QUOTIENTS OF QUATERNIONIC HOLOMORPHIC SECTIONS

KATSUHIRO MORIYA

Abstract. A surface is represented as a quotient of two quaternionic holomorphic sections. Utilizing these quotients, we explain a correspondence between super-conformal surfaces and complex holomorphic null curves.

1. Introduction

The theory of quaternionic analysis on a Riemann surface by Pedit and Pinkall [3] draws an analogy between complex holomorphic functions on a Riemann surface and weakly-conformal immersions from a Riemann surface to the Euclidean four-space. A complex holomorphic section of a trivial complex line bundle over a Riemann surface is a holomorphic function. A quaternionic holomorphic section of a trivial complex quaternionic line bundle over a Riemann surface is a weakly-conformal immersion. A quotient of two complex holomorphic sections of a complex line bundle is a complex holomorphic function on a Riemann surface. Similarly, a quotient of two quaternionic holomorphic sections of a complex quaternionic line bundle is a weakly-conformal immersion from a Riemann surface to the Euclidean four-space.

A quotient of two complex holomorphic sections of a complex line bundle is a complex holomorphic function on a Riemann surface. Similarly, a quotient of two quaternionic holomorphic sections of a complex quaternionic line bundle is a weakly-conformal immersion from a Riemann surface by [3, p. 395, Example].

When we consider holomorphic one-forms, we have a similar situation. A quotient of two complex holomorphic one-forms is a complex holomorphic function on a Riemann surface. A quotient of quaternionic holomorphic one-forms is a weakly-conformal immersion. We will review quotients of quaternionic holomorphic one-forms and updated the correspondence between super-conformal surfaces and complex holomorphic null curves obtained in [4].

2. Surfaces and Quaternions

In this section, we review quaternionic analysis on a Riemann surface by Pedit and Pinkall [3].

2.1. Conformal structures. Let N be the Riemannian manifold and g_0 the Riemannian metric of N. We consider the conformal class c of Riemannian metrics on N where g_0 belongs to:

$$c = \{ g = \lambda g_0 \mid \lambda : N \to \mathbb{R}, \lambda > 0 \}.$$
We denote by \mathcal{C} the set of diffeomorphisms from N to N preserving the conformal structure c. The set \mathcal{C} becomes a Lie group in a standard way. An action of \mathcal{C} on N is naturally defined. Then \mathcal{C} becomes a Lie transformation group of N. An element of \mathcal{C} is called a conformal transformation of N.

2.2. Surfaces. We recall the description of surfaces in terms of quaternions. Let E^4 be the Euclidean four-space, g_0 the Riemannian metric of E^4 and c the conformal structure of E^4 represented by g_0. We consider a two-dimensional oriented manifold M and an immersion $f: M \to E^4$. Then a conformal structure of M is induced from c by f. The conformal structure c and the orientation of M determines a complex structure of M such that $(v, J^M v)$ is a positive orthogonal basis of a tangent space of M for every non-zero tangent vector v of M.

We relax the condition for f. Let $M = (M, J^M)$ be a Riemann surface with complex structure J^M. We assume that $f: (M, J^M) \to E^4$ is a branched immersion such that J^M is orthogonal with respect to the metric induced from g_0 by f at every immersed point. Then f is a weakly-conformal immersion. We call f a surface.

Let \mathbb{H} be the quaternions. The Euclidean four-space E^4 is identified with \mathbb{H} in a natural manner. Then $f: (M, J^M) \to \mathbb{H}$ is an immersed surface if and only if there exist smooth maps $N, R: M \to \text{Im} \mathbb{H}$ such that $* df := df \circ J^M = N df = - df R$. We see that $N^2 = R^2 = -1$. The maps N and R are called the left normal vector and the right normal vector of f. If f is branched, then N and R are not defined at branch points.

If $N = i$, then f is a complex holomorphic map from M to $\mathbb{C}^2 \cong \mathbb{C} \oplus \mathbb{C}j \cong \mathbb{H}$. Similarly, if $R = -i$, then f is a complex holomorphic map from M to $\mathbb{C}^2 \cong \mathbb{C} \oplus j\mathbb{C} \cong \mathbb{H}$. The map $f: M \to \mathbb{C} \subset \mathbb{H}$ is a complex holomorphic function if and only if $N = -R = i$. Hence we can consider a surface in \mathbb{H} as an analogue of a complex holomorphic function.

2.3. Quaternionic holomorphic structures of surfaces. We introduce the terminology of vector bundles and consider equations which characterize holomorphic sections.

For a vector bundle V over a Riemann surface, we denote by $Ω^n(V)$ the set of smooth sections of $V \otimes \bigwedge^n TM$ ($n = 0, 1, 2$).

Let H be the right trivial quaternionic line bundle over M. A smooth map $\phi: M \to H$ is considered as a smooth section of H. We fix a smooth map $N: M \to \text{Im} \mathbb{H}$ with $N^2 = -1$. We define $D^N: Ω^0(H) \to Ω^1(H)$ by

$$D^N\phi = \frac{1}{2}(d\phi + N * d\phi).$$

If $D^N\phi = 0$, then ϕ is a constant map or a surface with left normal vector N. We call D^N the quaternionic holomorphic structure of a surface with left normal vector N. We see that

$$D^N(\phi \lambda) = (D^N\phi)\lambda + \frac{1}{2}(\phi d\lambda + N\phi * d\lambda) = (D^N\phi)\lambda + \phi D^{-1} N\phi \lambda$$

$$* D^N\phi = -ND^N\phi$$

for every $\lambda: M \to \mathbb{H}$.

Let C be the trivial complex line bundle over M. If $N = i$, then $D^i|_{Ω^0(C)}$ is a complex holomorphic structure of C. Indeed,

$$D^i\phi = \frac{1}{2}(d\phi + i * d\phi) = \partial\phi$$
for every $\phi \in \Omega^0(C)$. If $\bar{\partial}\phi = 0$, then ϕ is a complex holomorphic function. We have

$$\bar{\partial}(\phi\lambda) = \bar{\partial}\lambda + \frac{1}{2}(\phi\,d\lambda + i\phi\,d\lambda) = (\bar{\partial}\phi)\lambda + \phi\,\bar{\partial}\lambda, \quad \ast\bar{\partial}\phi = -i\,\bar{\partial}\phi$$

for every $\phi \in \Omega^0(C)$ and every $\lambda: M \to \mathbb{C}$.

3. Quotients of holomorphic sections

We review quotients of quaternionic holomorphic sections and update the correspondence between super-conformal surfaces and complex holomorphic null curves.

3.1. Quotients of surfaces. We assume that $\phi \in \Omega^0(H)$ is nowhere vanishing and $\lambda: M \to \mathbb{H}$ is a smooth map. If ϕ and $\phi\lambda$ are surfaces with left normal vector N, then the map $\lambda: M \to \mathbb{H}$ is a surface with left normal vector $\phi^{-1}N\phi$. Indeed, $D^N(\phi\lambda) = \phi D^{\phi^{-1}N}\phi\lambda = 0$. Since $\lambda = \phi^{-1}(\phi\lambda)$, we may say that a quotient of two surfaces with the same left normal vector is a surface.

This is an analogue of the fact that if ξ and η are complex holomorphic functions, then $\xi^{-1}\eta$ is a complex holomorphic function.

3.2. Quotients of quaternionic holomorphic one-forms. We say that a quaternionic-valued one-form ω is quaternionic holomorphic with respect to N if $d\omega = 0$ and $\ast\omega = \Omega\omega$. If ω is nowhere vanishing, then there exists a map $R: M \to \text{Im} \mathbb{H}$ such that $N\omega = -\omega R$. By the definition, $R^2 = -1$. We assume that ω is a nowhere-vanishing, quaternionic holomorphic one-form with respect to N such that $\ast\omega = \Omega\omega = -\omega R$. Let $\lambda: M \to \mathbb{H}$ be a smooth branched immersion such that $\omega\lambda$ is closed. Then

$$d(\omega\lambda) = -\omega \wedge d\lambda = 0.$$

In a similar way to the proof of Proposition 16 in [1], we see that λ is a surface with its left normal vector $-R$.

If ω is a complex holomorphic one-form, then $N = -R = i$. Let $\lambda: M \to \mathbb{C}$ be a smooth map such that $\omega\lambda$ is closed. Then $d(\omega\lambda) = -\omega \wedge d\lambda = 0$. This shows that $d\lambda$ is a complex holomorphic one-form. Hence λ is a complex holomorphic function.

3.3. The Weierstrass representation. Let $N, R: M \to \text{Im} \mathbb{H}$ be maps which are the left normal vector and the right normal vector of a surface $f: (M, J^M) \to \mathbb{H}$ respectively. Let λ be a smooth branched immersion. If $df\lambda$ is closed, then λ is a surface with left normal vector $-R$. If $df\lambda$ is exact, then there exists a surface $g: (M, J^M) \to \mathbb{H}$ with left normal vector N such that $dg = df\lambda$. The equation $dg = df\lambda$ is considered as a Weierstrass representation of g. The relation between left normal vectors and right normal vectors are listed in Table 1.

<table>
<thead>
<tr>
<th>left normal</th>
<th>right normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>N_f</td>
</tr>
<tr>
<td>g</td>
<td>N_f</td>
</tr>
<tr>
<td>λ</td>
<td>$-R_f$</td>
</tr>
</tbody>
</table>

Table 1. Left normal vectors and right normal vectors
3.4. Super-conformal surfaces and complex holomorphic null curves. We recall a characterization of super-conformal surfaces.

Let \(f : (M, J^M) \to \mathbb{H} \) be a surface. We assume that there exist maps \(N, R : M \to \mathbb{H} \) such that \(N \) and \(R \) are the left normal vector and the right normal vector of \(f \) respectively. If \(*dN + N\,dN = 0 \) or \(*dR + RdR = 0 \), then \(f \) is super-conformal by \cite[Theorem 5]{1}. When we replace \(N \) and \(R \) to \(-N \) and \(-R \) respectively, then we have the equations \(*dN + N\,dN = 0 \) and \(*dR + RdR = 0 \). If \(*dN + N\,dN = 0 \) or \(*dR + RdR = 0 \), then \(f \) is minimal by \cite[Proposition 8]{1}. The equation \(*dN + N\,dN = 0 \) implies the equation \(*dR + R\,dR = 0 \) and vise versa. Hence, if the left normal vector of a minimal surface \(f : (M, J^M) \to \mathbb{H} \) is the same as that of a minimal surface \(g : (M, J^M) \to \mathbb{H} \), then the quaternionic-valued function \(\lambda \) defined by \(dg = df \lambda \) is a super-conformal surface by Table 1.

A combination of two minimal surfaces is a complex holomorphic map. A complex holomorphic curve \(\psi : M \to \mathbb{C}^4 \) is called null if \(\sum_{n=0}^4 \partial_\psi_n \otimes \partial_\psi_n = 0 \). We identify \(\mathbb{C}^4 \) with \(\mathbb{C} \otimes \mathbb{H} \). Let \(f = \text{Re} \, \psi : M \to \mathbb{H} \) and \(g = \text{Im} \, \psi : M \to \mathbb{H} \). Then \(\psi \) is null if and only if \(f \) and \(g \) are minimal surfaces such that \(*df = -dg \). The minimal surface \(f \) has the same left normal vector and the same right normal vector as the minimal surface \(g \) has.

Let \(g_0 + ig_1 : M \to \mathbb{C}^4 \) be a complex holomorphic null curve with minimal surfaces \(g_0 \) and \(g_1 \). Then the map \(\lambda \) defined by \(dg_1 = d\bar{g}_0 \lambda \) is a super-conformal surface. It is not trivial whether we can construct a complex holomorphic null curve from a given super-conformal surface. The following theorem is an answer to this problem.

Theorem 1. Let \(N : M \to \text{Im} \, \mathbb{H} \) be a map which is the left normal vector of a super-conformal surface \(f : M \to \mathbb{H} \). We define a map \(g_0 : M \setminus \{p \mid (dN)_p = 0\} \to \mathbb{H} \) and \(g_1 : M \setminus \{p \mid (dN)_p = 0\} \to \mathbb{C}^4 \) by \(df = dN \, g_0 \) and \(g_1 = N \, g_0 - f \). Then \(g_0 + g_1 : M \setminus \{p \mid (dN)_p = 0\} \to \mathbb{C}^4 \) is a complex holomorphic null curve such that \(*dg_0 = -N \, dg_0 \).

Conversely, let \(g_0 + ig_1 : M \to \mathbb{C}^4 \) be a complex holomorphic null curve such that \(*dg_0 = -N \, dg_0 \). Then \(f = N \, g_0 - g_1 : M \to \mathbb{H} \) is a super-conformal surface with \(*df = N \, df \).

This is a variant of \cite[Theorem 1]{4}. Similar result is obtained in Dajczer and Tojeiro \cite{2}.

Proof. Let \(f : M \to \mathbb{H} \) be a super-conformal surface with \(*df = N \, df \). Then \(N \) is a surface with left normal vector \(N \) and right normal vector \(-N \). A quaternionic-valued function \(g_0 \) defined by \(df = dN \, g_0 \) is a minimal surface with left normal vector \(-N \). The domain of \(g_0 \) is \(M \setminus \{p \mid (dN)_p = 0\} \). Since \(dg_1 = N \, dg_0 = -* \, dg_0 \), the map \(g_1 \) is a minimal surface and the map \(g_0 + g_1 \) is a complex holomorphic null curve.

Let \(g_0 + g_1 : M \to \mathbb{C}^4 \) be a complex holomorphic null curve such that \(*dg_0 = -N \, dg_0 \). Since \(*dg_0 = -dg_1 \), we have \(df = dN \, g_0 + N \, dg_0 - dg_1 = dN \, g_0 \). The map satisfies the equation \(*dN = N \, dN \). Hence \(f \) is a surface with left normal vector \(N \). Hence \(f \) is a super-conformal surface. \(\square \)

References

(K. Moriya) Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, JAPAN

E-mail address: moriya@math.tsukuba.ac.jp