位相入門演習 No.6問題 extra

2013/1/25

- 1. (a) $(\mathbb{R}^n, d^{(n)})$ の部分集合 A を $A = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 = 1\}$ で定める。 $x \in \mathbb{R}^n$ に対して、 d(x, A) を求めよ。 $x \in A$ のとき、 $x \notin A$ のときで異なる表式をもつことに注意。
 - (b) $\forall a \in A$ に対して、 d(x,A) < d(x,a) が成り立つような (X,d) と A の例を挙げよ。
- 2. (問 13.8) (X,d) を距離空間、 $A,B \subset X$ とする。次を示せ。
 - (a) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$ を示せ。
 - (b) $(A \cup B)^i = A^i \cup B^i$ を示せ。
 - (c) $(A \cup B)^d = A^d \cup B^d$ を示せ。
- 3. (X,d) を距離空間とする。
 - (a) (問 13.9) $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$ もまた X 上の距離関数であることを示し、

$$(X,d)$$
 の開集合系 $\mathcal{O}_d = (X,d')$ の開集合系 $\mathcal{O}_{d'}$

を示せ。

(b) $\rho(x,y) = \min(1,d(x,y))$ もまた X 上の距離関数であることを示し、

$$(X,d)$$
 の開集合系 $\mathcal{O}_d = (X,\rho)$ の開集合系 \mathcal{O}_ρ

を示せ。

4. C[0,1] を [0,1] 上の連続関数の全体とする。2つの距離関数

$$d_{\infty}(f,g) = \sup_{0 \le t \le 1} |f(t) - g(t)|$$

$$d_2(f,g) = \left(\int_0^1 (f(t) - g(t))^2 dt\right)^{1/2}$$

に対し $(C[0,1],d_{\infty})$ の開集合系と $(C[0,1],d_2)$ の開集合系は一致するか?