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Setting

▶ (S := (Sn)n≥0,Px): SRW on Zd starting at x ∈ Zd ;

▶ (ω = (ωx)x∈Zd ,P): IID, Bernoulli(p).

Let O = {x ∈ Zd : ωx = 0}. The random walk is killed upon
hitting O:

τO := inf{n ≥ 0 : Sn ∈ O}.

The question is how S (and O) behaves conditioned on {τO > N},
i.e., under the measure

µN((S ,O) ∈ ·) := P⊗P((S ,O) ∈ · | τO > N).

This is called the annealed law since the average is taken over the
environment.
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Setting

In particular, we are interested in the law of the random walk range

S[0,N] := {Si : 0 ≤ i ≤ N}

under the conditioned measure µN = P⊗P(· | τO > N).

The range is “intrinsic” to µN . Since

P(τO > N) = P(S[0,N] ∩O = ∅) = p|S[0,N]|,

one can integrate out the O-marginal to find

µN(S ∈ ·) =
E
[
p|S[0,N]| : S ∈ ·

]
E
[
p|S[0,N]|

] .

This can be viewed as a self-attractive polymer model.
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Earlier works 1: partition function

The first result I mention is due to Donsker–Varadhan (1979).

Theorem
For d ≥ 2,

P⊗P(τO > N) = exp
{
−c(d , p)N

d
d+2 (1 + o(1))

}
,

with c(d , p) = inf
U
{|U| log(1/p) + λ(U)},

where λ(U) is the principal Dirichlet eigenvalue of − 1
2d∆ in U.

Remark
Due to the Faber–Krahn isoperimetric inequality, the infimum is
achieved by a ball B(0; ϱ1).
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Earlier works 1: partition function

The proof roughly goes as follows:

P⊗P(τO > N) =
∑
U

P(O ∩ U = ∅)P(S[0,N] = U)

≈ max
U

p|U| exp{−Nλ(U)}

= exp

{
−N

d
d+2 inf

U
{|U| log(1/p) + λ(U)}

}
.

The above approximation is a kind of Laplace principle.

▶ Donsker–Varadhan proved it by the large deviation principle,

▶ Antal (1995) gave another proof by Sznitman’s “method of
enlargement of obstacles”.

Anyway, this “indicates” that the best strategy —to stay in a ball

of radius ϱN = ϱ1N
1

d+2— dominates others.
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Earlier works 2: confinement property

This “indication” has been made rigorous by Sznitman (1991),
Bolthausen (1994) and Povel (1999) in the following stronger form:

Theorem (Confinement property)

For any d ≥ 2, there exist ϵ1 ∈ (0, 1) and xN = xN(O) ∈ B(0; ϱN)
such that

lim
N→∞

µN

(
S[0,N] ⊂ B(xN ; ϱN + ϱϵ1N )

)
= 1.

Remark
Why “stronger”? Because the large deviation principle only tells us
that the random walk spends most of the time in a ball B(x ; ϱN).
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Earlier works 2: confinement property

•0

•

I

R

ϱN = ϱ1N
1

d+2

xN

SN

This picture is a bit misleading since almost all the sites should be

visited N/N
d

d+2 = N
2

d+2 times.
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Earlier works 2.5: clearing/covering ball

In dimension two, we know more.

Proposition (Ball clearing: Sznitman (1991))

Let d = 2. Then for any ϵ ∈ (0, 1),

lim
N→∞

µN(O ∩ B(xN ; (1− ϵ)ϱN) = ∅) = 1.

Proposition (Ball covering: Bolthausen (1994))

Let d = 2. Then for any ϵ ∈ (0, 1),

lim
N→∞

µN

(
B(xN ; (1− ϵ)ϱN) ⊂ S[0,N]

)
= 1.

Bolthausen used this in his proof of the confinement property and
he conjectured that this remains true for d ≥ 3.
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Main result 1: ball covering in d ≥ 3

Theorem (Ball covering: Ding, F., Sun, Xu (2018))

Let d ≥ 2, and let ϱN and xN be as in the confinement property.
Then there exists ϵ2 ∈ (0, 1) such that

lim
N→∞

µN

(
B(xN ; ϱN − ϱϵ2N ) ⊂ S[0,N]

)
= 1.

Remark
This confirms Bolthausen’s conjecture in 1994. However, our proof
relies on the confinement property and hence does not give a way
to extend Bolthausen’s proof of confinement to d ≥ 3. Recently,
Berestycki and Cerf announced a proof of the ball covering without
assuming the confinement (arXiv:1811.04700).
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Main result 2: boundary size

The confinement property and the ball covering theorem implies

∂S[0,N] ⊂ B(xN ; ϱN + ϱϵ1N ) \ B(xN ; ϱN − ϱϵ2N ).

The following theorem is a step toward understanding the surface
fluctuation:

Theorem (Boundary size: Ding, F., Sun, Xu (2018))

Let d ≥ 2, and let ϱN be as in the confinement property. Then
there exists ϵ3 > 0 such that

lim
N→∞

µN

(
|∂S[0,N]| ≤ ϱd−1

N (log ϱN)
ϵ3
)
= 1.
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A consequence: partition function asymptotics

Lubensky (1984) deduced from a field theoretic computation that

P⊗P(τO > N) = exp
{
−c(d , p)N

d
d+2 − a1N

d−1
d+2 + o(N

d−1
d+2 )

}
.

Mathematically: −c1N
d−1
d+2 ≤ 2nd term ≤ c2N

d−κ
d+2 for ∃κ ∈ (0, 1).

Our control on the size of the boundary allows us to substantially
reduce the summands in

P⊗P(τO > N) =
∑
U

P(O ∩ U = ∅)P(S[0,N] = U)

so that we can deduce the following modest improvement:

P⊗P(τO > N) ≤ exp
{
−c(d , p)N

d
d+2 + cN

d−1
d+2 (logN)ϵ3+1

}
.
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Related model

There is a general framework containing our setting called the
parabolic Anderson model. For IID {ω(x)}x∈Zd ,

µN(·) ∝ E⊗E

[
exp

{
N∑

k=1

ω(Sk)

}
: (S , ω) ∈ ·

]
,

µω
N(·) ∝ E

[
exp

{
N∑

k=1

ω(Sk)

}
: S ∈ ·

]
.

▶ ω ∈ {−∞, 0} −→ Bernoulli obstacles;

▶ more generally, ω ≤ 0 −→ Repulsive impurities;

▶ ω ≥ 0 −→ Attractive impurities.

Various localization results exist depending on the distribution of ω.
But often the random walk range tends to be “smeared” and does
not converge to a rigid shape.
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Proof Idea for Ball Covering
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Proof idea for weak version of ball covering
Our proof heavily relies on comparison arguments. The following
lemma gives an illustrative example:

Lemma (clearing implies covering)

Suppose µN(O ∩ B(xN ; (1− ϵ)ϱN) = ∅) = 1− o(ϱ−d
N ).

Then, lim
N→∞

µN

(
B(xN ; (1− ϵ)ϱN) ⊂ S[0,N]

)
= 1.

Proof.
Suppose µN(∃x ∈ B(xN ; (1− ϵ)ϱN) \ S[0,N]) ≥ c > 0. Then there
is a point x such that

µN(x ∈ B(xN ; (1− ϵ)ϱN) \ S[0,N]) ≥ cϱ−d
N .

But the left-hand side is bounded by

1

1− p
µN(x ∈ B(xN ; (1− ϵ)ϱN) \ S[0,N] and x ∈ O)

and this contradicts the assumption.
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Proof idea for ball clearing

To show: lim
N→∞

µN(O ∩ B(xN ; (1− ϵ)ϱN) = ∅) = 1.

Suppose x ∈ O ∩ B(xN ; (1− ϵ)ϱN). Then, either

1. B(x ; ϵϱN/2) contains a large density of obstacles or

2. B(x ; ϵϱN/2) contains a small density of obstacles.

▶ Case 1 is easy to exclude since it makes too hard for the
random walk to survive.

▶ Case 2 is more complicated and split into two sub-cases...

2.1 random walk comes close to x many times;
2.2 random walk comes close to x few times.

We deal with them by using comparison arguments.
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Proof idea for ball clearing

Case 2.1: B(x ; ϵϱN/2) contains a small density of obstacles and
random walk comes close to x many times.

We remove all the obstacles in B(x ; ϵϱN/2). This operation

▶ imposes a cost in the environment probability;

▶ brings a gain in the random walk probability.

It turns out that the gain beats the cost:

P⊗P(Case 2.1)≪ P⊗P(τO > N,O ∩ B(x ; ϵϱN/2) = ∅).

However, it is not straightforward because

▶ the cost increases linearly in the number of obstacles in
B(x ; ϵϱN/2), while

▶ the gain DOES NOT increases linearly in the number of
obstacles in B(x ; ϵϱN/2).
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Proof idea for ball clearing
Case 2.2: B(x ; ϵϱN/2) contains a small density of obstacles and
random walk comes close to x few times.

We remove all the obstacles in B(x ; ϵϱN/2) \ B(x ; ϵϱN/4), let the
random walk avoid B(x ; ϵϱN/4), and then change the obstacles
configuration in B(x ; ϵϱN/4) to typical ones. This operation

▶ imposes a cost in the random walk probability;
▶ brings a gain in the environment probability.
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It turns out that the gain beats the cost:

P⊗P(Case 2.2)

≪ P⊗P(τO∪B(x ;ϵϱN/4) > N,O ∩ B(x ; ϵϱN/4) is typical).

Remark
This argument looks wasteful since we are comparing the LHS to a
tiny part of the partition function. But it might be less wasteful

than comparing with exp{−c(d , p)N
d

d+2 + o(N
d

d+2 )}.
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Proof Idea for Boundary Size
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“Truly”-open site

The key idea is to approximate the range of the random walk,
S[0,N], by a set of “truly”-open sites T .

Definition (“Truly”-open sites)

A site x ∈ Zd is called “truly”-open if

Px

(
τO > (logN)5

)
≥ exp

{
−(logN)2

}
.

T : the cluster of “truly”-open sites inside the confinement ball
B(xN ; ϱN + ϱϵ1N ) containing the origin.

Remark

1. A “truly”-open site is atypically safe. For a typical site, the
above probability decays like exp{−(logN)5+o(1)}.

2. Whether x is “truly”-open or not depends only on the
obstacles configuration inside B(x ; (logN)5).
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“Truly”-open site approximates S[0,N]

The following two facts justifies the approximation of ∂S[0,N] by
the boundary of “truly”-open sites ∂T .

▶ µN

(
S[0,N] ⊂ T

) N→∞−−−−→ 1,

▶ µN

(
S[0,N] ⊃

{
x ∈ T : dist(x , ∂T ) ≥ (logN)3

}) N→∞−−−−→ 1.

It follows that µN

(
∂S[0,N] ⊂

∪
x∈∂T

B(x ; (logN)3)

)
N→∞−−−−→ 1.
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∂T is smooth: heuristics

It suffices to prove

µN

(
|∂T | ≤ ϱd−1

N (logN)c
)

N→∞−−−−→ 1.

The ∂T should be rather smooth roughly because...

T

∂T

←

The random walk does not go into

such a “finger” going outward.

Then there is no point in paying

the cost to keep it “truly”-open.

This argument does not exclude the inward “fingers”.
But in the actual proof, we do not distinguish outward and inward.
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∂T is smooth: proof

The crux of the proof is how to define/quantify “finger”, or more
generally “bad points”. Our first definition is

x ∈ ∂T and P0(τB(x ;(logN)5) < τO) < ϱ1−d−ϵ
N ,

i.e., a point is bad if it is difficult for the random walk to visit.

T

∂T

If the random walk visits a bad point,

then we “switch” it to inside.

Then we can “close” a “truly”-open

site to gain a lot.

=⇒ There is no bad point.
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∂T is smooth: proof

We have proved that

∀x ∈ ∂T ,P0(τB(x ;(logN)5) < τO) ≥ ϱ1−d−ϵ
N .

On the other hand, it is simple to show∑
x∈∂T

P0(τB(x ;(logN)5) < τO) ≤ (logN)C ,

since the random walk can easily get trapped after hitting ∂T .

Thus we get µN

(
|∂T | ≤ ϱ

d−1+o(1)
N

)
N→∞−−−−→ 1.

Finally, we use this to reduce the entropy (
∑

U) and bootstrap to

get the final result (ϱ
o(1)
N replaced by (logN)ϵ3).
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Thank you for the attention.
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