18.784 Homework Set 4 Due Friday, February 26, 2010.

Part I (AF, 2/19/10)

- 1. Recall that for a function f that is meromorphic in a neighborhood of a point $p \in \mathbb{C}$, $v_p(f)$ is the unique integer n such that $\frac{f(z)}{(z-p)^n}$ has a limit at p that is a nonzero complex number. Show that for any weakly modular function f, any $g \in PSL_2(\mathbb{Z})$, and any $p \in \mathbb{H}$, we have $v_p(f) = v_{g(p)}(f)$.
- 2. Recall that for $k \ge 2$, $E_{2k}(\tau)$ is the normalized weight 2k Eisenstein series, with q-expansion $1 \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n$. Prove that $E_6E_8 = E_4E_{10}$.

Part II (BW, 2/22/10)

- 1. Let Γ be a lattice in \mathbb{C} generated by ω_1 and ω_2 , and let Γ' be a sublattice of index n. For any choice of basis $\{\omega'_1, \omega'_2\}$ of Γ' , there exist unique $a, b, c, d \in \mathbb{Z}$ such that $\omega'_1 = a\omega_1 + b\omega_2$ and $\omega'_2 = c\omega_1 + d\omega_2$, i.e., $\binom{\omega'_1}{\omega'_2} = \binom{ab}{cd}\binom{\omega_1}{\omega_2}$. Show that:
 - (a) The determinant of the matrix $\binom{ab}{cd}$ is n.
 - (b) The set of lattices of index n is represented by the following set of integer matrices $\{ \begin{pmatrix} ab \\ 0d \end{pmatrix} \mid ad = n, 0 \le b < d \}.$
- 2. Let $f(z) = \sum_{n\geq 0} c(n)q^n$ be a modular form that is an eigenfunction of all Hecke operators T_m , so there exist complex numbers λ_m such that $T_m f(z) = \lambda_m f(z)$ for all m > 0. Show that if c(1) = 1, then $c(n) = \lambda_n$ for all n > 0.

Part III (SK, 2/24/10)

1. Define the coefficients c(n) by $j(\tau) - 744 = \sum_{n \ge -1} c(n)q^n$, where $j = 1728g_2^3/\Delta$ is Dedekind's modular invariant. Use the Koike-Norton-Zagier identity

$$j(\sigma) - j(\tau) = p^{-1} \prod_{m=1}^{\infty} \prod_{n=-1}^{\infty} (1 - p^m q^n)^{c(mn)}$$

to express c(6) in terms of c(1), c(2), and c(3).