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Motivation

To understand the behavior of Brownian motion among randomly
distributed obstacles.
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Motivation

To understand the behavior of Brownian motion among randomly
distributed obstacles.

—— Brownian motion conditioned to avoid the obstacles.

— kill the Brownian motion by a random potential and condition
to survive.
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1. Setting

. <{wt}t20 , PX> : kA-Brownian motion on RY

. (w = Z 6w,,IP’) : Poisson point process on RY
i

with unit intensity

Poisson point process with unit intensity is a random collection of
points satisfying

1. If AN B =0, then w(A) and w(B) are independent.

2. P(w(A) = k) = eAl|¢|!k. (P(w(A) = 0) = e~ Al).
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1. Setting

° ({Wt}t>0 , PX> . kA-Brownian motion on R?
° <w = Z 5w,.,IF’) : Poisson point process on RY
i with unit intensity

Potential
For an integrable and bounded function v,

V(x,w) = Z v(x — wj).

i

(Typically v(x) = 1g(0,1)(x) or |x|7* A1 with a > d.)
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Path measures

We define two measures using the random potential V/(x,w).
The first one is the quenched path measure:

exp {—/OT V (ws,w) dS} Po( - )
E {exp{—/oT V(ws,w) dSH |

QT,w( ’ ) =

The configuration is fixed and Brownian motion tries to avoid w;'s.
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The second is the annealed path measure:
T
exp {—/ V(ws,w) ds} P® Py(-)
0

E® E [exp {_/OT V(we, ) dsH |

The configuration is not fixed and hence Brownian motion and w;'s
try to avoid each other.

Qr(-) =
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2. Heuristics

Variational principle

E® Eo [exp{—/OT V(ws,w) ds}]

lo

= exp {— ( inf){energy + entropy}} (T — ),

where
-
energy —/ V(ws,w) ds,

0
entropy = — log(“probability” of the sample (w,w))
= Ent(w) + Ent(w).

— only miniimizers are observed under the conditional measure.
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3. Light tailed case

Donsker and Varadhan (1975)

When v(x) = o(|x|972) as |x| — oo,

E® E [exp {_/OT V(ws, w) dsH

— exp {—c(d, k)T (1 + 0(1))} (T — o0),

where

{ c(d,k):= inf  {|U]+r\1(U)},

UCRY : open
A1(U) : Dirichlet smallest eigenvalue of — A in U.
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3. Light tailed case

Donsker and Varadhan (1975)

When v(x) = o(|x|972) as |x| — oo,

E® E [exp {_/OT V(ws, w) dsH

— exp {—c(d, k)T (1 + 0(1))} (T — o0),

where
d,k):= inf Ul + rA1(U)},
cldr) = inf {|U]+ A(U))
A1(U) : Dirichlet smallest eigenvalue of — A in U.
Remark

The minimizer of inf {|U| + kA1(U)} is B(x, Ro)O
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Suppose v = 1p(g1). If w(U) =0 and wjy 17 C U, then

T
energy = / V(ws,w) ds = 0.
0
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T
energy = / V(ws,w) ds = 0.
0

The entropy of this strategy is
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Suppose v = 1p(g1). If w(U) =0 and wjy 77 C U, then

-
energy = / V(ws,w) ds = 0.
0

The entropy of this strategy is

entropy = — log{P(w(U) = 0)Po(wjo, 7} C U)}

(1) ~ U+ kA (U)T.

1. P(w(U) =0) = e 1Yl (by definition).

2. Po(wjo, 1) C U) %8 exp{—rA1(U)T} (the Kac formula).

23



Suppose v = 1p(g1). If w(U) =0 and wyy 11 C U, then

-
energy = / V(ws,w) ds = 0.
0

The entropy of this strategy is

entropy = — log{P(w(U) = 0)Po(wjo, 7} C U)}

1) ~ U] + kAL (U)T.

Using the scaling U — Tan U', we get

Ul + kM (U)T = Ta2 {|U] + kA (U)}

The right-hand side of (1) is minimized by U = B(x, Ry T%ﬂ).
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Schmock (1990), Sznitman (1991), and Povel (1999)

When v has a compact support, there exist 6(T) — 0 (T — o0)

and
Dr(w) € B(0, T#2(Ry + 6(T)))

such that

T—oo

QT (w[(), 71 € B(Dr(w), Td%z(Ro + 5(T)))> — 1.
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4. Heavy tailed case

Pastur (1977)
When v(x) ~ [x|7* (d < o < d + 2),

E® E [exp {—/OT V(ws, w) ds}]

— exp {—3175(1 + o(1))} (T — ),

where d
a1 == |9B(0, 1)|r(1 + E)'
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Note that a; is independent of k. In fact, Pastur proved

E@ & [exp{_/oT Viwe,w) o |

%8 [exp {— V/(0,w) T}]
= exp {—al T%(l + o(l))} :

This means that w = 0 is the best strategy but that the entropy
Ent(w = 0) is negligible.
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Note that a; is independent of k. In fact, Pastur proved

E@ & [exp{_/oT Viwe,w) o |

%8 [exp {— V/(0,w) T}]
= exp {—al T%(l + o(l))} :

This means that w = 0 is the best strategy but that the entropy
Ent(w = 0) is negligible.

Moreover, the variational principle holds for the second line:

a Ta = inf {energy + Ent(w)} .
w, w=0
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inf o {energy + Ent(w)} .

w, W=
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inf o {energy + Ent(w)} .

w, W=
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Problem: What is the correct scale for the Brownian motion?
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Problem: What is the correct scale for the Brownian motion?

—— We need to look at lower order terms.
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Theorem (F. in preparation)
When v(x) = [x|7* A1l withd < o < d + 2,

E® E [exp{—/OT V(ws,w) dsH

= exp {—al Ta— (a2 + 0(1))Ta+2i 2}

as T — oo, where

= { [ HIT60P + e(d, ) x () dx},

||¢||
&(d, o) = 30B(0, 1) (2£2)
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This theorem indicates that
a+d—2

Ent(w) < T 2

We expect that this entropy measures the cost for Brownian
motion to stay in a small region.
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This theorem indicates that

at+d—2

Ent(w) < T 2

We expect that this entropy measures the cost for Brownian
motion to stay in a small region.

By the Brownian scaling, we know that
log Po(wjo,7] C B(0,R)) < —TR™?

and hence
a—d+2
Rcorrect =T 4
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Thank you!



Theorem (F. in preparation)

Suppose v(x) = |[x|7* A1 with d < o < d 4+ 2. Then for P-almost

every w,

E [exp{—/oT Vo(ws) ds}]

= exp {—ql T(log T)faTid —(q2+0(1)) T(log T)

as T — oo, where

dfa—d QT_da
ql_oz ad

a—d+2

a—d Td
CD—( od ai
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Theorem (F. in preparation)
Suppose v(x) = |x|7* A1 with d < o < d +2. Then,

N = exp {~0A755 — (6 + o(1)A e |

as A | 0, where




the below is the
section along this line

Heavy tailed case

o(T Ta(T)> T/B(T)
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the below is the
section along this line

Light tailed case

Ta(T) < T/B(T)?
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