
Pre-Talbot seminar, lecture 3

Sheel Ganatra - The Geometric Satake Correspondence

Let G be a reductive algebraic group, and let G∨ be its Langlands
dual - it has the dual root datum. The theorem for today is that there
is an equivalence of categories

Rep(G∨) ∼= PG[[t]](Gr),

where we write Gr for the affine Grassmannian for G. For the first half
of the talk, I will explain the right side, and for the second half, I will
explain the proof.
Affine Grassmannian

There is an object called the “loop group of G,” written LG or G((t)).
It is an ind-scheme, whose complex points are in natural bijection with
G(C((t))). There is also a subscheme of “positive loops,” written L+G
or G[[t]], whose complex points are G(C[[t]]). L+G acts on LG on the
left and right, by restricting the multiplication maps. We define the
affine Grassmannian Gr = LG/L+G. This is an ind-scheme.

Example 1: Let G = GL1 = C×. Then G(C((t))) = {f : Ĉ× → C×}
This is the group of invertible formal Laurent series, and elements
can be written f(z) =

∑∞
−∞ aiz

i. G(C[[t]]) is the group of invertible
formal Taylor series, namely those series supported on non-negative
exponents with nonzero constant term. Then Gr(C) ∼= Z, because we
can uniquely get a monomial representative zn by multiplication.
Example 2: G = T a torus. Then Gr = X∗(T ) = Hom(C×, T ), i.e.,
the coweight lattice.

An interesting exercise is the affine Grassmannian of SL2.
Structure of Gr: Fix a triangular decomposition T ⊂ B ⊂ G. Pick
λ ∈ X∗(T ). We can associate to λ an element tλ ∈ Gr in the following
way. λ is a map C× → T . We postcompose with T ↪→ G and precom-
pose with the completion at zero Spec C((t)) ↪→ C×. We get a map

Spec C((t))→ G, i.e., a point t̃λ ∈ G((t)), and we let tλ := t̃λ · L+G.
L+G acts on Gr on the left, and we define Grλ := L+G · tλ to be the

orbit. This has nice properties:

(1) dimCGrλ = 2ρ(λ), for λ dominant integral.

(2) Grλ =
⋃

µ≤λ Grµ.

(3) Any point in Gr is in some Grλ.

This gives us a stratification of Gr by L+G-orbits.
Definition: Let S be a poset. A Whitney stratification of a space X
is a collection of locally finite disjoint subspaces Sα, α ∈ S such that
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(1)
⋃

α Sα = X.
(2) All Sα are smooth.
(3) Sα ∩ Sβ 6= 0⇔ α ≤ b⇔ Sα ⊂ Sβ.
(4) technical conditions for containments.

We want to look at sheaves that behave nicely with respect to a
stratification.

• A sheaf is locally constant with respect to S if we can associate
to any path on a stratum an isomorphism on the stalks, such
that the isomorphism depends only on the homotopy class of
the path.
• A complex of sheaves is constructible if

– The cohomology is locally constant with respect to S.
– The cohomology has finitely generated stalks.

• Db
c(X) is the bounded derived category of constructible sheaves.

Objects are constructible complexes, and morphisms are given
by certain zig-zags.
• The category PS(X) of perverse sheaves is the full subcategory

whose objects are A• ∈ Db
c(X) satisfying:

– (support) Hk(j∗αA) = 0 for k > −dimCSα.
– (cosupport) Hk(j!

αA) = 0 for k < dimCSα.

The conditions on perverse sheaves control the failure of transversality
of cycles with substrata. Note that the two conditions are Verdier dual,
so perverse sheaves are self-dual. In fact, the extension of Poincaré
duality to singular spaces was the initial motivation for perversity.

We have the following properties:

(1) PS(X) is abelian.
(2) There is a “truncation” functor pH0 : Db

c(X)→ PS(X)
(3) Given a stratified map j : (X,S) → (Y, T ), there is a functor

pj∗ : PS(X)→ PT (X).
(4) pj∗ := pH0Rj∗.

In PS(X), there is a unique “simple object” ICX = pH0(C[dimCX]). It

is called the intersection cohomology sheaf. Since each Grλ is stratified,
we have IC

Grλ ∈ PS(Grλ). For j : Grλ ↪→ Gr, we define ICλ =
pj∗(ICGrλ).
Part 2: the proof

We now have a bijection between irreducible representations Vλ of
G∨ and simple perverse sheaves ICλ on Gr. We’d like to promote this
to an equivalence of tensor categories. To do this, we use the Tannakian
formalism so nicely developed by John last week. [John says, “I think
Deligne might have played a bigger role.”] If we can construct a faithful
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exact tensor functor PS(Gr)→ V ect⊗, then PS(Gr) ∼= Rep G̃ for some

G̃. Then we show that G̃ is reductive, and identify its root datum with
that of G∨.

We construct the tensor product in two ways. The first is manifestly
associative, the second is manifestly commutative, and it turns out that
they coincide.

The convolution tensor structure is given by the following diagram:

Gr ×Gr
p← G((t))×Gr → G((t))

G[[t]]

× Gr
m→ Gr

Given a sheaf F � G on Gr × Gr, we pull it back to p∗(F � G) on
G((t))×Gr. This sheaf is G[[t]]×G[[t]]-equivariant, where the first copy
of G[[t]] acts on the first factor on the left, and the second copy acts
by left multiplication on the second factor and by right-inverse on the
first factor. Since the action of the second copy of G[[t]] is free, there is

a unique G[[t]]-equivariant perverse sheaf F�̃G on G((t))
G[[t]]

× Gr. The

last map m gives us F ∗ G := Rm∗(F�̃G). One can show that this is
perverse by using the fact that m is a stratified semi-small map. This
is a technical condition that amounts to counting dimensions.

The fusion tensor structure is given by a global construction due to
Beilinson and Drinfeld. We fix a point x on a smooth complex curve

X. The completed local ring is Ôx, and its field of fractions is Kx.

Choosing a coordinate at x gives isomorphisms Ôx
∼= Spec C[[t]] and

Kx
∼= Spec C((t)). We define

Grx := {G-bundles on X, with a trivialization away from x}
Beilinson and Drinfeld showed that we can make this into a family

GrX → X, where GrX parametrizes a point x ∈ X, a G-bundle on
X, and a trivialization of that G-bundle away from x. In fact, we can
make a family over X2 or Xn by choosing more points, so

GrX2 = {(x1, x2), G-bundle, trivialization on X \ {x1, x2}}
When X = A1, the fiber over a diagonal point is just Gr, and the

fiber away from the diagonal is Gr × Gr, and the families are trivial
on or away from the diagonal. We have a family of groups

Gx, cOx
//

��

GX,O

��
x // X
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and we can consider PGx,O(GrX) ∼= PL+G(Gr). We have a diagram

U
j

↪→ X ×X
i←↩ X, where U is the complement of the diagonal. Given

a GX,O ×GX,O|U -equivariant sheaf F � G on U , i∗(j∗!(F � G)) lives in
PS(Gr). This is the fusion tensor product, and it is isomorphic to the
convolution tensor product.

Now, we need a tensor functor to V ect. This is given by global
cohomology H(Gr,−). This is a fiber functor, i.e., it is faithful and
respects the tensor product. By the Tannakian formalism, we get

PS(Gr) ∼= Rep G̃ for some affine algebraic group G̃.
Given a reductive group, we can identify its root data by the weight

decomposition of its irreducibles. We would like to decompose ICλ in
a similar way. This is done using MV cycles, which arise from “semi-
infinite orbits.” For µ ∈ X∗(T ), we define Sµ = N((t))tµ ⊂ Gr, where
N is the unipotent radical of our chosen Borel subgroup B.
Theorem (Mirkovic, Vilonen)

• Sµ ∩ Grλ is nonempty if and only if µ appears in the weight
decomposition of Vλ =

⊕
α Vα, and in this case, it has pure

dimension 〈ρ, λ− µ〉.
• H(Gr,A) =

⊕
µ H2ρ(µ)(Sµ,A) for A ∈ PL+G(Gr). If A = ICλ

for some dominant integral weight λ, then this is
⊕

α H2ρ(µ)(Sµ∩
Grα, ICλ).

Therefore, H(Gr, ICλ) is a free module generated by the irreducible

components of Sα ∩Grλ.


