Second order asymptotics for Brownian motion among heavy tailed Poissonian potentials

Ryoki Fukushima

Tokyo Institute of Technology

The first CREST-SBM Conference "Random Media" January 24, 2010

Motivation

To understand the behavior of Brownian motion among randomly distributed obstacles.

Motivation

To understand the behavior of Brownian motion among randomly distributed obstacles.

---- Brownian motion conditioned to avoid the obstacles.

Motivation

To understand the behavior of Brownian motion among randomly distributed obstacles.

- ---- Brownian motion conditioned to avoid the obstacles.
- kill the Brownian motion by a random potential and condition to survive.

1. Setting

- $ullet \left(\left\{ w_t
 ight\}_{t \geq 0}, P_{\mathsf{x}}
 ight) : \kappa \Delta ext{-Brownian motion on } \mathbb{R}^d$
- ullet $\left(\omega=\sum_i \delta_{\omega_i}, \mathbb{P}
 ight)$: Poisson point process on \mathbb{R}^d with unit intensity

Poisson point process with unit intensity is a random collection of points satisfying

- 1. If $A \cap B = \emptyset$, then $\omega(A)$ and $\omega(B)$ are independent.
- 2. $\mathbb{P}(\omega(A) = k) = e^{-|A|} \frac{|A|^k}{k!}$. $(\mathbb{P}(\omega(A) = 0) = e^{-|A|})$.

1. Setting

- $\left(\left\{w_{t}\right\}_{t\geq0},P_{x}\right): \kappa\Delta$ -Brownian motion on \mathbb{R}^{d}
- ullet $\left(\omega=\sum_i \delta_{\omega_i}, \mathbb{P}
 ight)$: Poisson point process on \mathbb{R}^d with unit intensity

Potential

For an integrable and bounded function v,

$$V(x,\omega):=\sum_{i}v(x-\omega_{i}).$$

(Typically
$$v(x) = 1_{B(0,1)}(x)$$
 or $|x|^{-\alpha} \wedge 1$ with $\alpha > d$.)

Path measures

We define two measures using the random potential $V(x,\omega)$. The first one is the quenched path measure:

$$Q_{T,\omega}(\,\cdot\,) = \frac{\exp\left\{-\int_0^T V(w_s,\omega)\,ds\right\}P_0(\,\cdot\,)}{E_0\left[\exp\left\{-\int_0^T V(w_s,\omega)\,ds\right\}\right]}.$$

The configuration is fixed and Brownian motion tries to avoid ω_i 's.

The second is the annealed path measure:

$$Q_{T}(\,\cdot\,) = \frac{\exp\left\{-\int_{0}^{T}V(w_{s},\omega)\,ds\right\}\mathbb{P}\otimes P_{0}(\,\cdot\,)}{\mathbb{E}\otimes E_{0}\left[\exp\left\{-\int_{0}^{T}V(w_{s},\omega)\,ds\right\}\right]}.$$

The configuration is not fixed and hence Brownian motion and ω_i 's try to avoid each other.

2. Heuristics

Variational principle

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right]$$

$$\stackrel{\log}{\sim} \exp \left\{ - \inf_{(w, \omega)} \left\{ \text{energy} + \text{entropy} \right\} \right\} \quad (T \to \infty),$$

where

$$\begin{cases} \text{ energy } &= \int_0^T V(w_s, \omega) \, ds, \\ \text{ entropy } &= -\log(\text{"probability" of the sample } (w, \omega)) \\ &= \operatorname{Ent}(\omega) + \operatorname{Ent}(w). \end{cases}$$

— only minimizers are observed under the conditional measure.

3. Light tailed case

Donsker and Varadhan (1975)

When
$$v(x) = o(|x|^{-d-2})$$
 as $|x| \to \infty$,

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right]$$

$$= \exp \left\{ -c(d, \kappa) T^{\frac{d}{d+2}}(1 + o(1)) \right\} \quad (T \to \infty),$$

where

$$\left\{ \begin{array}{l} c(d,\kappa) := \inf_{U \subset \mathbb{R}^d : \mathrm{open}} \{|U| + \kappa \lambda_1(U)\}, \\ \lambda_1(U) : \text{ Dirichlet smallest eigenvalue of } -\Delta \text{ in } U. \end{array} \right.$$

3. Light tailed case

Donsker and Varadhan (1975)

When
$$v(x) = o(|x|^{-d-2})$$
 as $|x| \to \infty$,

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right]$$

$$= \exp \left\{ -c(d, \kappa) T^{\frac{d}{d+2}} (1 + o(1)) \right\} \quad (T \to \infty),$$

where

$$\left\{ \begin{array}{l} c(d,\kappa) := \inf_{U \subset \mathbb{R}^d : \mathrm{open}} \{|U| + \kappa \lambda_1(U)\}, \\ \lambda_1(U) : \text{ Dirichlet smallest eigenvalue of } -\Delta \text{ in } U. \end{array} \right.$$

Remark

The minimizer of $\inf\{|U| + \kappa \lambda_1(U)\}\$ is $B(x, R_0)$.

Suppose
$$v=1_{B(0,1)}.$$
 If $\omega(U)=0$ and $w_{[0,T]}\subset U$, then

energy =
$$\int_0^T V(w_s, \omega) ds = 0$$
.

Suppose
$$v=1_{B(0,1)}.$$
 If $\omega(U)=0$ and $w_{[0,T]}\subset U$, then

energy =
$$\int_0^T V(w_s, \omega) ds = 0$$
.

The entropy of this strategy is

(1)
$$\begin{aligned} & \text{entropy} = -\log\{\mathbb{P}(\omega(U) = 0)P_0(w_{[0,T]} \subset U)\} \\ & \sim |U| + \kappa \lambda_1(U)T. \end{aligned}$$

Suppose $v=1_{B(0,1)}$. If $\omega(U)=0$ and $w_{[0,T]}\subset U$, then

energy =
$$\int_0^T V(w_s, \omega) ds = 0$$
.

The entropy of this strategy is

(1)
$$\begin{aligned} & \text{entropy} = -\log\{\mathbb{P}(\omega(U) = 0)P_0(w_{[0,T]} \subset U)\} \\ & \sim |U| + \kappa \lambda_1(U)T. \end{aligned}$$

- 1. $\mathbb{P}(\omega(U) = 0) = e^{-|U|}$ (by definition).
- 2. $P_0(w_{[0,T]} \subset U) \stackrel{\log}{\sim} \exp\{-\kappa \lambda_1(U)T\}$ (the Kac formula).

Suppose $v=1_{B(0,1)}$. If $\omega(U)=0$ and $w_{[0,T]}\subset U$, then

energy =
$$\int_0^T V(w_s, \omega) ds = 0$$
.

The entropy of this strategy is

(1)
$$\begin{aligned} & \text{entropy} = -\log\{\mathbb{P}(\omega(U) = 0)P_0(w_{[0,T]} \subset U)\} \\ & \sim |U| + \kappa \lambda_1(U)T. \end{aligned}$$

Using the scaling $U \to T^{\frac{1}{d+2}}U'$, we get

$$|U| + \kappa \lambda_1(U)T = T^{\frac{d}{d+2}} \left\{ |U'| + \kappa \lambda_1(U') \right\}.$$

The right-hand side of (1) is minimized by $U = B(x, R_0 T^{\frac{1}{d+2}})$.

Schmock (1990), Sznitman (1991), and Povel (1999)

When v has a compact support, there exist $\delta(T) \to 0 \ (T \to \infty)$ and

$$D_T(\omega) \in B(0, T^{\frac{1}{d+2}}(R_0 + \delta(T)))$$

such that

$$Q_T\left(w_{[0,\,T]}\subset B\big(D_T(\omega),\,T^{\frac{1}{d+2}}(R_0+\delta(T))\big)\right)\xrightarrow{T\to\infty} 1.$$

4. Heavy tailed case

Pastur (1977)

When $v(x) \sim |x|^{-\alpha}$ $(d < \alpha < d + 2)$,

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ -\int_0^T V(w_s, \omega) \, ds \right\} \right]$$

$$= \exp \left\{ -a_1 T^{\frac{d}{\alpha}} (1 + o(1)) \right\} \quad (T \to \infty),$$

where

$$a_1 := |\partial B(0,1)| \Gamma \Big(1 + \frac{d}{\alpha}\Big).$$

Note that a_1 is independent of κ . In fact, Pastur proved

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right] \ \stackrel{\log}{\sim} \mathbb{E} \left[\exp \left\{ - V(0, \omega) T \right\} \right] \ = \exp \left\{ - a_1 T^{\frac{d}{lpha}} (1 + o(1)) \right\}.$$

This means that w = 0 is the best strategy but that the entropy $\operatorname{Ent}(w = 0)$ is negligible.

Note that a_1 is independent of κ . In fact, Pastur proved

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right] \ \stackrel{\log}{\sim} \mathbb{E} \left[\exp \left\{ - V(0, \omega) T \right\} \right] \ = \exp \left\{ - a_1 T^{\frac{d}{lpha}} (1 + o(1)) \right\}.$$

This means that w=0 is the best strategy but that the entropy $\operatorname{Ent}(w=0)$ is negligible.

Moreover, the variational principle holds for the second line:

$$a_1 T^{\frac{d}{\alpha}} = \inf_{\omega, w = 0} \left\{ \text{energy} + \text{Ent}(\omega) \right\}.$$

Problem: What is the correct scale for the Brownian motion?

Problem: What is the correct scale for the Brownian motion?

 \longrightarrow We need to look at lower order terms.

Theorem (F. in preparation)

When
$$v(x) = |x|^{-\alpha} \wedge 1$$
 with $d < \alpha < d + 2$,

$$\mathbb{E} \otimes E_0 \left[\exp \left\{ - \int_0^T V(w_s, \omega) \, ds \right\} \right]$$

$$= \exp \left\{ -a_1 T^{\frac{d}{\alpha}} - (a_2 + o(1)) T^{\frac{\alpha + d - 2}{2\alpha}} \right\}$$

as $T \to \infty$, where

$$\begin{cases} a_2 = \inf_{\|\phi\|_2 = 1} \left\{ \int \kappa |\nabla \phi(x)|^2 + \tilde{c}(d, \alpha) |x|^2 \phi(x)^2 dx \right\}, \\ \tilde{c}(d, \alpha) = \frac{1}{2} |\partial B(0, 1)| \Gamma\left(\frac{\alpha + 2}{d}\right) \end{cases}$$

This theorem indicates that

$$\operatorname{Ent}(w) \asymp T^{\frac{\alpha+d-2}{2\alpha}}.$$

We expect that this entropy measures the cost for Brownian motion to stay in a small region.

This theorem indicates that

$$\operatorname{Ent}(w) \asymp T^{\frac{\alpha+d-2}{2\alpha}}.$$

We expect that this entropy measures the cost for Brownian motion to stay in a small region.

By the Brownian scaling, we know that

$$\log P_0(w_{[0,T]} \subset B(0,R)) \simeq -TR^{-2}$$

and hence

$$R_{\text{correct}} \asymp T^{\frac{\alpha-d+2}{4\alpha}}$$
.

$$a_2 = \inf_{\|\phi\|_2 = 1} \left\{ \int \kappa |\nabla \phi(x)|^2 + \tilde{c}(d, \alpha) |x|^2 \phi(x)^2 dx \right\}$$

Thank you!

Theorem (F. in preparation)

Suppose $v(x) = |x|^{-\alpha} \wedge 1$ with $d < \alpha < d+2$. Then for \mathbb{P} -almost every ω ,

$$E_0 \left[\exp \left\{ - \int_0^T V_{\omega}(w_s) \, ds \right\} \right]$$

$$= \exp \left\{ -q_1 T (\log T)^{-\frac{\alpha - d}{d}} - (q_2 + o(1)) T (\log T)^{-\frac{\alpha - d + 2}{2d}} \right\}$$

as $T \to \infty$, where

$$\begin{cases} q_1 = \frac{d}{\alpha} \left(\frac{\alpha - d}{\alpha d} \right)^{\frac{\alpha - d}{d}} a_1^{\frac{\alpha}{d}}, \\ q_2 = \left(\frac{\alpha - d}{\alpha d} a_1 \right)^{\frac{\alpha - d + 2}{2d}} a_2. \end{cases}$$

Theorem (F. in preparation)

Suppose $v(x) = |x|^{-\alpha} \wedge 1$ with $d < \alpha < d + 2$. Then,

$$N(\lambda) = \exp\left\{-\ell_1 \lambda^{-rac{d}{lpha-d}} - (\ell_2 + o(1)) \lambda^{-rac{lpha+d-2}{2(lpha-d)}}
ight\}$$

as $\lambda \downarrow 0$, where

$$\left\{ \begin{array}{l} \ell_1 := \frac{\alpha - d}{\alpha} \left(\frac{d}{\alpha}\right)^{\frac{d}{\alpha - d}} a_1^{\frac{\alpha}{\alpha - d}}, \\ \ell_2 := a_2 \left(\frac{da_1}{\alpha}\right)^{\frac{\alpha + d - 2}{2(\alpha - d)}}. \end{array} \right.$$

