18.784 Homework Set 7

Due Friday, March 19, 2010.
Part I (AF-AZ, 3/12/10)

1. Write elements of $M P_{2}(\mathbb{Z})$ as $\left.\binom{a b}{c d}, \pm \sqrt{c z+d}\right)$. Show that the multiplication rule

$$
\left(M_{1}, \phi_{1}\right)\left(M_{2}, \phi_{2}\right)=\left(M_{1} M_{2}, \phi_{1}\left(M_{2} z\right) \phi_{2} z\right)
$$

yields a group law.
2. Let M be an even positive definite integral lattice. Check that $\Theta_{M}(z+$ $1)=\rho_{M}(T) \Theta_{M}(z)$, where $\Theta_{M}: \mathbb{H} \rightarrow \mathbb{C}\left[M^{\vee} / M\right]$ is defined by $\Theta_{M}(z)=$ $\sum_{\gamma \in M^{\vee} / M} e_{\gamma} \theta_{M+\gamma}(z)$.

Part II (SK-WS, 3/15/10)

1. Show that the points of $\mathbb{H} / \Gamma_{1}(N)$ parametrize pairs (E, P), where E is a complex elliptic curve, and P is a point in E of order N.
2. Let m and N be relatively prime positive integers. Given two pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$, where P and P^{\prime} have order N in E and E^{\prime}, respectively, we define a degree m isogeny from (E, P) to $\left(E^{\prime}, P^{\prime}\right)$ to be a degree m map $\phi: E \rightarrow E^{\prime}$ such that $\phi(P)=P^{\prime}$. If E is given by the lattice $\Lambda=\langle 1, z\rangle$ and P is given by the coset $z / N+\Lambda$, describe all of the possible $\left(E^{\prime}, P^{\prime}\right)$ arising from isogenies of degree m from (E, P) for the case m is prime.

Part III (MD-BW, 3/17/10)

1. Let f be an elliptic function of order N with respect to a lattice $\Omega \subset$ \mathbb{C}, i.e., a meromorphic function on \mathbb{C} that is invariant under translation by elements of Ω, such that the equation $f(z)=\infty$ has N solutions in each fundamental parallelogram (counted with multiplicity). Let C be a contour around the boundary of a fundamental parallelogram (chosen so that the contour does not hit any zeroes or poles of f). Show that:

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} f(z) d z & =0 \\
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z & =0
\end{aligned}
$$

2. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be distinct points in the intersection of a line and the curve $y^{2}=4 x^{3}-g^{2} x-g_{3}$. Find a formula for the third point of intersection as a rational function of x_{1}, x_{2}, y_{1}, and y_{2}.
