨x ; 1
qxT

)
= ι

L(σx ⊗ σ′x;T )

ε(σx ⊗ σ′x, ωx;T ) · L(σ∨x ⊗ σ′∨x ; 1
qxT

)
∈ C(T )×.

Call this equation #. Assume this for now (the proof is essentially computation).

Theorem (Deligne, local monodromy analysis) Suppose σ ∈ Repcts(Gal(F/F ),Ql)
is almost everywhere unramified, and is pure of some weight w ∈ Z. Then j∗σ ∈
Shvc(X,Ql) is mixed of weight ≤ w, i.e., for any x ∈ |X|, x∗j∗σ ∈ Shvm(x,Ql) has
weights ≤ w.

σ j∗σ

Spec(F ) η � � j // X

Corollary For any x ∈ |X|, any z ∈ {poles of L(σx;T ) = L(x∗j∗σ;T ) = 1Q
(1−αT )

in

Ql}, and any ι : Ql
∼→ C, one has |ιz|C ∈ (q

1/2
x )Z≥−w .

In particular, L(σx ⊗ σ′x;T ) has poles satisfying |ιz| ∈ (q1/2)Z≥0 , and L(σ∨x ⊗
σ′∨x ; 1

qxT
) has poles satisfying |ιz| ∈ (q1/2)Z≤−2 , so there is no cancellation.

Lemma (Local-to-global extension of supercuspidals) Let x ∈ |F | and r ≥ 1 be given,
and let ρ ∈ Repadm(GLr(Fx)) be a supercuspidal unitarizable irreducible representa-
tion with χρ of finite order. Then there exist π =

⊗res
x∈|X| πx ∈ Ar(F,C), i.e., cuspidal

automorphic irreducible representations of GLr(A) with finite order χπ, such that
πx ∼= ρ in Repadm(GLr(Fx)).

Proof Lafforgue gave a one paragraph proof using the Arthur-Selberg trace formula.
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(RP )r: Fix x ∈ |X|. We want to show that πx is tempered. By the analytic criterion
of temperedness, it suffices to show that for any r′ ≤ r, and ρ ∈ Repadm(GLr′(Fx)) a
supercuspidal unitarizable irreducible representation with χρ of finite order, and any

z ∈ {poles of L(πx × ρ∨;T )}, we have |z| ∈ (q
1/2
x )Z. Pick r′ and ρ as above. Apply

the local-to-global extension lemma, and get π′ ∈ Ar′(F,C) such that π′x
∼= ρ. Apply

(A → G)r′ι to get σ′ ∈ Gr′(F,Ql) in Langlands correspondence with respect to ι with
π′, such that Sσ′ ⊆ Sπ′ .

Our situation

• We have σ pure of weight 0 by (P )rι .

• We have σ′ pure of weight 0 by (RP )r
′
if r′ < r and by (P )rι if r′ = r.

• πx is unitarizable (hence the central character has finite order).

• π′x ∼= ρ∨ is supercuspidal and unitarizable, hence tempered.

Steps:

1. The key lemma says:

L(πx × π′x;T )

ε(πx × π′x, ψx;T ) · L(π∨x × π′∨x ; 1
qxT

)
= ι

L(σx ⊗ σ′x;T )

ε(σx ⊗ σ′x, ωx;T ) · L(σ∨x ⊗ σ′∨x ; 1
qxT

)
.

2. The “locations of poles” result implies L(πx × π′x;T ) and L(π∨x × π′∨x ; 1
qxT

) have
no cancellation.

3. Deligne’s monodromy analysis implies L(σx ⊗ σ′x;T ) and L(σ∨x ⊗ σ′∨x ; 1
qxT

) have
no cancellation.

4. ε-factors are monomials, and local L-factors have constant term 1, so

L(πx × π′x;T ) = ιL(σx × σ′x;T )

ε(πx × π′x, ψx;T ) = ιε(σx ⊗ σ′x, ωx;T )

For (RP )r, observe that L(πx × ρ;T ) = L(πx × π′x;T ) = ιL(σx ⊗ σ′x;T ), which
implies |ιz| ∈ (q1/2)Z≥0 , so we win.

(Lε)rι . Fix r′ ≤ r, π′ ∈ Ar′(F,C), and σ′ ∈ Gr′(F,Ql) in Langlands correspondence
with respect to ι. Fix x ∈ |X|. We want to show that the result of step 4 holds. Our
situation is as above: σ is pure of weight 0 by (P )rι , σ

′ is pure of weight 0 by (RP )r
′

if r′ < r and by (P )rι if r′ = r, πx is unitarizable, and π′x is tempered - (RP )r
′
was

just proved for r′ = r. We do steps 1-4, and get the final statement.
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Proof of key lemma We have π and σ in Langlands correspondence with respect

to ι. Also π′ and σ′. We want the big equality of fractions # from about two
pages ago. Let S := Sπ ∪ Sπ′ ∪ {ramified places of ψ and ω}. This is still finite.
From the twisting theorems of Henniart and Deligne-Henniart, one knows that for
any χ ∈ A1(F,C) (equivalently, in G1(F,Ql)), either for all x ∈ |X| \ S or for all

x ∈ |X| with χx sufficiently ramified with respect to

{
πx

σx
,

{
π′x
σ′x

,

{
ψx

ωx
:

L(πx · χx × π′x;T ) = ιL(σx ⊗ χx ⊗ σ′x;T )

L(π∨x · χ−1
x × π′∨x ;T ) = ιL(σx ⊗ χ−1

x ⊗ σ′∨x ;T )

ε(πx · χx × π′x, ψx;T ) = ιε(σx ⊗ χx ⊗ σ′x, ωx;T )

Clearly, # holds when x ∈ |X| \ S. It remains to treat x ∈ S.

Fix x ∈ S. Choose χ ∈

{
A1(F,C)

G1(F,Ql)
such that

• χx is trivial.

• For any y ∈ S \ {x}, χy is sufficiently highly ramified with respect to

{
πy

σy{
π′y
σ′y

{
ψy

ωy
.

(Use Artin-Schrier cover and gemoetric reduction to P1, or apply the Grunwald-
Wang theorem from class field theory, viz., one can interpolate any finite set of local

characters by a global one.) We substitute T 7→ T deg(x). Then the left side of # is:

L(πxχx×π′x;T deg(x))
ε(πxχx×π′x,ψx;T deg(x))·L(π∨x χ

−1
x ×π′∨x ; 1

(qT )deg(x)
)

=

=
[
Q
y∈|X|\{x} ε(πyχy×π′y ,ψy ;T deg(y))]

»Q
y∈|X|\{x} L(π∨y χ

−1
y ×π′∨y ; 1

(qT )deg(y)
)

–
[
Q
y∈|X|\{x} L(πyχy×π′y ;T deg(y))]

in C×

by

• definition of L- and ε-functions as Euler products.

• rationality of global L-functions.

• convergence of glocal ε-functions.

• global functional equation.

123



We continue:

= ι

[∏
y∈|X|\{x} ε(σyχy × σ′y, ωy;T deg(y))

] [∏
y∈|X|\{x} L(σ∨y χ

−1
y × σ′∨y ; 1

(qT )deg(y)
)
]

[∏
y∈|X|\{x} L(σyχy × σ′y;T deg(y))

] in C×

by twisting theorems.

= ι
L(σx ⊗ χx ⊗ σ′x;T deg(x))

ε(σx ⊗ χx ⊗ σ′x, ωx;T deg(x)) · L(σ∨x ⊗ χ−1
x ⊗ σ′∨x ; 1

(qT )deg(x)
)

by

• product formulas of global L- and ε- functions of Grothendieck and Laumon.

• rationality of global L-functions.

• convergence of global ε-functions.

• global functional equation.

This gives us the right side of #.

May 6, 2003

We have shown: For r ≥ 2, ι : Ql
∼→ C,

1. Assume for all r′ with 1 ≤ r′ < r, (A → G)r′ι and (Lε)r
′
ι hold. Then (A ← G)r)ι

holds (converse theorem).

2. Assume for all r′ with 1 ≤ r′ < r, that (A → G)r′ι and (RP )r
′
ι hold, and assume

that (A → G)rι and (P )rι hold. Then (RP )r and (Lε)rι hold (analytic criterion
for temperedness).

What is left

Theorem (Lafforgue) Assume for any r′ with 1 ≤ r′ < r, (A ← G)r′ι , (A → G)r′ι , and
(P )r

′
ι hold. Then (A → G)rι holds. If furthermore (A ← G)rι holds, then (P )rι holds.

Theorem (Zelevinsky) π = Q(∆1, . . . ,∆k) is generic if and only if no two segments
are linked.

Suppose you have an X-scheme C/X with an action of GLr(A):

Ql

j∗Rf!Ql Rf!Ql C

f{{vvvvvv

η j // X
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Hope: j∗Rf!Ql
∼=
⊕finite(σ ⊗ π) as a representation of Gal(F/F ) × GLr(A). We

need another point of view for GLr(A) representations.

Hecke Algebras Let G be a topological group that is locally compact, Hausdorff,
and totally disconnected. We get an abelian category Repadm(G,C). Objects are
typically written (V, π). Assume further that G is unimodular (i.e., that one/every
left Haar measure is right G-invariant, e.g., G is a reductive or unipotent group over
a local field or A). If dg is a left Haar measure, and I1 and I2 are open compact

subgroups of G, then vol(I1,dg)
vol(I2,dg)

∈ Q×
>0.

Definition A Haar measure dg on G is rational if and only if vol(I, dg) ∈ Q×
>0 for

one/every open compact subgroup I ⊆ G.

Fix such a rational Haar measure dg. e.g., if G = GLr(A), then K := GLr(OA) =∏
x∈|X|GLr(OFx) is a maximal open compact subgroup. We want vol(K, dg) = 1.

Definition The Hecke algebra of G with respect to dg is H = H(G, dg) :=
C∞
c (G,Q). This is the Q-vector space of Q-valued locally constant compactly sup-

ported functions on G, endowed with the convolution product:

H×H → H

f1 f2 7→ f1 ∗ f2 := (x 7→
∫
G

f1(xg)f2(g
−1)dg =

∫
G

f1(g)f2(g
−1x)dg

This is an associative algebra, but it has a unit if and only if G is finite (need a point
distribution at identity).

Definition For any open compact subgroup I ⊂ G, let eI := 1
vol(I,dg)

(characteristic

function of I in G) ∈ H. This is an idempotent element: eI ∗ eI = eI . We get:

eI ∗ H ∗ eI ⊂ H Q-subalgebra of I-bi-invariant functions on G

eI ∗ H ⊂ H left eI ∗ H ∗ eI-module, right H-ideal inside H
H ∗ eI ⊂ H right eI ∗ H ∗ eI-module, left H-ideal inside H

If f ∈ H, then

eI ∗ f = (x 7→
∫
G

eI(g)f(g−1x)dg =
1

vol(I, dg)

∫
I

f(gx)dg)

f ∗ eI = (x 7→ 1

vol(I, dg)

∫
I

f(xg)dg)

If E is any field of characteristic 0, we getHE := H⊗QE, and we define eI∗HE∗eI ,
etc. similarly.

Definition A left H-module V is called smooth (or nondegenerate) if and only if
for any v ∈ V there exists f ∈ H such that f ∗ v = v.

125



We get Modsmooth(H) ⊆Mod(H) the full subcategory of smooth modules. This is
stable under subquotients, finite direct limits, and finite inverse limits. Modsmooth(H)
is an abelian category.

Now, replace H with HC.

Define a functor Repsmooth(G,C) → Modsmooth(H) by (V, π) 7→ V , where V on
the right side is equipped with a left H module structure by H × V → V given by
(f, v) 7→ f ∗ v := π(f)v =

∫
G
f(g)(π(g)v)dg.

Define a functor Modsmooth(H) → Repsmooth(G,C) by M 7→ (M,πM), where for
any m ∈M and g ∈ G, π(g)m is defined as follows:

• Choose f ∈ H such that f ∗ v = v.

• Choose I ⊂ G and open compact subgroup such that eI ∗ f = f . Then eI ∗ v =
eI ∗ f ∗ v = f ∗ v = v.

• Set (δg ∗ eI) := (x 7→ eI(g
−1x)) ∈ H.

• Set πM(g)v := (δg ∗ eI) ∗ v ∈M . This is well-defined.

Lemma The above functors Repsmooth(G,C) � Modsmooth(H) are equivalences of
categories, quasi-inverse to each other.

Fix I ⊂ G an open compact subgroup. We get a functor

Modsmooth(H)→Mod(eI ∗ H ∗ eI)
(V, ∗) 7→ (eI ∗ V, ∗)

Note that eI ∗ V = V I , the left I-invariant vectors.

Lemma This functor is exact,

with left adjoint Mod(eI ∗ H ∗ eI)→Modsmooth(H)

M 7→ (H ∗ eI)⊗eI∗H∗eI M
and right adjoint M 7→ (Homleft eI∗H∗eI (eI ∗ H,M))smooth

and adjunction morphisms:

M 7→ eI ∗ ((H ∗ eI)⊗eI∗H∗eI M)

eI ∗ (HomeI∗H∗eI (eI ∗ H,M))smooth 7→M

Both are isomorphisms.

Proposition The functor

Modsmooth(H)→Mod(eI ∗ H ∗ eI)
(V, ∗) 7→ (eI ∗ H ∗ eI)
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induces a bijection
isomorphism classes

of irreducible nonzero
(V, ∗) ∈Modsmooth(H)

with eI ∗ V 6= 0

 ∼−→


isomorphism classes

of irreducible nonzero
(M, ∗) ∈Mod(eI ∗ H ∗ eI)


Recall:

Repadm(G,C) � Modadm(H) =

{
smooth V such that

dim(eI ∗ V = V I) <∞

}
∩ ∩

Repsmooth(G,C) � Modsmooth(H)

Key lemma/construction Let (V, ∗) ∈Modsmooth(H) be a smooth left H-module,

and let M ⊆ eI ∗V be any subobject in Mod(eI ∗H∗eI). Define M̃ := (H∗eI)⊗eI∗H∗eI
M ∈Modsmooth(H). This has adjunction morphism M̃ → V given by f⊗m 7→ f ∗m.

Define M := image(M̃ → V ) ↪→ V in Modsmooth(H). Then (here’s the assertion) we

have isomorphisms M
∼→ eI ∗ M̃

∼→ eI ∗M in Mod(eI ∗ H ∗ eI).

Proof Apply the exact functor eI ∗ − to M̃ � M ↪→ V . We get a diagram:

eI ∗ M̃ // // eI ∗M
� � // eI ∗ V

M

adjunction
OO

∼= //M
?�

subobject

OO

and we need to check that it commutes.

Three things to prove for the proposition: Well-defined, injective, and surjec-
tive.

1. Suppose (V, ∗) ∈Modsmooth is irreducible, such that eI ∗V 6= 0. We want eI ∗V
irreducible as a eI ∗ H ∗ eI-module. If M is a nonzero subobject of eI ∗ V in
Mod(eI ∗H∗eI), we get M ⊆ V in Mod(H), nonzero by the key lemma. If V is
irreducible, then M = V , so M ∼= eI ∗M = eI ∗ V . Thus, eI ∗ V is irreducible.

2. Injectivity Suppose (V1, ∗) and (V2, ∗) are both irreducible smooth H-modules
with eI ∗ V1 6= 0 6= eI ∗ V2. Let α : eI ∗ V1

∼→ eI ∗ V2 be an isomorphism
in Mod(eI ∗ H ∗ eI). We want an isomorphism in Modsmooth(H). Set M =
image(eI ∗ V1 → eI ∗ V1 ⊕ eI ∗ V2), where the map is given by x 7→ x⊕ αx. M
is nonzero, and irreducible in Mod(eI ∗ H ∗ eI). We get

0 6= M

�� %%KKKKKKKKKK
� � �

// V1 ⊕ V2

yysssssssssss

��
V1 V2
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in Modsmooth(H). The arrows coming from M are nonzero, hence surjective.
Goursat’s lemma implies M is the graph of an isomorphism V1

∼→ V2.

3. Surjectivity Suppose (M, ∗) ∈ Mod(eI ∗ H ∗ eI) is irreducible. We get M̃ =

(H∗eI)⊗eI∗H∗eIM in Modsmooth(H), and M̃0 := {m ∈ M̃ : eI ∗H∗m = 0 in M̃}.
We get an exact sequence in Modsmooth(H):

0→ M̃0 → M̃ → M̃/M̃0 → 0

Claim: For any sub-H-module V ⊆ M̃ , either V ⊆ M̃0 or V = M̃ (this implies

M̃/M̃0 is irreducible). Assuming this, we apply the exact functor eI ∗ − to the
above exact sequence to get

0→ eI ∗ M̃0 → eI ∗ M̃ → eI ∗ (M̃/M̃0)→ 0

eI ∗ M̃0 = 0 by definition, so the next two terms are isomorphic. Thus, we have
M

∼→ eI ∗ M̃
∼→ eI ∗ (M̃/M̃0 irreducible)

Proof of claim If eI ∗V = 0, then V ⊆ M̃0. Suppose eI ∗V 6= 0. Then the morphism
eI ∗ V ↪→ eI ∗ M̃ (∼= M by key Lemma) is an isomorphism by irreducibility. Then

V ⊇ eI ∗V = eI ∗M̃ (the first containment is as a vector space), and eI ∗M̃ generates

M̃ as an H-module, so V = M̃ . check

May 13, 2003

Let k be a finite field of order q and characteristic p, and let X be a proper
smooth geometrically connected curve over k. Let F be the function field of X,
and let A be its ring of adèles. Let r ≥ 1 be an integer, G = GLr(A), and
K = GLr(OA) =

∏′
x∈|X|GLr(Ox) the maximal compact subgroup of G. Let H =

H(G, dg such that vol(K, dg) = 1)⊗ C be the Hecke algebra.

Definition A level is a closed subscheme N ↪→ X that is finitely supported.

For each level N ↪→ X, let KN := ker(K � GLr(ON)), which is an open compact
subgroup of G. We get idempotents eN := [K : KN ] · (characteristic function of KN

in G) ∈ H.

Lemma H = lim−→N
eN ∗ H ∗ eN .

Recall from last time:
isomorphism classes of
irreducible nonzero
H-modules (V, ∗)
with V KN 6= 0

 ∼↔


isomorphism classes of
irreducible nonzero

eN ∗ H ∗ eN -modules (M, ∗)
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Notation For any k-scheme S, let FrobS denote the Frobenius k-endomorphism given
by the qth power map. This is not the geometric Frobenius. Lafforgue systematically
uses Frob−1 in his L-function work.

Definition (Drinfel’d) A (right) shtuka of rank r on a k-scheme S is the following
data:

1. A vector bundle E on X ×k S of rank r (i.e., a locally free OX×kS-module of
rank r).

2. A (right) modification of E : This is a diagram E
j
↪→ E ′ t←↩ E ′′, where E ′

and E ′′ are vector bundles of rank r on X ×k S, and j and t are injective
homomorphisms of coherent OX×kS-modules whose cokernels (which are in-
vertible OS-modules) are coherent OX×kS-modules supported on the graphs of
morphisms ∞, 0 : S → X.

X ×k S //

��

X

��
S //

∞
99rrrrrrrrrrrr 0

99rrrrrrrrrrrr

Γ0

>>

Γ∞

>>

Spec k

The morphism∞ is called the pole of the shtuka, and the morphism 0 is called
the zero of the shtuka. Γ0 ⊃ supp(t) and Γ∞ ⊃ supp(j) are defined by the
universal property of the fiber product X ×k S.

3. An isomorphism (τE := (idX × FrobS)∗E)
∼→ E ′′.

τE E

X ×k S
��

idX×FrobS // X ×k S
��

S
FrobS // S

Let Chtr denote the moduli stack of shtukas of rank r.

What is a stack? The idea came from SGA 1, on moduli of curves, and was
crystallized in Deligne-Mumford, on stable cuves. Consider Yoneda’s fully faithful
embedding:

Sch/k → Hom(Schop, Sets)

X 7→ X(−) := Hom(−, X)

Suppose for example the X classifies genus 2 curves. The collections of points
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X(S), X(T ) and maps between them gives all of the information on X.

X(T )

��

X(S)oo

��

X

��— //— •

T S Spec k

The problem is, X(S) = {

 C
↓
S

 , genus(C) = 2}/ ∼= fails to give any automorphism

structure. The solution is that instead of having a set X(S), we let X(S) be the
category of all genus 2 curves over S.

We want a 2-functor which for every base scheme as input returns a category
which classifies the functor. When the only morphisms are id on objects, then we
have a set.

Hom(Schopk , Sets) ⊂ 2−Hom(Schopk , Cat)

A stack is a 2-functor satsfying certain conditions. Morphisms are natural trans-
formations satisfying a cartesian diagram of the form:

X × S //

��

X(−)

��
S // Y (−)

where we have schemes on the left side, and stacks on the right.

Definition X is called smooth, proper, étale, etc. if and only if X × S is.

Chtr(S) := category of shtukas of rank r over S.

Proposition Chtr is a Deligne-Mumford algebraic stack, and the morphism (∞, 0) :
Chtr → X ×X is smooth of relative dimension 2r − 2.

Notes

• We won’t define “Deligne-Mumford” but it is good news. It means we can
pretend it is a scheme.

• Ẽ = (E ↪→ E ′ ←↩ E ′′) ∈ Chtr(S) gives rise to two morphisms ∞, 0 ∈ X(S), and
these define the morphism in question.

• Chtr is not quasi-compact, and not separated, e.g., fo r = 2, take P2, blow it
up at a point, pick a point on the exceptional divisor, blow it up, and repeat
infinitely many times.
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Definition

• Let N ↪→ X be a level, and Ẽ = (E
j
↪→ E ′ t←↩ E ′′ ∼← τE) a shtuka af rank r over

S. Assume the pole and zero of Ẽ avoids N . Then a level N structure on Ẽ
is an isomorphism

E ⊗OX ON = E ⊗OX×kS ON×kS
∼→ O⊕r

N×kS

of ON×kS-modules such that the diagram

E ⊗OX ON � � j //

∼=
u ''OOOOOOOOOOO
E ′ ⊗OX ON E ′′ ⊗OX ON? _too τE ⊗OX ON

∼=oo

τu

∼=

ssgggggggggggggggggggggggggg

O⊕r
N×kS

commutes.

• Let ChtrN denote the moduli stack of shtukas of rank r with level N structure.

We get a canonical “forget level structure” morphism:

ChtrN
f→ Chtr ×X×X (X −N)× (X −N).

Proposition f is a finite étale Galois cover with Galois group GLr(ON). Hence,
ChtrN is smooth of relative dimension 2r − 2 over (X −N)× (X −N).

We need to truncate Chtr to get finite cohomology → trace formula → Galois
representation. Morally, Chtr encodes all of the Galois representations we want, but
we can’t see them as they are simultaneously realized. [pQFT analogy?]

Definiton A polygon (of rank r) is a function p : [0, r] → R that is continuous,
piecewise linear with integer break points, such that p(0) = p(n) = 0. It is suffi-
ciently convex if and only if there exists λ� 0 such that for any r′ with 1 ≤ r′ < r,
the difference of slopes (p(r′)− p(r′ − 1))− (p(r′ + 1)− p(r′)) is at least λ. check

Definition Let Ẽ = (E
j
↪→ E ′ t←↩ E ′′ ∼← τE) be a shtuka over S = Spec(algebraically

closed field). Then the degree of Ẽ is deg(Ẽ) := deg(det(Ẽ)) ∈ Z. The slope of Ẽ is

µ(Ẽ) := deg(Ẽ)/rank(Ẽ).

Let Ẽ• = (0 = Ẽ0 ( Ẽ1 ( · · · ( Ẽk = Ẽ) be a strict filtration of Ẽ by subobjects.

The polygon p
eE• : [0, r]→ R is the polygon with breakpoints at rank(Ẽi), i = 0, . . . , k

given by:

p
eE•(rank(Ẽi)) := deg(Ẽ)− µ(Ẽ) · rank(Ẽi)
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Proposition-Definition Among the polygons p
eEi as Ẽ• ranges over all filtrations

of Ẽ , there exists a unique largest polygon p
eE• , called the Harder-Narasimhan

canonical polygon of Ẽ•.

Note There is a finest filtration giving p, called the Harder-Narasimhan canonical
filtration.

Fix a level N ↪→ X and a polygon p : [0, r]→ R. Let Chtr,p≤pN be the substack of
ChtrN whose geometric points S have their Harder-Narasimhan polygon p dominated
by p.

E

X × S //

��

X

��

N?
_oo

S // •

Proposition Chtr,p≤pN is open in ChtrN , i.e.,

e
//

� _

open

��

Chtr,p≤pN

��
S // ChtrN

with the leftmost arrow denoting the inclusion of an open subscheme. Even better,
we have a stratification by degree:

Chtr,p≤pN =
∐
d∈Z

Chtr,d,p≤pN

and the pieces are of finite type over (X − N) × (X − N). Thus, we can take
cohomology.

Lemma There is a canonical action of A× on Chtr and ChtrN that stabilizes Chtr,p≤pN .

Out of any idèle element a ∈ A×, we can make a line bundle La : U 7→ {f ∈
F = κ(X) : axfx ∈ Ox ⊂ Fx,∀x ∈ U}. The action comes from tensoring with La. If
deg(a) 6= 0, then the action is free.

Theorem (Lafforgue) Let r ≥ 1, N ↪→ X, p : [0, r] → R be as before. Assume p is
sufficiently convex, and deg(a) 6= 0.

1. There exists a moduli compactification Chtr,p≤pN /aZ of Chtr,p≤pN /aZ (by “iterated
shtukas” - relax the isomorphism condition on E ′′ ← τE), i.e. bar?
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Chtr,p≤pN /aZ � � //

f

proper
))RRRRRRRRRRRRRR Chtr,p≤pN /aZ

fin. type,
smoothuullllllllllllll

(X −N)× (X −N)

Note: any scheme over a noetherian base admits a compactification, by Nagata’s
theorem. However, it is often difficult to characterize the extra points. The
whole purpose of the (ref?) JAMS paper is to construct this compactifiation.

2. For any prime l 6= p, the cohomology sheaves

H i
c(Cht

r,p≤p
N /aZ) := Rif!Ql

where Ql denotes the constant sheaf on Chtr,p≤pN /aZ, are lisse sheaves on (X −
N)× (X −N).

Definition (Lafforgue) Let X ′ and X ′′ be smooth curves over k (a finite field), and
let r ≥ 1 be an integer. A Ql-lisse sheaf on X ′ × X ′′ is called r-negligible if and
only if each of its irreducible subquotients is a direct factor of some q′∗σ′ ⊗ q′′∗σ′′,
where σ′ and σ′′ are irreducible of rank < r on X ′ and X ′′, respectively.

σ′ X ′ ×X ′′

q′xxrrrrrr
q′′ &&MMMMMM σ′′

X ′ X ′′

A Ql-lisse sheaf on X ′×X ′′ is called r-essential if and only if none of its irreducible
subquotients is r-negligible.

Since the fiber dimension of ChtrN over (X−N)×(X−N) is 2r−2, the cohomology
only appears in dimensions 0, . . . , 4r − 4. The most interesting is 2r − 2.

Let LN = H2r−2
c (Chtr,p≤pN /aZ). This is a lisse Ql-sheaf on (X − N) × (X − N).

Set F 0LN = 0. Given F 2iLN(i ≥ 0), define:

• F 2i+1LN such that F 2i+1LN
F 2iLN

is the sum of all lisse subsheaves of LN
F 2iLN

that are
r-negligible.

• F 2i+2LN such that F 2i+2LN
F 2i+1LN

is the sum of all lisse subsheaves of LN
F 2i+1LN

that are
r-essential.

Theorem (Lafforgue) Assume r ≥ 2. Given ι : Ql → C, pick a geometric generic
point:

η // (X −N)× (X −N)
q′

uulllllllllllll
q′′

))RRRRRRRRRRRRR

X −N X −N
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Assume for all r′ with 1 ≤ r′ < r that (A → G)r′ι , (A ← G)r′ι , and (P )r
′
ι hold.

1. Each subquotient F i+1LN
F iLN

(for all i ≥ 0) can be given with an action of

(W (X −N, η)×W (X −N, η)× (eN ∗ H ∗ eN ⊗C,ι−1 Ql)

Note: W denotes Weil group. H moves between polygons, so we don’t get an
algebraic action on cohomology. Let ?

LN,ess :=

(⊕
i≥0

F 2i+2LN
F 2i+1LN

)ss

,

where ss denotes semisimplification. This is a semisimple representation of
(W (X −N, η)×W (X −N, η)× (eN ∗ H ∗ eN ⊗C,ι−1 Ql). Let

ArN,a(F,C) := {π ∈ Ar(F,C) : χF (a) = 1 ∈ C×, V KN
π = eN ∗ Vπ 6= 0}.

2.
LN,ess ∼=

⊕
π∈ArN,a(F,C)

(Lπ � ι−1(eN ∗ Vπ))(1− r),

where the (1 − r) denotes Tate twist, Lπ is pure of weight 0, of the form
q′∗σπ ⊗ q′′∗σ∨π , and σπ is irreducible of rank r on X − N , and is in Langlands
correspondence with respect to ι with π.

The proof involves heavy use of the Arthur-Selberg trace formula. [Did he really
stare at the trace formula for six years?]

This gives (A → G)rι . By the converse theorem, we have (G → A)rι . Loop around,
and get (P )rι .

I’ll try to write up notes this summer and give them to you. [ha ha, that never
happened]
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functions. (“Corvallis book”) Proceedings of Symposia in Pure Mathematics
vol 33. AMS 1977.

3. H. Jacquet, I.I. Piatetski-Shapiro, J.A. Shalika. Rankin-Selberg convolutions.
Amer. J. Math. 105 (1983) 367-464.

4. Cogdell, Piatetski-Shapiro. Publ. Math. IHES 79 (1994), and J. Reine Angew.
Math. 517 (1999)

5. EGA III

6. A. Grothendieck. (raynaud?) Revêtements Etales et Groupe Fondamental
(SGA 1). Springer

7. M. Artin, A. Grothendieck, J. L. Verdier. Théorie des Topos et Cohomologie
Etale des Schémas (SGA 4). Lecture Notes in Mathematics 224. 1969 Springer

8. A.Grothendieck. Cohomologie l-adique et Fonctions L (SGA 5). Springer Lec-
ture Notes 589. 1977.

9. P. Deligne. Cohomologie Etale (SGA 4.5). Springer Lecture Notes 569. 1976

10. Verdier’s thesis. Des categories abeliennes et des categories derivees. Asterisque
2??

11. A. Beilinson, J. Bernstein, P. Deligne. Faisceaux Pervers. Asterisque 100. 1982.

12. Gelfand, Manin

13. A. A. Beilinson - On the derived category of perverse sheaves. pp27-41 LNM
1289

14. Ekedahl

15. Serre, Local Fields (Corps Locaux)

16. Katz, Gauss Sums, Kloosterman Sums, and Monodromy.

17. Deligne, Mumford, on the irreducibility of
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