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Brownian directed polymer in Poissonian environment

» ((B(t))t>0, Px): standard Brownian motion on R9, B(0) = x.

> (w =130t ) P): Poisson point process on (0,00) x R?
with unit intensity.

+ + + ~<graph of (s, B(s))o<s<t

e : Poisson points

+ + + + : Enlarged by unit disk

Directed polymer measure:

1 L
,u‘f’ﬁ(d B) — Zw,ﬂ e—B#{hlttmg to e up to t} Po(d B)
t

B < 0 = attractive, 5 > 0 = repulsive.
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Directed polymer measure:

1 _ i _ R 2
,Uf:’ﬁ(dB) _ Z;;,ﬁe B#{hitting to ¢ up to t}— [ |B(s)| ds.

B < 0 = attractive, 5 > 0 = repulsive.
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Known results (8 € R)

Partial list of known results:

1. Localization transition: Comets—Yoshida (2004, 2005, 2013).
2. Bounds on “fluctuation exponent”: Comets—Yoshida (2005).

3. KPZ in “intermediate disorder regime”: Cosco (2018+).
4. Survey article: Comets—Cosco (2018+).

Some results are better than in the discrete random walk model.
Stochastic analysis provides powerful tools.
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Free energy at positive temperature

Reminder: ;<%(dB) = ﬁe‘ﬂ#{him”g to $up to t} py(dB).

t

An important quantity is the free energy:

i Lig e o L w,B
o(8)= lim - log Z¢ —tILn;o?E[Ioth ]

t—oo t

For example, criterion for the localization is
ann - 1 w,B
#(B) # ¢™™(8) = lim ~logE|Z{"").
t—oo t

Existence of ¢(3) for 8 € R is standard:

» Either by sub-additive ergodic theorem or

» super-additivity of the mean & concentartion around mean.
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Free energy at zero temperature

At 8 = —oo, the model does not make sense. Impurities are
infinitely attractive.

At B = 0o, the model does make sense but E[Iog th’oo] = —00.
Let 7(w) be the hitting time to ¢ so that Z;"> = Py(7(w) > t).
Proof.

Brownian motion has to avoid the first disaster
in [0,00] x [—1, 1]. If it occurs at time F, then

N[ =

log Po((w) > t) < logexp (—(1)?/F) (0,0) *
1
~IF E

Since F < Exp(1/2), 1/F is not integrable. 0



Free energy at zero temperature

At 8 = —oo, the model does not make sense. Impurities are
infinitely attractive.

At B = 0o, the model does make sense but E[Iog th’oo] = —00.
Let 7(w) be the hitting time to ¢ so that Z;"> = Py(7(w) > t).
Proof.

Brownian motion has to avoid the first disaster
in [0,00] x [—1, 1]. If it occurs at time F, then

>
log Po(T(w) > t) < logexp (—(%)2/F) (0,0) ®
1
~aF F
Since F < Exp(1/2), 1/F is not integrable. O

— Direct sub-additivity argument fails.



Main results

Theorem
There exists p(co) € (—o0,0) such that the following hold:

(i) P-almost surely, lim;_,o 1 log Z;>° = p(c0);

(i1) limg_oq p(B) = p(c0).
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Some elements of the proof



Modified death time

Lemma (non-integrability is due to the first disaster)

Let F; be the first disaster in [0,t] x [—%, 219, Then there exists

¢ > 0 such that

E [Iog Po(1(w) > t) ’ Ft} > —c(t+ FY).

Thus the following modification ensures the integrability:

7H(w) == inf{s > 1: (s, B) hits a disaster} .
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Modified death time

Lemma (non-integrability is due to the first disaster)

Let F; be the first disaster in [0, t] x [—%, 2]19. Then there exists

¢ > 0 such that

E [|og Po(r(w) > t) ] Ft} > _c(t+ FY).

Thus the following modification ensures the integrability:
7H(w) == inf{s > 1: (s, B) hits a disaster} .

Problem 1: We need to revert 71 — 7 in the end. This looks
harmless but in fact requires a quite complicated argument. Due
to the time limitation, we do not address this issue here.
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Modified death time

Lemma (non-integrability is due to the first disaster)

Let F; be the first disaster in [0, t] x [—%, 2]9. Then there exists

¢ > 0 such that

E [log Po(r(w) > 1) ] Rl > —c(t+FY).

Thus the following modification ensures the integrability:
Hw) :=inf {s > 1: (s, Bs) hits a disaster} .
Problem 2: Standard argument for super-additivity yields

E [log P(t}(w) > s + t)]
>E [Iog P(r(w) > s)] + E[log P(7(w) > t)].
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Effect of changing disasters in a slab
We show an almost super-additivity by estimating
log P(7!(w) > s+ t) — log P(r' (w[s s15c) = 5+ t)
=log P (TH(w) > s+t | TH(w[ss11)c) =S5+ 1).
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Effect of changing disasters in a slab

We show an almost super-additivity by estimating
log P(7!(w) > s+ t) — log P(r' (w[s s15c) = 5+ t)
=log P (TH(w) > s+t | T (w[ss11)c) > s+1).

R

>s +t

5 s+1

We need a control on the survival in tubes and that the polymer is
“spread out” under P(- | 7' (w[ss1]c) > s + t).
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Survival in tube

Lemma
Let F; and L; be the first and last disaster in [0,t] x [-5, %
respectively. Then

i ty
X,YG[I—%fz,S/z]dE |:|Og PO’O (T(w) A T[_3»3] > t) ‘ Fta Lt]

> —c(t+F 4 (t— L)),
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Concentration bound

Previous Lemma and “spread-out” estimate for polymer measure
(skipped) yield almost super-additivity

1
= Existence of tILm EE[Iog P(r(w) > t)].
Control on the effect of changing disasters in a slab

= Concentration around the mean
= Existence of lim;_,o 1 log P(7}(w) > t), P-ass.
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Concentration bound

Previous Lemma and “spread-out” estimate for polymer measure
(skipped) yield almost super-additivity

1
= Existence of tILm EIE[Iog P(r(w) > t)].

Control on the effect of changing disasters in a slab
= Concentration around the mean
= Existence of lim;_,o 1 log P(7}(w) > t), P-ass.

Moreover, once we get a concentration around the mean, there is a
standard argument to derive a rate of convergence for

%E[Iog P(r (w) > )] — p(s0)| — 0.

The same holds for finite temperature uniformly in 3 € R. This
yields the continuity of p(/3).
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Proof of survival in tube Lemma
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Related works

Remark
For the model based on simple random walk,

exp <—5 > nlk, Xk))
k=1
A exp <—5X.ir'1)1;th Z n(k, Xk)>
' k=1

ifessinfn < 0. Thus as  — o,

Z0 — ESRW

log Z"% ~ —= inf (k, X)
5 %8 nX”:)achn K
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Related works

» Comets-F.—Nakajima—Yoshida (2015): Continuity of the free
energy for a long range random walk model with Bernoulli
disasters.

» Nakajima (2018): Getting rid of a parameter restriction.

» Bakhtin—Li (2018+): Convergence of the polymer measure
defined by

(X)) =

exp< BZ (k, X)) + | Xe—1 — X ))

The limit is a kind of first passage percolation. (Similar
models have been studied by Berger—Torri recently.)

I7
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Thank you!



