3次元双曲型空間の平坦曲面について

國分雅敏*

東京電機大学工学部

This talk reports on joint work with Masaaki Umehara and Kotaro Yamada.

It is well known that a minimal surface in Euclidean 3-space \mathbb{E}^3 is locally given by the real part of a *null* curve in complex Euclidean 3-space \mathbb{C}^3 . Bryant [B] proved that a surface of constant mean curvature one in hyperbolic 3-space \mathbb{H}^3 is locally the projection from the special linear group $SL(2,\mathbb{C})$ of a *null* curve to $\mathbb{H}^3 = SL(2,\mathbb{C})/SU(2)$. Any null curve in $SL(2,\mathbb{C})$ is described in terms of two meromorphic functions which are called hyperbolic Gauss map and secondary Gauss map. (cf. [UY], [S])

On the other hand, Gálvez, Martínez and Milán [GMM] proved that a flat surface in \mathbb{H}^3 is locally the projection from $\mathrm{SL}(2,\mathbb{C})$ of a *Legendre* curve to $\mathbb{H}^3 = \mathrm{SL}(2,\mathbb{C})/\mathrm{SU}(2)$.

In this talk, we show that a Legendre curve in $SL(2, \mathbb{C})$ is also described in terms of two meromorphic functions, and discuss some of its application to flat surfaces in \mathbb{H}^3 .

References

- [B] R. Bryant, Surfaces of constant mean curvature one in hyperbolic space, Astérisque 154–155, (1987), 321–347.
- [GMM] J. A. Gálvez, A. Martínez and F. Milán, Flat surfaces in the hyperbolic 3-space, Math. Ann. 316 (2000), 419–435.
- [S] A. J. Small, Surfaces of Constant Mean Curvature 1 in H³ and Algebraic Curves on a Quadric, Proc. Amer. Math. Soc. 122 (1994), 1211– 1220.
- [UY] M. Umehara and K. Yamada, Surfaces of constant mean curvature-c in $H^3(-c^2)$ with prescribed hyperbolic Gauss map, Math. Ann. **304** (1996), 203–224.

^{*}kokubu@cck.dendai.ac.jp