18.784 Homework Set 2

Due Friday, February 12, 2010.
Part I (QY, 2/8/10)

1. Show that $S L_{2}(\mathbb{Z})$ is generated by $S=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. (Hint: Use the Euclidean algorithm)
2. Show that the only fractional linear transformations $z \mapsto \frac{a z+b}{c z+d}$ which preserve \mathbb{H} are those with $a d-b c=1$ and $a, b, c, d \in \mathbb{R}$.

Part II (MD, 2/10/10)

1. Let $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$. Show that if a function f satisfies the CauchyRiemann equations, then $\frac{\partial f}{\partial \bar{z}}=0$.
2. Let $f(z)=y-x-3 i x^{2}$. Integrate $f(z) d z$ along the following contours:
(a) C_{1}, which is a straight path from 0 to i, followed by a straight path from i to $1+i$.
(b) C_{2}, which is a straight path from 0 to $1+i$.
