18.784 Homework Set 4

Due Friday, February 26, 2010.
Part I (AF, 2/19/10)

1. Recall that for a function f that is meromorphic in a neighborhood of a point $p \in \mathbb{C}, v_{p}(f)$ is the unique integer n such that $\frac{f(z)}{(z-p)^{n}}$ has a limit at p that is a nonzero complex number. Show that for any weakly modular function f, any $g \in P S L_{2}(\mathbb{Z})$, and any $p \in \mathbb{H}$, we have $v_{p}(f)=v_{g(p)}(f)$.
2. Recall that for $k \geq 2, E_{2 k}(\tau)$ is the normalized weight $2 k$ Eisenstein series, with q-expansion $1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}$. Prove that $E_{6} E_{8}=E_{4} E_{10}$.

Part II (BW, 2/22/10)

1. Let Γ be a lattice in \mathbb{C} generated by ω_{1} and ω_{2}, and let Γ^{\prime} be a sublattice of index n. For any choice of basis $\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\}$ of Γ^{\prime}, there exist unique $a, b, c, d \in \mathbb{Z}$ such that $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$, i.e., $\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=$ $\binom{a b}{c d}\binom{\omega_{1}}{\omega_{2}}$. Show that:
(a) The determinant of the matrix $\binom{a b}{c d}$ is n.
(b) The set of lattices of index n is represented by the following set of integer matrices $\left\{\left.\binom{a b}{0 d} \right\rvert\, a d=n, 0 \leq b<d\right\}$.
2. Let $f(z)=\sum_{n \geq 0} c(n) q^{n}$ be a modular form that is an eigenfunction of all Hecke operators T_{m}, so there exist complex numbers λ_{m} such that $T_{m} f(z)=\lambda_{m} f(z)$ for all $m>0$. Show that if $c(1)=1$, then $c(n)=\lambda_{n}$ for all $n>0$.

Part III (SK, 2/24/10)

1. Define the coefficients $c(n)$ by $j(\tau)-744=\sum_{n \geq-1} c(n) q^{n}$, where $j=$ $1728 g_{2}^{3} / \Delta$ is Dedekind's modular invariant. Use the Koike-Norton-Zagier identity

$$
j(\sigma)-j(\tau)=p^{-1} \prod_{m=1}^{\infty} \prod_{n=-1}^{\infty}\left(1-p^{m} q^{n}\right)^{c(m n)}
$$

to express $c(6)$ in terms of $c(1), c(2)$, and $c(3)$.

