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Random walk in random scenery (RWRS)

I ({z(x)}x∈Zd , P): IID random variables,

I (Sn)n∈Z+ : Random walk on Zd .

Random walk in random scenery:

Wn :=
n∑

k=1

z(Sk).

I Introduced by Borodin and Kesten-Spitzer in 1979.
I Scaling limit (under P ⊗ P0) yields a self-similar process.

d = 1, z : α-stable, S : β>1-stable ⇒ index = 1 − 1
β + 1

αβ .

I CLT holds in transient case.

I d = 2 too (!) but for 1√
n log n

Wn (Bolthausen 1989).
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RWRS: continuous time

In this talk,

I ({z(x)}x∈Zd , P): IID, ≥ 0 with P(z(x) ≥ r) = r−α+o(1),

I ((St)t≥0, (Px)x∈Zd ): continuous time simple random walk.

Continuous time version of RWRS:

At :=

∫ t

0
z(Su)du.

Naturally appears in random media:

I Ex

[
f (Xt)e

At
]

is a solution of ∂tu = ∆u + zu, u(0, x) = f (x).

I (S1
t , S2

t + A1
t )t≥0: diffusion in random shear flow.

I (S1
A2

t
,S2

t )t≥0: random walk in layered conductance (later).
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Tail estimates for RWRS

Many annealed results: P ⊗ P0(At ≥ tρ).
I Natural tail assumption is P(z(x) ≥ r) ≈ exp(−rα).

“z has high exceedance” & “RW use it”: both exponential.
(To be explained more in the next slide.)

I Too many (and various) results to present.
I Google search “Large and moderate deviations for random

walks in random scenery: a review” by F. Castell.

Not so many quenched results: P0(At ≥ tρ) for typical z .
I Brownian motion in Gaussian scenery,

I Large deviation for 1
t
√

log t
At : Asselah-Castell (2003),

I Moderate deviations: Castell (2004),

I Brownian motion in bounded scenery,
I Large deviation for 1

t At : Asselah-Castell (2003).

No results in Borodin and Kesten-Spitzer setting.
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Light tail vs Heavy tail

Let

ℓt :=

∫ t

0
δSudu ⇒ At = 〈ℓt , z〉.

The strategy for {At ≥ tρ} under P ⊗ P0 is

{z(·) ≈ atψ(·)} and {〈ℓt , ψ〉 ≥ tρ/at}.

Assume P(z(x) ≥ r) ≈ exp(−rα).

I α < 1 ⇒ optimal ψ = δ0.

I α > 1 ⇒ optimal ψ has a non-trivial profile.

The quenched results by Asselah-Castell corresponds to the second
regime. Search for a high exceedance in the physical space instead
of the probability space.
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Main result I: P(z(x) ≥ r) = r−α+o(1).

Let ρ > 0. Then P-almost surely,

P0 (At ≥ tρ) = exp
{
−tp(α,ρ)+o(1)

}
as t → ∞, where

p(α, ρ) =


2αρ
α+1 − 1, ρ ∈

(
α+1
2α ∨ 1, α+1

α

]
,

α(ρ − 1), ρ > α+1
α

for d = 1 and

p(α, ρ) =


2αρ−d
2α+d , ρ ∈

(
d
2α ∨ 1, α+d

α

]
,

α(ρ−1)
d , ρ > α+d

α

for d ≥ 2.
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Illustration: d = 1, α ≤ 1 (d ≥ 2, α ≤ d
2 is similar)

0
-

6

ρ

p(α, ρ)

α+1
2α1 α+1

α

1

For ρ < α+1
2α , we in fact have a polynomial decay. The threshold

α+1
2α is the self-similar index found by Borodin and Kesten-Spitzer.
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Illustration: d = 1, α > 1 (d ≥ 2, α > d
2 is similar)

-

6

0
ρ

p(α, ρ)

1 α+1
α

α−1
α+1

1

When α > 1, E[z(x)] < ∞ and P0(At ≥ ct) → 1 for c < E[z(x)].
For c ≥ E[z(x)], this is the standard large deviation regime.
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Main result II: P(z(x) ≥ r) = r−α+o(1).

Let d = 1 and α > 1 or d ≥ 2 and α > d
2 . Then for any

c > E[z(x)], P-almost surely,

P0 (At ≥ ct) =

exp
{
−t

α−1
α+1

+o(1)
}

, d = 1,

exp
{
−t

2α−d
2α+d

+o(1)
}

, d ≥ 2

as t → ∞. (I.e., the extrapolation gives the correct exponent.)
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Outline of the argument

Let us see how to get for d = 1 and α > 1

P0(At ≥ ct) = exp
{
−t

α−1
α+1

+o(1)
}

.

Lower bound: Let the random walk

I explore [−t
α

α+1 , t
α

α+1 ],

I there is z(x) ∼ t
1

α+1 almost surely,

I leave the local time ℓt(x) & t
α

α+1 .

The first and the third event have probability

≈ exp{−t
α−1
α+1 }.
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Let us see how to get for d = 1 and α > 1

P0(At ≥ ct) = exp
{
−t

α−1
α+1

+o(1)
}

.

Upper bound:

I Consider level sets Hk =
{
|x | ≤ t

α
α+1 : t(k−1)ϵ ≤ z(x) < tkϵ

}
,

I fine control on the “geometry” of Hk ,

I a tail estimate for additive functional by Xia Chen (2001),

⇒ Too difficult to get contribution from lower level sets:

P0

(
ℓt(Hk) ≥ t1−kϵ

)
≪ exp

{
−t

α−1
α+1

}
.
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Xia Chen’s theorem, Stoch. Proc. & Appl. 2001

Suppose f ≥ 0 and

Ex

[∫ t

0
f (Su)du

]
. a(t)

uniformly x ∈ suppf . Let 0 ≪ b(t) ≪ t. Then for λ > 4,

P0

(∫ t

0
f (Su)du ≥ λa

(
t

b(t)

)
b(t)

)
≤ exp {−c(λ)b(t)} .

Remark

I There is a corresponding lower bound.

I If a(·) varies regularly, sharper bound available.

I Simpler case dates back to Khas’minskii (1959).
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P0

(∫ t

0
f (Su)du ≥ λa

(
t

b(t)

)
b(t)

)
≤ exp {−c(λ)b(t)} .

Apply this to f = 1Hk
.

I Ex [ℓt(Hk)] = Ex [
∫ t
0 f (Su)du] =

∑
y 1Hk

(y)
∫ t
0 pu(x , y)du,

I Concentration inequality & Borel-Cantelli ⇒ uniform estimate.

I Q: Ex [
∫ t
0 z(Su)du] ∼

∑
y G (x , y)z(y): extreme values?

11 / 14



. . . . . .

Application to random layered conductance model

Let ((Xt)t≥0, (P
ω
x )x∈Z1+d ) be a continuous time Markov chain on

Z2 with jump rates

ω(x , x ± ei ) =

{
z(x2), i = 1,

1, i = 2.

By using CTSRW (S1,S2) on Z2,

(X 1
t , X 2

t )t≥0 = (S1
A2

t
, S2

t )t≥0 with A2
t =

∫ t

0
z(S2

u )du.

Anomalous behavior expected (Andres-Deuschel-Slowik 2016) to

Pω
0

(
Xt = tδe1

)
≈ P0

(
S1

A2
t
= tδe1

)
= E0

[
pA2

t
(0, tδe1)

]
.
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Tail estimate for layered conductance model

For P-almost every ω,

Pω
0

(
Xt = tδe1

)
= exp

{
−tq(α,δ)+o(1)

}
as t → ∞, where

q(α, δ) =



0, δ < 1
2 ∨ α+1

4α ,

2δ − 1, δ ∈
[

1
2 , α

α+1

)
,

4αδ−α−1
3α+1 , δ ∈ [ α

α+1 ∨ α+1
4α , 2α+1

2α ],

α(2δ−1)
α+1 , δ ∈ (2α+1

2α , α
(α−1)+

),

δ, δ ≥ α
(α−1)+

.

∃ Extensions to higher dimensions & non-horizontal displacement.
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Thank you!
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