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Brownian directed polymer in Poissonian environment

▶ ((B(t))t≥0,Px): standard Brownian motion on Rd , B(0) = x .

▶ (ω =
∑

i δ(ti ,xi ),P): Poisson point process on (0,∞)× Rd

with unit intensity.

graph of (s,B(s))0≤s≤t

• : Poisson points

: Enlarged by unit disk

�

Directed polymer measure:

µω,β
t (dB) =

1

Zω,β
t

e−β#{hitting to •| up to t}P0(dB).

β < 0 ⇒ attractive, β > 0 ⇒ repulsive.
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Known results (β ∈ R)

Partial list of known results:

1. Localization transition: Comets–Yoshida (2004, 2005, 2013).

2. Bounds on “fluctuation exponent”: Comets–Yoshida (2005).

3. KPZ in “intermediate disorder regime”: Cosco (2018+).

4. Survey article: Comets–Cosco (2018+).

Some results are better than in the discrete random walk model.
Stochastic analysis provides powerful tools.
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Free energy at positive temperature

Reminder: µω,β
t (dB) = 1

Zω,β
t

e−β#{hitting to •| up to t}P0(dB).

An important quantity is the free energy:

φ(β)= lim
t→∞

1

t
logZω,β

t = lim
t→∞

1

t
E
[
logZω,β

t

]
.

For example, criterion for the localization is

φ(β) ̸= φann(β) := lim
t→∞

1

t
logE

[
Zω,β
t

]
.

Existence of φ(β) for β ∈ R is standard:

▶ Either by sub-additive ergodic theorem or

▶ super-additivity of the mean & concentartion around mean.
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Free energy at zero temperature

At β = −∞, the model does not make sense. Impurities are
infinitely attractive.

At β = ∞, the model does make sense but E
[
logZω,∞

t

]
= −∞.

Let τ(ω) be the hitting time to •| so that Zω,∞
t = P0(τ(ω) > t).

Proof.

� -

?

6
1
2

F

(0,0)

Brownian motion has to avoid the first disaster
in [0,∞]× [−1

4 ,
1
4 ]. If it occurs at time F , then

logP0(τ(ω) > t) ≲ log exp
(
−(14)

2/F
)

= − 1

4F
.

Since F
d
= Exp(1/2), 1/F is not integrable.

−→ Direct sub-additivity argument fails.
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Main results

Theorem
There exists p(∞) ∈ (−∞, 0) such that the following hold:

(i) P-almost surely, limt→∞
1
t logZ

ω,∞
t = p(∞);

(ii) limβ→∞ p(β) = p(∞).

6 / 15



Some elements of the proof
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Modified death time

Lemma (non-integrability is due to the first disaster)

Let Ft be the first disaster in [0, t]× [−7
2 ,

7
2 ]

d . Then there exists
c > 0 such that

E
[
logP0(τ(ω) > t)

∣∣∣Ft] ≥ −c(t + F−1
t ).

Thus the following modification ensures the integrability:

τ1(ω) := inf {s ≥ 1: (s,Bs) hits a disaster} .
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∣∣∣Ft] ≥ −c(t + F−1
t ).

Thus the following modification ensures the integrability:

τ1(ω) := inf {s ≥ 1: (s,Bs) hits a disaster} .

Problem 1: We need to revert τ1 → τ in the end. This looks
harmless but in fact requires a quite complicated argument. Due
to the time limitation, we do not address this issue here.

8 / 15



Modified death time

Lemma (non-integrability is due to the first disaster)

Let Ft be the first disaster in [0, t]× [−7
2 ,

7
2 ]

d . Then there exists
c > 0 such that

E
[
logP0(τ(ω) > t)

∣∣∣Ft] ≥ −c(t + F−1
t ).

Thus the following modification ensures the integrability:

τ1(ω) := inf {s ≥ 1: (s,Bs) hits a disaster} .

Problem 2: Standard argument for super-additivity yields

E
[
logP(τ1(ω) ≥ s + t)

]
≥ E

[
logP(τ1(ω) ≥ s)

]
+ E [logP(τ(ω) ≥ t)] .
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Effect of changing disasters in a slab

We show an almost super-additivity by estimating

logP
(
τ1(ω) ≥ s + t

)
− logP

(
τ1(ω[s,s+1]c ) ≥ s + t

)
= logP

(
τ1(ω) ≥ s + t

∣∣ τ1(ω[s,s+1]c ) ≥ s + t
)
.

s s + 1

Rd

s + t-

6

We need a control on the survival in tubes and that the polymer is
“spread out” under P(· | τ1(ω[s,s+1]c ) ≥ s + t).

9 / 15



Effect of changing disasters in a slab

We show an almost super-additivity by estimating

logP
(
τ1(ω) ≥ s + t

)
− logP

(
τ1(ω[s,s+1]c ) ≥ s + t

)
= logP

(
τ1(ω) ≥ s + t

∣∣ τ1(ω[s,s+1]c ) ≥ s + t
)
.

s s + 1

Rd

s + t-

6

We need a control on the survival in tubes and that the polymer is
“spread out” under P(· | τ1(ω[s,s+1]c ) ≥ s + t).

9 / 15



Survival in tube

Lemma
Let Ft and Lt be the first and last disaster in [0, t]× [−7

2 ,
7
2 ]

respectively. Then

inf
x ,y∈[−5/2,5/2]d

E
[
logPt,y

0,0 (τ(ω) ∧ τ[−3,3] > t)
∣∣∣Ft , Lt]

≥ −c(t + F−1
t + (t − Lt)

−1).

Ft
�-

t − Lt
� -

(0, x)
(t, y)
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Concentration bound

Previous Lemma and “spread-out” estimate for polymer measure
(skipped) yield almost super-additivity

⇒ Existence of lim
t→∞

1

t
E[logP(τ1(ω) > t)].

Control on the effect of changing disasters in a slab
⇒ Concentration around the mean
⇒ Existence of limt→∞

1
t logP(τ

1(ω) > t), P-a.s.

Moreover, once we get a concentration around the mean, there is a
standard argument to derive a rate of convergence for∣∣∣∣1t E[logP(τ1(ω) > t)]− p(∞)

∣∣∣∣→ 0.

The same holds for finite temperature uniformly in β ∈ R. This
yields the continuity of p(β).
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Proof of survival in tube Lemma

1. Survival probability in a tube

In this section, we provide a lower bound for the survival probability of the Brownian motion which
is conditioned to ends at a fixed point and restricted to the interval J := [−1, 5] up to time t.
We start by introducing some notation. To describe the first conditioning, we write P r,x;s,y for the

Brownian bridge measure between (r, x) and (s, y). We introduce the sub-intervals I = {I0, ..., I4} of
J = [−1, 5] defined by

Ix := x+
[
−1

2 ,
1
2

)
for x ∈ {0, 1, . . . , 4}.

For t > 0 let Ft denote the first disaster in [0, t]× J , that is,

Ft := inf
{
r ∈ [0, t] : ∃z ∈ J such that (r, z) ∈ ω

}

with the convention Ft = t if ω ∩ [0, t]× J = ∅. Similarly we let

Lt := sup
{
r ∈ [0, t] : ∃z ∈ J such that (r, z) ∈ ω

}

denote the last disaster in [0, t] × J , where we set Lt = 0 if there is no such disaster. The goal of this
section is the following lemma which provides a lower bound on the survival probability in the tube
[0, t]× J :

Lemma 1.1. There exists C > 0 such that the following hold -almost surely:

(i) For all x, y ∈ J ,

E
[
logP 0,x;t,y(τ∞(ω) ≥ t, B(s) ∈ [−1, 5] for all 0 ≤ s ≤ t)

∣∣Ft, Lt

]

≥ −C
(
t+ {Ft < t}(F−1

t + (t− Lt)
−1)
)
,

(1.1)

(ii) E [logP (τ ϵ∞(ω) ≥ t, B(s) ∈ [−1, 5] for all 0 ≤ s ≤ t)] ≥ −C(t+ ϵ−1).

Remark 1.2. The terminal point y is assumed to be in [−1, 5] but this is not restrictive, as we can
change the terminal point of the Brownian bridge by applying a time-space affine transformation which
leaves the law of ω invariant. We include this generalization to Lemma ?? since the proof of Lemma 1.1
in the above simple form is already quite long and complicated.

The terms F−1
t and (t − Lt)−1 above are the costs for the Brownian motion to avoid the first and

last disasters in [0, t] × J , respectively. Therefore this lemma justifies the intuition discussed after
Proposition ??. To see the reason why the cost is inverse proportion of Ft or (t − Lt), we state simple
estimates for Brownian motion without proof, which we will repeatedly use in the proof.

Lemma 1.3. There exists C > 0 such that for every s, t > 0 and x, y ∈ {0, 1, . . . , 4}, almost surely on
{B(t) ∈ Ix},

P (B(s+ t) ∈ Iy and B(u+ t) ∈ J for all u ∈ [0, s] | Bt)

≥
{
e−

C
s −Cs, if x ̸= y,

e−Cs, if x = y.

(1.2)

We are going to bound the probability in (1.1) from below by constructing a specific survival strategy
for the Brownian motion. We will introduce various terminologies in the course of describing the strategy.
Given an environment ω, we can find T (i) ≥ 0 and Di ∈ J such that

ω ∩
(

+ × J
)
=
{(

T0, D0

)
,
(
T1, D1

)
, ...
}

and such that T0 < T1 < .... We denote the interarrival times by ∆0 := T0 and

∆i := Ti − Ti−1

1

2

for i ≥ 1, which are independent exponential random variables with parameter 6. We say that Ix ∈ I
is contaminated by the (Tj, Dj) if

Ix ∩ U(Dj) ̸= ∅.
It is simple to check that if Ix ∈ I is not contaminated by (Tj, Dj) and B(Tj) ∈ Ix, then the Brownian
motion is not affected by the disaster at time Tj. Clearly every disaster can contaminate at most two
sites, and since |I| = 5, there exists a sequence (s(0), s(1), ...) ∈ {0, 1, . . . , 4} such that Is(j) is not
contaminated by (Tj, Dj) or Tj+1, Dj+1). See Figure 1. The interval Is(j) is safe in the sense that the
Brownian motion can survive during [Tj, Tj+2) simply by staying there.

T0 T1 T2 T3 T4 T5 T6 T7

�1 �2 �3 �4 �5 �6 �7

I0

I1

I2

I3

I4

1
Figure 1. An illustration of the survival strategy until the first regeneration time R1

in the case ρ1 = 5. At every disaster time at most two sites are contaminated (marked
in red) and since |I| = 5 there is always a corresponding safe site (striped). Note that
for example s(0) = 4 because the process can survive by occupying I4 at times T0 and
T1. A regeneration occurs at time T5 because ∆4 < ∆5. The process therefore remains
in I4 at time T4 before it again moves to a safe site at the start of the next regeneration.
Intuitively we can expect ∆4 to be small, so trying to move in [T3, T4) is potentially very
costly and it is better to “sit out” this interval.

Note that if there is no disaster in [0, t] × J (i.e. on {Ft = t} = {Ft = t, Lt = 0}) we get (1.1) from
Lemma 1.3 since

P (τ(ω) ≥ t) ≥ P (B(s) ∈ J for all s ∈ [0, t]) ≥ e−Ct.

For the remainder of this section we only discuss the case {Ft < t} = {Ft < t, Lt > 0}.
The first interval: The survival strategy up to T0 = Ft is prescribed by the event

(1.3) S(0) := {B(T0) ∈ Is(0) and B(u) ∈ J for u ∈ [0, T0]}.
From the estimates in Lemma 1.3, we get

logP (S(0)) ≥ −C(Ft + F−1
t ).

Renewal construction: After T0 = Ft, we define the sequence of survival strategies by using a renewal
structure. Let ρ0 := 0 and for i ≥ 0,

ρi+1 = inf
{
j > ρi + 1 : ∆j > ∆j−1

}
.

3

We write the corresponding disaster time by

Ri := Tρi .

We now recursively define events S(i) (i ≥ 1) as follows: B(u) ∈ J for all u ∈ [Ri−1, Ri) and in addition,

B(Tj) ∈ Is(j) for j = ρi−1, ..., ρi − 2;(S1)

B(u) ∈ Is(ρi−2) for u ∈ [Tρi−2, Tρi−1];(S2)

B(Tρi) ∈ Is(ρi).(S3)

In words, the Brownian motion moves to the safe interval in each time interval (Tj, Tj+1) except for
j = ρi − 2. Note that we may have ρi = ρi−1 + 2 and then the step (S1) is to be skipped. The second
step (S2) is possible in this case since we have B(Tρi−2) = B(Tρi−1) ∈ Is(ρi−1) by the definition of S(0)
(i = 1) and S(i− 1) (i ≥ 2). Now on the event {ρ1 = k} (k ≥ 2), Lemma 1.3 yields

logP (S(1) | S(0)) ≥ −C
∑

i=1,...,k
i ̸=k−1

∆−1
i − C

k∑

i=1

∆i.(1.4)

It is important that the term ∆−1
k−1 = max{∆−1

1 , ...,∆−1
k } is omitted from the first sum on the right-hand

side, due to an unusual strategy in (S2) above. Indeed, if that sum was taken over 1 ≤ i ≤ k, it would
be the sum of inverse exponential random variables, which is not -integrable. On the other hand, the
other terms {∆−1

1 , . . . ,∆−1
k−2,∆

−1
k } gain one extra degree of integrability from the knowledge that there

is one smaller item in the collection {∆1, ...,∆k}.
Last interval: It remains to prescribe the behavior after the last renewal time before time t. Let us
denote by

N(s) :=
∞∑

i=1

{Ti ≤ s} and

M(s) :=
∞∑

i=1

{Ri ≤ s}

the numbers of disasters and renewals up to time s, respectively. We further set

σ := N(Lt)−M(Lt) = the number of disasters in [RM(Lt), Lt]× J

U := Lt −RM(Lt) = the duration from the last renewal to Lt.

Then the survival strategy in [RM(Lt), t] is prescribed by the event T defined as follows: B(u) ∈ J for
all u ∈ [RM(Lt), t] and in addition,

B(Tj) ∈ Is(j) for j = M(Lt), ..., N(Lt)− 1,(S4)

B(u) ∈ Is(Nt−1) for u ∈ [TN(Lt)−1, Lt)),(S5)

B(t) = y.(S6)

In the case where the last disaster time Lt is a renewal time, both (S4) and (S5) are to be skipped. In
words, the strategy T for the terminal part is the same as for the previous cases except that we choose
to remain in Is(N(Lt)−1) after the last disaster before Lt, regardless of whether a renewal occurs after Lt

or not. Then exactly as in (1.4), on the event {σ = n}, we have

logP 0,x;t,y(T | S(0), . . . ,S(M(Lt)))

≥ −C

(
n−1∑

i=1

∆−1
i +

n∑

i=1

∆i + (t− Lt) + (t− Lt)
−1

)
,

4

where the last term (t − Lt)−1 appears since the Brownian motion has to move from Is(N(Lt)−1) to the
endpoint y during [Lt, t]. Note that since there is no renewal in [RM(Lt), Lt], the strategy T makes the

Brownian motion survive without moving in the shortest interval among {[Tj, Tj+1]}N(Lt)−1
j=M(Lt)

. Therefore

for the same reason as before, we can expect that the sum
∑n−1

i=1 ∆−1
i gains an extra degree of integrability.

Collecting the above strategies, we define

St := S(0) ∩
M(Lt)⋂

i=1

S(i) ∩ T .

Then the probability that the Brownian motion survives in the tube [0, t]×J is bounded from below by

logP 0,x;t,y(τ∞(ω) ≥ t, B(s) ∈ J for all 0 ≤ s ≤ t)

≥ logP (St)

= logP (S(0)) +
M(Lt)∑

i=1

logP (S(i) | S(i− 1)) + logP (T | S(0), ...,S(M(Lt))).

(1.5)

Expectation conditioned on {Ri}i≥1: We are going to bound the -expectation of the last line
conditioned on Ft and Lt. What makes the argument complicated is that the number of summands
M(Lt) is random, depending on {Ri}i≥1. Thus we need to estimate E[logP (S(i) | S(i−1)) | Ri], instead
of E[logP (S(i) | S(i − 1))] which can easily be seen to be finite. Similarly, the last term logP (T |
S(0), ...,S(M(Lt))) also depends on RM(Lt) through U and hence we need to consider E[logP (T |
S(0), ...,S(M(Lt))) | U,Lt].
To this end, it is instrumental to understand the inter-dependence structure among {∆i}i≥1, {ρi}i≥0

and {Ri}i≥1.

Lemma 1.4. The following hold:

(1) Both

{ρj}j≥1 under and
{(

∆ρj+k

)
k=1,...,ρj+1−ρj

: j ≥ 1
}
under (·|ρj : j ≥ 1)

are independent families.
(2) The ρj+1 − ρj (j ≥ 1) has the same law as ρ1, which is given by

(ρ1 = k) =
k − 1

k!
for all k ≥ 2.

Moreover, conditioned on {ρ1 = k}, R1 − R0 is Gamma distributed with parameter (k, 6), that
is, it has the probability density (I think it is fine to embed this definition here.)

6k

(k + 1)!
rk−1e−6r {r ≥ 0}.

(3) Let {Ei}i∈ be independent exponential random variables with rate 6. Conditioned on {ρ1 =
k, Tk − T0 = s},

∑

i={1,...,k}\{k−1}

∆−1
i

d
=

1

s

k∑

i=2

∑k
j=1 Ej

∑i
j=1

1
k−jEj

5

Proof. The first assertion follows from the fact that (ρj)j≥1 are stopping times for the process (Ti)i≥0.
To prove the second and third assertions, it is useful to realize the interarrival times in such a way

that the dependence structure between ρ1, Tk−T0 =
∑k

i=1 ∆i and ∆−1
i is clear. To this end, let (∆(k)

i )ki=1

be an increasing order statistics of independent Exp(6) random variables and let π be a uniform random
variable on the permutations Sk over {1, 2, . . . , k}, which is independent of ∆(k). Then we can realize
the interarrival times as

(1.6) (∆i)1≤i≤k =
(
∆(k)

π(i)

)

1≤i≤k
.

Now, since {ρ1 = k} depends only on π, we find

(ρ1 = k) = (∆1 > ∆2 > ... > ∆k−1 and ∆k−1 < ∆k) =
k − 1

k!

by simply counting the number of permutations satisfying the above ordering. For the same reason,
{ρ1 = k} is independent of

∑k
i=1 ∆i =

∑k
i=1 ∆

(k)
i , which is Gamma distributed with parameter (k, 6).

Thus the second assertion is proved.
Finally,

∑k
i=1 ∆i is independent of {∆j/

∑k
i=1 ∆i}kj=1, see [?, Chapter IX, Theorem 4.1]. Therefore,

conditioned on {ρ1 = k,
∑k

i=1 ∆i = s}, we have

(1.7)
∑

i∈{1,...,k}\{k−1}

∆−1
i

d
=

1

s

k∑

i=2

(
∆̃(k)

i∑k
i=1 ∆̃

(k)
i

)−1

,

where ∆̃(k) is an independent copy of ∆(k). The third assertion follows from the following distributional
identity proved in [?, §1]:

(
∆̃(k)

1 , ∆̃(k)
2 , ..., ∆̃(k)

k

)
d
=
( 1∑

j=1

Ej

k − j
,

2∑

j=1

Ej

k − j
, ...,

k∑

j=1

Ej

k − j

)
.

!

Now we state the bounds on the conditional expectations mentioned before.

Lemma 1.5. (i) There exists C > 0 such that almost surely,

E[logP (S(1) | S(0)) | ρ1, R1] ≥ −C

(
R1 +

ρ31
R1

)
,(1.8)

and

E[logP (T | S(0), . . . ,S(M(Lt))) | U, σ, Lt] {U > 0}

≥ −C

(
U +

σ3

U
+ (t− Lt) + (t− Lt)

−1

)
.

(1.9)

(ii) There exists C > 0 such that almost surely,

E[logP (S(1) | S(0)) | R1] ≥ −C
(
R1 +R−1

1

)
,(1.10)

and

E[logP (T | S(0), ...,S(M(Lt))) | U,Lt] {U > 0}
≥ −C

(
U + U−1 + (t− Lt) + (t− Lt)

−1
)
.

(1.11)

6

Proof. Part (i): By (1.4) and Lemma 1.4, we get for ω ∈ {ρ1 = n+ 2, Tn+2 − T0 = s},

logP (S1|S0) ≥ −C

⎛

⎜⎜⎝s+
∑

i=1,...,n+2
i ̸=n+1

1

∆(i)

⎞

⎟⎟⎠

d
=−C

(
s+

1

s

n+2∑

i=2

∑n+2
j=1 Ej

∑i
j=1

1
n+2−jEj

)
.

(1.12)

Thus it suffices to show that the expectation over {E1, ..., En+2} in the last line is bounded by (n+ 1)3.
To this end, we first bound the expectation of the sum as follows:

E
[
n+2∑

i=2

∑n+2
j=1 Ej

∑i
j=1

1
n+2−jEj

]

≤
n+2∑

i=2

(n+ 2− i)E
[∑n+2

j=1 Ej
∑i

j=1 Ej

]

=
n+2∑

i=2

(n+ 2− i)

⎛

⎝1 + E
[

n+2∑

j=i+1

Ej

]
E

⎡

⎣
(

i∑

j=1

Ej

)−1
⎤

⎦

⎞

⎠ .

(1.13)

Now this is the point where we use the extra integrability brought by omitting i = 1, which corresponds
to the largest value of {∆−1

i }ni=1. Indeed, since
∑i

j=1 Ej is Gamma distributed with parameters (i, 1),
for i ≥ 2, we can compute

E
[

n+2∑

j=i+1

Ej

]
= n+ 2− i and E

⎡

⎣
(

i∑

j=1

Ej

)−1
⎤

⎦ =
1

i− 1
.

Substituting these into (1.13), we arrive at

E
[
n+2∑

i=2

∑n+2
j=1 Ej

∑i
j=1

1
n+2−jEj

]
≤ n

n+2∑

i=2

n+ 1

i− 1
≤ (n+ 1)3.

The proof of (1.9) is essentially the same. We assume U > 0 and σ = n. Then recall that by (1), we
have

logP (T | S(0), . . . ,S(M(Lt))) ≥ −C

(
n−1∑

i=1

∆−1
i + U + (t− Lt) + (t− Lt)

−1

)
.

Since the interarrival times of disasters in [RM(Lt), Lt] are decreasing, the largest member of {∆−1
i }ni=1

is omitted in the sum on the right-hand side. This is the same situation as in Lemma 1.4-(3) and thus
conditioned on U , we have

∑

i=1,...,n−1

∆−1
i

d
=U−1

n∑

i=2

∑n
j=1 Ej

∑i
j=1

1
n−jEj

.

Then the same computation as in the previous case yields the desired bound.
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Part (ii): In order to take an expectation over ρ1 conditioned on R1, we estimate the conditional
probability

(ρ1 = n+ 2 | R1 = r) = (ρ1 = n+ 2 | Tρ1 − T0 = r)

=
(ρ1 = n+ 2, Tn+2 − T0 = r)

(Tρ1 − T0 = r)
,

where here and in what follows, the condition like Tn+2 − T0 = r should be understood in the sense of
probability density. Since {ρ1 = n + 2} and Tn+2 − T0 are independent, by using Lemma 1.4, we can
bound the numerator from above by

(1.14) (ρ1 = n+ 2, Tn+2 − T0 = r) ≤ (n+ 1)

(n+ 2)!

(6r)n+1

(n+ 1)!
e−6r.

On the other hand, the denominator is bounded from below by

(ρ1 = 2, T2 − T0 = r)

= (T1 − T0 < T2 − T1, T2 − T0 = r)

= 1
2 (T2 − T0 = r)

= 3
2re

−6r.

(1.15)

Combining (1.14) and (1.15), we find the bound

(ρ1 = n+ 2 | R1 = r) ≤ (n+ 1)

(n+ 2)!

(6r)n+1

(n+ 1)!

2

3r

≤ 4
(6r)n

(n!)2
.

In particular, we get that if R1 ≤ 1
6 then

(ρ1 = n+ 2|R1) ≤
4

(n!)2

and consequently,

E
[
ρ31
∣∣R1

]
=

∞∑

n=0

(n+ 2)3 (ρ1 = n+ 2 | R1) ≤
∞∑

n=0

4
(n+ 2)3

(n!)2
< ∞.

If R1 >
1
6 , then we use n! ≥

(
n
2

)n
2 to see that for all n >

√
24R1, we have

(ρ1 = n+ 2 | R1) ≤ 4
1

n32n

and consequently,

E
[
ρ31
∣∣R1

]
≤ 242R2

1 + 4
∑

n>
√
24R1

(n+ 2)3

n32n
.

Since the sum on the right-hand side converges, we can combine the two estimates to find C > 0 such
that for all R1 > 0,

E
[
ρ3
∣∣R1

]
≤ C(1 +R2

1).

Plugging this in (1.8), we get (1.10).
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Finally (1.11) follows in a similar way. We consider the probability of {σ = n} conditioned on
{U = u, Lt = l}, which can be written as

(σ = n | U = u, Lt = l)

=

(∑M(l)+n+1
i=M(l)+1 ∆i = u,∆M(l)+1 > · · · > ∆M(l)+n+1

)

(∑M(l)+σ+1
i=M(l)+1 ∆i = u,∆M(l)+1 > · · · > ∆M(l)+σ+1

) .

The two events in the numerator are independent and hence the numerator is bounded (in the sense of
density) from above by

(1.16)
1

(n+ 1)!

1

n!
(6u)ne−6u.

On the other hand, the denominator is bounded from below by considering the special case σ = 0:
⎛

⎝
M(l)+σ+1∑

i=M(l)+1

∆i = u,∆M(l)+1 > · · · > ∆M(l)+σ+1

⎞

⎠

≥
(
∆M(l)+1 = u

)

= 6e−6u.

(1.17)

From (1.16) and (1.17), we find that

(σ = n | U = u, Lt = l) ≤ 1

n+ 1

(6u)n

(n!)2
.

The rest of the argument is the same as for (1.10). !

We are now ready to prove Lemma 1.1.

Proof of Lemma 1.1. Part (i): Note that on the event {M(t) = m}, we have

logP (St) = logP (S(0)) +
m∑

i=1

logP (S(i) | S(i− 1)) + logP (T | S(0), ...,S(m)).

By using the bounds (1.10) and (1.11) and denoting Ri −Ri−1 by ∆Ri, we get on {Ft < t}

E [logP (St) | Ft, Lt] ≥ −C

⎛

⎝Ft + F−1
t + E

⎡

⎣
M(t)∑

i=1

∆Ri + U

⎤

⎦

+E

⎡

⎣
M(t)∑

i=1

(∆Ri)
−1 + U−1

⎤

⎦+ (t− Lt) + (t− Lt)
−1

⎞

⎠ .

(1.18)

Since we have Ft +
∑M(t)

i=1 ∆Ri + U + (t − Lt) = t by definition, it remains to show that the third
expectation in (1.18) is bounded by Ct. We use that A′

i ≼st Ai ≼st ∆Ri, where Ai is Gamma distributed
with parameter (2, 6) and A′

i is exponentially distributed with parameter 6, respectively. Since

(r1, . . . , ri) %→
1

r1
(r1 + · · · ri ≤ t)

9

is decreasing, the above stochastic domination implies

E

⎡

⎣
M(t)∑

i=1

(∆Ri)
−1

⎤

⎦ =
∞∑

i=1

E
[
(∆R1)

−1 {∆R1 + ...+∆Ri ≤ t}
]

≤
∞∑

i=1

E
[
A−1

1 {A1 + A′
2 + ...+ A′

i ≤ t}
]
.

By using the form of the probability density of A1, we find

E
[
A−1

1 {A1 + A′
2 + · · ·+ A′

i ≤ t}
]

=

∫ ∞

0

a−1 (a+ A′
2 + · · ·+ A′

i ≤ t)36ae−6ada

= 6 (A′
1 + · · ·+ A′

i ≤ t)

and hence

E

⎡

⎣
M(t)∑

i=1

(∆Ri)
−1

⎤

⎦ = 6
∞∑

i=1

(A′
1 + · · ·+ A′

i ≤ t).

The sum on the right-hand side is nothing but the expectation of a Poisson process with intensity 6 on
[0, t], which is equal to 6t.

Part (ii): We follow the same strategy as in (i) but we skip (S6) in our strategy. Then we obtain the
bound

E [logP (τ ϵ∞(ω) ≥ t, B(s) ∈ [−1, 5] for all 0 ≤ s ≤ t)|Ft] ≥ −C(t+ {Ft < t}F−1
t ).

Since Ft(ω[0,ϵ]c) ≥ ϵ, we are done. !
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Related works

Remark
For the model based on simple random walk,

Z η,β
n = ESRW

0

[
exp

(
−β

n∑
k=1

η(k ,Xk)

)]

≈ exp

(
−β inf

X : path

n∑
k=1

η(k,Xk)

)

if ess inf η < 0. Thus as β → ∞,

1

βn
logZ η,β

n ∼ −1

n
inf

X : path

n∑
k=1

η(k,Xk).
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Related works

▶ Comets-F.–Nakajima–Yoshida (2015): Continuity of the free
energy for a long range random walk model with Bernoulli
disasters.

▶ Nakajima (2018): Getting rid of a parameter restriction.

▶ Bakhtin–Li (2018+): Convergence of the polymer measure
defined by

µη,β(dX ) :=
1

Z η,β
n

exp

(
−β

n∑
k=1

(
η(k ,Xk) + |Xk−1 − Xk |2

))
dX .

The limit is a kind of first passage percolation. (Similar
models have been studied by Berger–Torri recently.)
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Thank you!
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