
FACTORIZABLE SHEAVES AND QUANTUM GROUPS

LECTURES BY DENNIS GAITSGORY, 1/24/08 AND 1/28/08

The idea is to formulate a kind of Langlands duality for quantum groups (and later,
a quantum geometric Langlands conjecture). To this end, we consider the following
diagram of equivalences:

Whit(GrǦ)

%%KKKKKKKKKK
Rep(Uq(G))

yyssssssssss

FSq

Here q ∈ C× is not a root of unity, Rep(Uq(G)) is a certain category of representations
of a quantum group Uq(G), and Whit(GrǦ) is the category of twisted Whittaker sheaves
on the affine Grassmannian of the dual group Ǧ. The intermediate category FSq is the
category of factorizable sheaves of Finkelberg and Schechtman. The goal of this talk
is to give a conceptual understanding of the equivalence between Rep(Uq(G)) and FSq

using Koszul duality.

1. Quantum groups

1.1. Recall that Uq(G) is the Hopf algebra generated by Ei, Fi, and t ∈ T . Let Λ
and Λ̌ denote the lattices of weights and coweights, respectively. Given λ̌ ∈ Λ̌, let
tλ̌ = λ̌(q) ∈ T . As usual, for any t ∈ T , we have the relation

tEit
−1 = Eiαi(t)

where αi is the simple root corresponding to Ei. We also have

EiFi = FiEi =
tdiα̌i

− t−1
diα̌i

qdi − q−di

where (αi, αi) = 2di. These generators also satisfy the rest of the quantum Serre
relations.

The co-multiplication is given by

∆t = t⊗ t

∆Ei = Ei ⊗ 1 + tdiα̌i
⊗ Ei

∆Fi = 1⊗ Fi + Fi ⊗ tdiα̌i
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1.2. A representation of Uq(G) is a Λ-graded vector space (not nec. finite dim.) with
an action of this algebra. An element t ∈ T acts via

tvλ = λ(t)vλ

Let Uq(n+) denote the sub-algebra generated by the {Ei}. Define the subcategory
O to be the representations on which Uq(n+) acts locally nilpotently. O is a braided
monoidal category.

2. Factorizable Sheaves

Let X be a smooth complex curve and x0 ∈ X (e.g. X = A1, x0 = 0 ). Let Λpos ⊂ Λ
denote the positive span of simple roots.

2.1. Given λ ∈ −Λpos, let Xλ be the variety which classifies −Λpos-valued divisors of
total weight λ, i.e. divisors of the form

∑
λixi, such that

∑
λi = λ. If λ = −

∑
niαi,

then
Xλ =

∏
i

X(ni)

where X(ni) = Symni(X) denotes the ni-th symmetric power of the curve.

2.2. If λ ∈ Λ, let Xλ
∞·x0

denote the ind-scheme which classifies Λ-valued divisors of
the form

∑
λixi, where

∑
λi = λ, and −λi ∈ Λpos for xi 6= x0.

2.3. If µ ∈ Λ, then Xλ
≤µx0

⊂ Xλ
∞·x0

classifies divisors of the form λ0x0 +
∑

xi 6=x0
λixi

with λ0 ≤ µ. Note that if µ = 0, then Xλ
≤µx0

= Xλ.

2.4. Next we define a line bundle Pλ on Xλ
∞·x0

. The fiber of Pλ at
∑

λixi⊗
i

ω(λi,λi+2ρ)
xi

.

(This was followed by a discussion of why this glues to a line bundle.)

2.5. By adding divisors, we get a map

Xλ1 ×Xλ2
∞·x0

��
Xλ1+λ2
∞·x0

Let (Xλ1×Xλ2
∞·x0

)disj ⊂ Xλ1×Xλ2 denote the open subscheme consisting of disjoint
divisors. Then we have the factorization property:

Pλ1+λ2
∣∣
(Xλ1×X

λ2
∞·x0

)disj
= Pλ1 � Pλ2

Let
◦
Xλ ⊂ Xλ denote the divisors of the form

∑
λixi where each λi is the negative

of a simple root. Then Pλ
∣∣ ◦
Xλ

is trivial.
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2.6. Next we define a basic q-twisted perverse sheaf Ωλ on Xλ. Let
◦
Ωλ = Ωλ

∣∣ ◦
Xλ

be
the sign local system. Then we set

Ωλ = j!∗
◦
Ωλ

where j :
◦
Xλ → Xλ is the inclusion map. These sheaves have the factorization property:

Ωλ1+λ2
∣∣
(Xλ1×X

λ2
∞·x0

)disj
= Ωλ1 � Ωλ2

2.7. The fibers of Ωλ have the following property:

(Ωλ)P
λixi

=
⊗

i

(Ωλi)λixi

Moreover,

(Ωλ)λx =
{

0 unless λ = w(ρ)− ρ,w ∈ W
C else

2.8. A factorizable sheaf (at x0) is a collection of q-twisted perverse sheaves Fλ on
Xλ
∞·x0

such that
Fλ1+λ2

∣∣
(Xλ1×X

λ2
∞·x0

)disj
= Ωλ1 � Fλ2

(plus associativity conditions).

2.9. Let FS denote the category of factorizable sheaves at x0. Then FS ' O as abelian
categories. For example, given the following diagram

(Xλ
=µx0

)disj
j2 // Xλ

=µx0

j1 // Xλ
≤µx0

we define
∇µ = (j1)∗(j2)!∗(sign)
∆µ = (j1)!(j2)!∗(sign)
Lµ = (j1)!∗(j2)!∗(sign)

There are all examples of factorizable sheaves at x0, corresponding to the Verma,
co-Verma, and irreducible representations, respectively.

2.10. Next we repeat this construction for n points. We define

Xλ
n

��
Xn

as the ind-scheme which classifies (x1
0, . . . , x

n
0 ,

∑
λixi) where

∑
λi = λ, and λi is neg-

ative away from x1
0, . . . , x

n
0 . Therefore, Xλ

∞·x0
is the fiber over x0 of Xλ

1 .

2.11. Let FSn denote the category of factorizable sheaves on Xλ
n . For example, FS1

is the category of local systems on S with coefficients in FS. Also, FS2 / FS1 is the
category local systems on X ×X −∆(X) with coefficients in FS×FS.



4 LECTURES BY DENNIS GAITSGORY, 1/24/08 AND 1/28/08

3. Koszul duality

In this section we state the main theorem/construction and explain how it relates to
Koszul duality. From now on X = C.

3.1. Let Λ ⊃ Λpos be a lattice containing a semi-group of positive elements. Let A be
a Λ-graded Hopf algebra. Suppose that A0 = k and Aµ is finite dimensional.

Note that Uq(n+) is not a Hopf algebra in the usual category of Λ-graded vector
spaces. However, it is a Hopf algebra in the category of Λ-graded vector spaces equipped
with a different braiding:

Cµ ⊗ Cν
q(µ,ν)

// Cν ⊗ Cµ .

3.2. Theorem. To a Hopf algebra A one attaches canonically a system of (not twisted!)
perverse sheaves Ωλ

A on Xλ with the factorization property. Moreover:
(1) i∗λx(Ωλ

A) = (TorA(k, k))λ

(2) This construction yields an equivalence of categories between these Hopf alge-
bras and systems of perverse sheaves on Xλ with the factorization property.

(3) There is a canonical equivalence of categories between

(A]A∗op)-modules on which A>0 acts locally nilpotently

and
factorizable sheaves with respect to ΩA

3.3. The dual sheaf D(ΩA) = ΩA∗ is also factorizable. Therefore

i!λx(ΩA) = (ExtA∗(k, k))λ

Moreover, the Ωλ from above corresponds to ΩUq(n−).

3.4. Let A be an augmented Λpos-graded associative algebra. Let B = k⊗A k thought
of as a DG co-algebra via the bar construction. Koszul duality yields an equivalence of
categories

D(A-modules on which A>0 acts locally nilpotently ) ' D(B-comodules)

M 7→ TorA(k, M)
The quasi-inverse to this functor is given by

N 7→ ExtB(k,N)

3.5. Let us now discuss factorizable sheaves in dimension 1. Let B be a DG co-algebra.
Let Ran(R) denote Ran space of R. It is a topological space whose points are finite
non-empty collections of points of R. We define a complex of sheaves ΩB on Ran(R).

(ΩB){x1,...,xn} = B ⊗ . . .⊗B

Since R is one-dimensional and oriented (S1 would work too), it suffices to define

(ΩB){x} → (ΩB){x1,x2}

We take this map to be the co-multiplication B → B ⊗B.
We have the following:
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H∗(Ran(S1),ΩB) = H∗(B) = the Hochschild homology of B

(Beilinson made a comment that one could guess the S1-equivariant cohomology...)

H∗
S1(Ran(S1),ΩB) = the cyclic homology of B ??

3.6. We have a map

Ran(R)× Ran(R) → Ran(R)

given by taking the union of finite subsets. Let (
◦

Ran)disj ⊂ Ran(R) × Ran(R) denote
the open subset of pairs of disjoint points. Then ΩB has a factorization property on
Ran(R).

3.7. Let x0 ∈ R. Then Ranx0(R) is the space of finite subsets that contain x0. Let M
be a bi-comodule over B. We define a sheaf ΩB,M on Ranx0(R). We let

(ΩB,M ){x0,...,xn} = M ⊗B ⊗ . . .⊗B

as before, the structure maps are sufficient to define a sheaf:

M → B ⊗M

M → M ⊗B

Moreover, we have

H∗(Ranx0(S
1),ΩB,M ) = H∗(B,M)

3.8. Suppose B is augmented. Then

H∗
c (Ran(R),ΩB) = ExtB(k, k) ' A

If M is a left B-comodule, then ΩB,M is a sheaf on Ranx0(R≤x0). Furthermore,

H∗(Ranx0(R≤x0),ΩB,M ) = ExtB(k, M)

3.9. For each n, we have a diagram of DG co-algebras:

B = k ⊗A k // k ⊗An k

(k ⊗A k)⊗n

∼

OO

where the vertical arrow is a quasi-isomorphism. Such a structure is called an E2

co-algebra.

3.10. If B is an E2 co-algebra, then ΩB is a factorizable complex on Ran(R2).
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3.11. On the other hand, suppose we have such an ΩB. Then

H∗
c (ΩB

∣∣
Ran(R)

) = A = H∗
Ran(iR)(ΩB)

which implies that ΩB is a perverse sheaf. Now let I1, I2 be two disjoint open intervals
in R. We have a map

Ran(I1)× Ran(I2) → Ran(R)
which gives

H∗
c (Ran(I1),ΩB)⊗H∗

c (Ran(I2),ΩB) → Hc(Ran(R),ΩB)

Since each open interval is homeomorphic to R, this yield a multiplication map A⊗A →
A. Similarly, using H∗

Ran(iR), we get a co-multiplication A → A⊗A.
(Here Drinfeld made a comment that this picture is what originally led him to define

quantum groups).
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