FACTORIZABLE SHEAVES AND QUANTUM GROUPS

LECTURES BY DENNIS GAITSGORY, 1/24/08 AND 1/28/08

The idea is to formulate a kind of Langlands duality for quantum groups (and later, a quantum geometric Langlands conjecture). To this end, we consider the following diagram of equivalences:

Here $q \in \mathbb{C}^{\times}$ is not a root of unity, $\operatorname{Rep}(U_q(G))$ is a certain category of representations of a quantum group $U_q(G)$, and $\operatorname{Whit}(\operatorname{Gr}_{\check{G}})$ is the category of twisted Whittaker sheaves on the affine Grassmannian of the dual group \check{G} . The intermediate category FS_q is the category of factorizable sheaves of Finkelberg and Schechtman. The goal of this talk is to give a conceptual understanding of the equivalence between $\operatorname{Rep}(U_q(G))$ and FS_q using Koszul duality.

1. QUANTUM GROUPS

1.1. Recall that $U_q(G)$ is the Hopf algebra generated by E_i, F_i , and $t \in T$. Let Λ and $\check{\Lambda}$ denote the lattices of weights and coweights, respectively. Given $\check{\lambda} \in \check{\Lambda}$, let $t_{\check{\lambda}} = \check{\lambda}(q) \in T$. As usual, for any $t \in T$, we have the relation

$$tE_it^{-1} = E_i\alpha_i(t)$$

where α_i is the simple root corresponding to E_i . We also have

$$E_i F_i = F_i E_i = \frac{t_{d_i \check{\alpha}_i} - t_{d_i \check{\alpha}_i}^{-1}}{q^{d_i} - q^{-d_i}}$$

where $(\alpha_i, \alpha_i) = 2d_i$. These generators also satisfy the rest of the quantum Serre relations.

The co-multiplication is given by

$$\Delta t = t \otimes t$$
$$\Delta E_i = E_i \otimes 1 + t_{d_i \check{\alpha}_i} \otimes E_i$$
$$\Delta F_i = 1 \otimes F_i + F_i \otimes t_{d_i \check{\alpha}_i}$$

Date: February 5, 2008.

1.2. A representation of $U_q(G)$ is a Λ -graded vector space (not nec. finite dim.) with an action of this algebra. An element $t \in T$ acts via

$$tv^{\lambda} = \lambda(t)v^{\lambda}$$

Let $U_q(\mathfrak{n}^+)$ denote the sub-algebra generated by the $\{E_i\}$. Define the subcategory \mathcal{O} to be the representations on which $U_q(\mathfrak{n}^+)$ acts locally nilpotently. \mathcal{O} is a braided monoidal category.

2. Factorizable Sheaves

Let X be a smooth complex curve and $x_0 \in X$ (e.g. $X = \mathbb{A}^1, x_0 = 0$). Let $\Lambda^{pos} \subset \Lambda$ denote the positive span of simple roots.

2.1. Given $\lambda \in -\Lambda^{pos}$, let X^{λ} be the variety which classifies $-\Lambda^{pos}$ -valued divisors of total weight λ , i.e. divisors of the form $\sum \lambda_i x_i$, such that $\sum \lambda_i = \lambda$. If $\lambda = -\sum n_i \alpha_i$, then

$$X^{\lambda} = \prod_{i} X^{(n_i)}$$

where $X^{(n_i)} = \operatorname{Sym}^{n_i}(X)$ denotes the n_i -th symmetric power of the curve.

2.2. If $\lambda \in \Lambda$, let $X_{\infty \cdot x_0}^{\lambda}$ denote the ind-scheme which classifies Λ -valued divisors of the form $\sum \lambda_i x_i$, where $\sum \lambda_i = \lambda$, and $-\lambda_i \in \Lambda^{pos}$ for $x_i \neq x_0$.

2.3. If $\mu \in \Lambda$, then $X_{\leq \mu x_0}^{\lambda} \subset X_{\infty \cdot x_0}^{\lambda}$ classifies divisors of the form $\lambda_0 x_0 + \sum_{x_i \neq x_0} \lambda_i x_i$ with $\lambda_0 \leq \mu$. Note that if $\mu = 0$, then $X_{\leq \mu x_0}^{\lambda} = X^{\lambda}$.

2.4. Next we define a line bundle \mathcal{P}^{λ} on $X_{\infty \cdot x_0}^{\lambda}$. The fiber of \mathcal{P}^{λ} at $\sum \lambda_i x_i$

$$\bigotimes_{i} \omega_{x_i}^{(\lambda_i,\lambda_i+2\rho)}$$

(This was followed by a discussion of why this glues to a line bundle.)

2.5. By adding divisors, we get a map

$$\begin{array}{c} X^{\lambda_1} \times X^{\lambda_2}_{\infty \cdot x_0} \\ \downarrow \\ X^{\lambda_1 + \lambda_2}_{\infty \cdot x_0} \end{array}$$

Let $(X^{\lambda_1} \times X^{\lambda_2}_{\infty \cdot x_0})_{disj} \subset X^{\lambda_1} \times X^{\lambda_2}$ denote the open subscheme consisting of disjoint divisors. Then we have the *factorization property*:

$$\mathbb{P}^{\lambda_1 + \lambda_2} \Big|_{(X^{\lambda_1} \times X^{\lambda_2}_{\infty \cdot x_0})_{disj}} = \mathbb{P}^{\lambda_1} \boxtimes \mathbb{P}^{\lambda_2}$$

Let $\overset{\circ}{X}^{\lambda} \subset X^{\lambda}$ denote the divisors of the form $\sum \lambda_i x_i$ where each λ_i is the negative of a simple root. Then $\mathcal{P}^{\lambda}|_{\overset{\circ}{X}^{\lambda}}$ is trivial.

2.6. Next we define a basic q-twisted perverse sheaf Ω^{λ} on X^{λ} . Let $\overset{\circ}{\Omega}{}^{\lambda} = \Omega^{\lambda}|_{\overset{\circ}{X}{}^{\lambda}}$ be the sign local system. Then we set

$$\Omega^{\lambda} = j_{!*} \overset{\circ}{\Omega}^{\lambda}$$

where $j: \overset{\circ}{X}^{\lambda} \to X^{\lambda}$ is the inclusion map. These sheaves have the factorization property: $\Omega^{\lambda_1 + \lambda_2}|_{(X^{\lambda_1} \times X^{\lambda_2}_{\infty,x_0})_{disj}} = \Omega^{\lambda_1} \boxtimes \Omega^{\lambda_2}$

2.7. The fibers of Ω^{λ} have the following property:

$$(\Omega^{\lambda})_{\sum \lambda_i x_i} = \bigotimes_i (\Omega^{\lambda_i})_{\lambda_i x_i}$$

Moreover,

$$(\Omega^{\lambda})_{\lambda x} = \begin{cases} 0 & \text{unless } \lambda = w(\rho) - \rho, w \in W \\ \mathbb{C} & \text{else} \end{cases}$$

2.8. A factorizable sheaf (at x_0) is a collection of q-twisted perverse sheaves \mathcal{F}^{λ} on X_{∞,x_0}^{λ} such that

$$\mathcal{F}^{\lambda_1+\lambda_2}\big|_{(X^{\lambda_1}\times X^{\lambda_2}_{\infty\cdot x_0})_{disj}} = \Omega^{\lambda_1}\boxtimes \mathcal{F}^{\lambda_2}$$

(plus associativity conditions).

2.9. Let FS denote the category of factorizable sheaves at x_0 . Then FS $\simeq 0$ as abelian categories. For example, given the following diagram

$$(X_{=\mu x_0}^{\lambda})_{disj} \xrightarrow{j_2} X_{=\mu x_0}^{\lambda} \xrightarrow{j_1} X_{\leq \mu x_0}^{\lambda}$$

we define

$$\nabla_{\mu} = (j_1)_* (j_2)_{!*} (sign)$$
$$\Delta_{\mu} = (j_1)_! (j_2)_{!*} (sign)$$
$$L_{\mu} = (j_1)_{!*} (j_2)_{!*} (sign)$$

There are all examples of factorizable sheaves at x_0 , corresponding to the Verma, co-Verma, and irreducible representations, respectively.

2.10. Next we repeat this construction for n points. We define

$$\begin{array}{c} X_n^{\lambda} \\ \downarrow \\ X^n \end{array}$$

as the ind-scheme which classifies $(x_0^1, \ldots, x_0^n, \sum \lambda_i x_i)$ where $\sum \lambda_i = \lambda$, and λ_i is negative away from x_0^1, \ldots, x_0^n . Therefore, $X_{\infty \cdot x_0}^{\lambda}$ is the fiber over x_0 of X_1^{λ} .

2.11. Let FS_n denote the category of factorizable sheaves on X_n^{λ} . For example, FS_1 is the category of local systems on S with coefficients in FS. Also, FS_2 / FS_1 is the category local systems on $X \times X - \Delta(X)$ with coefficients in $FS \times FS$.

3. Koszul duality

In this section we state the main theorem/construction and explain how it relates to Koszul duality. From now on $X = \mathbb{C}$.

3.1. Let $\Lambda \supset \Lambda^{pos}$ be a lattice containing a semi-group of positive elements. Let A be a Λ -graded Hopf algebra. Suppose that $A_0 = k$ and A_{μ} is finite dimensional.

Note that $U_q(\mathfrak{n}^+)$ is not a Hopf algebra in the usual category of Λ -graded vector spaces. However, it is a Hopf algebra in the category of Λ -graded vector spaces equipped with a *different braiding*:

$$\mathbb{C}^{\mu} \otimes \mathbb{C}^{\nu} \xrightarrow{q^{(\mu,\nu)}} \mathbb{C}^{\nu} \otimes \mathbb{C}^{\mu} .$$

3.2. **Theorem.** To a Hopf algebra A one attaches canonically a system of (not twisted!) perverse sheaves Ω_A^{λ} on X^{λ} with the factorization property. Moreover:

- (1) $i^*_{\lambda x}(\Omega^{\lambda}_A) = (\operatorname{Tor}_A(k,k))^{\lambda}$
- (2) This construction yields an equivalence of categories between these Hopf algebras and systems of perverse sheaves on X^{λ} with the factorization property.
- (3) There is a canonical equivalence of categories between

 $(A \ddagger A^{*op})$ -modules on which $A^{>0}$ acts locally nilpotently

and

factorizable sheaves with respect to Ω_A

3.3. The dual sheaf $\mathbb{D}(\Omega_A) = \Omega_{A^*}$ is also factorizable. Therefore

i

$$\mathcal{E}^!_{\lambda x}(\Omega_A) = (\operatorname{Ext}_{A^*}(k,k))^{\lambda}$$

Moreover, the Ω^{λ} from above corresponds to $\Omega_{U_q(\mathfrak{n}^-)}$.

3.4. Let A be an augmented Λ^{pos} -graded associative algebra. Let $B = k \otimes_A k$ thought of as a DG co-algebra via the bar construction. Koszul duality yields an equivalence of categories

D(A-modules on which $A^{>0}$ acts locally nilpotently $) \simeq D(B$ -comodules)

$$M \mapsto \operatorname{Tor}_A(k, M)$$

The quasi-inverse to this functor is given by

$$N \mapsto \operatorname{Ext}_B(k, N)$$

3.5. Let us now discuss factorizable sheaves in dimension 1. Let *B* be a DG co-algebra. Let $\operatorname{Ran}(\mathbb{R})$ denote Ran space of \mathbb{R} . It is a topological space whose points are finite non-empty collections of points of \mathbb{R} . We define a complex of sheaves Ω_B on $\operatorname{Ran}(\mathbb{R})$.

$$(\Omega_B)_{\{x_1,\ldots,x_n\}} = B \otimes \ldots \otimes B$$

Since \mathbb{R} is one-dimensional and oriented (S^1 would work too), it suffices to define

$$(\Omega_B)_{\{x\}} \to (\Omega_B)_{\{x_1, x_2\}}$$

We take this map to be the co-multiplication $B \to B \otimes B$.

We have the following:

 $H^*(\operatorname{Ran}(S^1), \Omega_B) = \mathbb{H}_*(B) =$ the Hochschild homology of B

(Beilinson made a comment that one could guess the S^1 -equivariant cohomology...)

 $H^*_{S^1}(\operatorname{\mathfrak{Ran}}(S^1),\Omega_B) = \text{ the cyclic homology of }B~??$

3.6. We have a map

$$\operatorname{Ran}(\mathbb{R}) \times \operatorname{Ran}(\mathbb{R}) \to \operatorname{Ran}(\mathbb{R})$$

given by taking the union of finite subsets. Let $(\operatorname{Ran})_{disj} \subset \operatorname{Ran}(\mathbb{R}) \times \operatorname{Ran}(\mathbb{R})$ denote the open subset of pairs of disjoint points. Then Ω_B has a factorization property on $\operatorname{Ran}(\mathbb{R})$.

3.7. Let $x_0 \in \mathbb{R}$. Then $\operatorname{Ran}_{x_0}(\mathbb{R})$ is the space of finite subsets that contain x_0 . Let M be a bi-comodule over B. We define a sheaf $\Omega_{B,M}$ on $\operatorname{Ran}_{x_0}(\mathbb{R})$. We let

$$(\Omega_{B,M})_{\{x_0,\ldots,x_n\}} = M \otimes B \otimes \ldots \otimes B$$

as before, the structure maps are sufficient to define a sheaf:

$$M \to B \otimes M$$

$$M \to M \otimes B$$

Moreover, we have

$$H^*(\operatorname{Ran}_{x_0}(S^1), \Omega_{B,M}) = \mathbb{H}_*(B, M)$$

3.8. Suppose B is augmented. Then

$$H_c^*(\operatorname{Ran}(\mathbb{R}), \Omega_B) = \operatorname{Ext}_B(k, k) \simeq A$$

If M is a left B-comodule, then $\Omega_{B,M}$ is a sheaf on $\operatorname{Ran}_{x_0}(\mathbb{R}^{\leq x_0})$. Furthermore,

$$H^*(\operatorname{Ran}_{x_0}(\mathbb{R}^{\leq x_0}), \Omega_{B,M}) = \operatorname{Ext}_B(k, M)$$

3.9. For each n, we have a diagram of DG co-algebras:

$$B = k \otimes_A k \longrightarrow k \otimes_{A^n} k$$

$$\uparrow \sim$$

$$(k \otimes_A k)^{\otimes n}$$

where the vertical arrow is a quasi-isomorphism. Such a structure is called an E_2 co-algebra.

3.10. If B is an E_2 co-algebra, then Ω_B is a factorizable complex on $\operatorname{Ran}(\mathbb{R}^2)$.

3.11. On the other hand, suppose we have such an Ω_B . Then

$$H_c^*(\Omega_B|_{\operatorname{Ran}(\mathbb{R})}) = A = H_{\operatorname{Ran}(i\mathbb{R})}^*(\Omega_B)$$

which implies that Ω_B is a perverse sheaf. Now let I_1, I_2 be two disjoint open intervals in \mathbb{R} . We have a map

$$\operatorname{\mathfrak{R}an}(I_1) \times \operatorname{\mathfrak{R}an}(I_2) \to \operatorname{\mathfrak{R}an}(\mathbb{R})$$

which gives

$$H^*_c(\operatorname{Ran}(I_1), \Omega_B) \otimes H^*_c(\operatorname{Ran}(I_2), \Omega_B) \to H_c(\operatorname{Ran}(\mathbb{R}), \Omega_B)$$

Since each open interval is homeomorphic to \mathbb{R} , this yield a multiplication map $A \otimes A \to A$. Similarly, using $H^*_{\operatorname{Ran}(i\mathbb{R})}$, we get a co-multiplication $A \to A \otimes A$.

(Here Drinfeld made a comment that this picture is what originally led him to define quantum groups).