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Model

» ({Xu}nen, P): Random walk on Z9 with

P(Xnt1 = x|Xp = y) = crexp{—|x — y|T};

> ({10, ¥)}(jxenxze, Q): 11D, Ber(p).

Directed polymer measure:

H?(dX) = Z,lﬂexp {62?7(])9‘)} Po(dX),

n j=1

z}% =P {exp {/szn(j,xj)}] .
j=1

B > 0 = attractive, 5 < 0 = repulsive.

)
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Z ¢y exp

X : path

{ [890.%) — X1 - ] } .
=1
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Jj=1

znt = %" C{’exp{Z[ﬁn(j%)&l&ﬂ :

X : path

‘—: better! (8 < 0)‘




Free energy

It is standard to show the existence of the free energy:
.1 g o1 P
o(p,B)= lim =log Z""= lim =Q[log Z"].
n—oo N n—oo n

If we naturally define Zy"~> = P(3_7_; n(j, X;) = 0), this holds
even at = —oc.

The key ingredient is that Q[log Z;"™ ] < oo,
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Free energy

It is standard to show the existence of the free energy:
SO(P 5)2 lim 1 log Z”ﬁ: lim EQ[log Z””B]
’ n—oo n n n—oo N n I

If we naturally define Zy"~> = P(3_7_; n(j, X;) = 0), this holds
even at = —oc.

The key ingredient is that Q[log Z;"°°] < oo, which FAILS to hold
for SRW model and Brownian polymer in Poissonian environment.
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Digression to nearest neighbor model

Let N, be the number of open paths of length n in the oriented
percolation. Suppose p > p. and always assume percolation.

» F.-Yoshida (2012): N, grows exponentially.
> Garet-Gouéré-Marchand (2017): 1 log N, converges.

Difficulty: log N, is nearly super-additive but is —co on the event
of no percolation.
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Digression to nearest neighbor model

Let N, be the number of open paths of length n in the oriented
percolation. Suppose p > p. and always assume percolation.

» F.-Yoshida (2012): N, grows exponentially.
> Garet-Gouéré-Marchand (2017): 1 log N, converges.

Difficulty: log N, is nearly super-additive but is —co on the event
of no percolation.

This N, is the (negative) zero-temperature version of the directed
SRW in Bernoulli environment.

Question: Continuity of the free energy at § = —o0?
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Part 1: Free energy asymptotics



Zero temperature limit

In our model, we know ¢(p, —00) exists.

Theorem (Comets—F.—Nakajima—Yoshida 2015)
For any a < d,

o(p, B) 5 o(p, —o0).

Remark

1. The joint continuity in (p, 3) is easy on |B| < oo region.

2. The proof shows that for any ¢ > 0, we can choose large
negative B < 0 such that

Zh0 < 7P < een 7m0,

This gives an alternative proof of the existence of p(p, —0).
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A word on the proof: a < d

The proof roughly goes as follows:

n

Z17 = 3 e 308G, X) — X1 - Xl

X: path Jj=1

= Z + Z + Z cf exp{--- }.

no traps few traps many traps

J— 7,—00 . .. .
2 no traps = Zn and > oy traps 1S negligible when 3 ~ —oo.
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A word on the proof: a < d

The proof roughly goes as follows:

n

Z17 = 3 e 308G, X) — X1 - Xl

X: path Jj=1

= Z + Z + Z cf exp{--- }.

no traps few traps many traps

D no traps = Z7 ™ and > many traps IS negligible when B ~ —oco.
If a path X go through only few traps, we can deform (or map) it
to a trap free path:

> it can be done without too much extra cost;

» not too many paths are mapped to the same trap free path.



Boundlng Zfew traps by Zno traps

Paths with few traps Paths with no traps

#{Paths with few traps} < #{Paths with no traps} x “Multiplicity”
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The case a > d

The other case o > d require a different technique and has been
done by

S. Nakajima: Concentration results for directed polymer with
unbounded jumps, arXiv:1603.05032.

In order to apply the method of bounded differences, a good
control on the jumps is important.

Lemma
For any o > 1, “typical” polymers of length n jumps at most n°().
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High density limit

When = —oo and p =1, it is natural to set ¢(1, —c0) = —o0.
Theorem (Comets et al. 2015)
For any a > 0, there exists y11 > 0 such that

1 —Q
o(p, —00) PAT —pa (1 — p) /9.

Remark
When p ~ 1, RW has to jump (1 — p)~9 to find an “open” site.
The constant iy is a time constant of a certain FPP model.
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A directed first passage percolation
Denote the scaled open sites by
wp = {(k, (1 = p)*x): n(k, x) = 0}.

This converges to a homogeneous Poisson point process (w1, P) on
NxRYasp 71
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A directed first passage percolation
Denote the scaled open sites by
wp = {(k, (1 = p)*x): n(k, x) = 0}.

This converges to a homogeneous Poisson point process (w1, P) on
NxRYasp 71

For each p € (0, 1], consider a first passage percolation:

Th(wp) = min {Z Ixk—1 — xk|* : x0 = 0 and {(k,xx)}ieq C wp} :

k=1

(cf. Howard—Newmann (1996) studied non-directed model.)

1
Jpp = lim =Th(wp), Q-as.

n—oco n
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Continuity of time constant

As Tp(wp) is the least cost for a path to avoid traps,

P> n0:X) =0 = cfexp{—(1 - p) /9 Tp(wp)}
j=1

2 cf exp{—(1 — p)~*/9ppn}.
the lower bound follows once we show
Proposition

limp 71 pp = p1.
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Continuity of time constant

As Tp(wp) is the least cost for a path to avoid traps,

P> nl:X) =0 > cf exp{—(1—p) /I Tp(wp)}
j=1

2 cf exp{—(1 — p)~*/9ppn}.
the lower bound follows once we show
Proposition
limp 71 pp = p1.
To prove the upper bound, we need to show that there are not too

many paths which are “nearly optimal”. This is done by a standard
block argument.
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Part 2: Geometry of optimal path



Reminder

Lemma (Nakajima, 2017+)
For any oo > 1, “typical” polymers of length n jumps at most n°1).

This remains true (in fact easier) in the FPP setting. Let us call
paths attaining T,(wp) optimal paths.

Lemma (Nakajima, 2017+)
For any o > 1, any optimal path jumps at most n°(1).
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= 1/2, 1024 steps, o = 1.2
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= 1/2, 1024 steps, a« = 0.4
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= 1/2, 1024 steps, o = 0.8
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620

600

580

560

540 -

520

500

480

460

8

Maximal jump

19/25



Why large jump for a < 17

The optimal way to go from A to B is

¢ a<l l

because of convexity/concavity of the cost |x — y|“.
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Why large jump for a < 17

The optimal way to go from A to B is

because of convexity/concavity of the cost |x — y|“.

Why go to B instead of C? To find a “good” environment!
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A result

Proposition

For any a € (0,00), there exists € > 0 such that the maximal jump
of any optimal path is larger than (log n)c.
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Schematic argument

Optimal
path

(log n)&

— 1

-~

(log )"

We call a box black if its passage time is close to j,(log t) and
the path exits from right side. This is a typical situation and most
of the boxes are black.



Schematic argument

There are n'=°(1) many black boxes.
On each black box, we re-sample
the configuration.
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Schematic argument

There are n'=°(1) many black boxes.
On each black box, we re-sample
the configuration.

We find a configuration that has

e almost straightly aligned points;

e the middle point (log n)¢ away;

e otherwise no points inside the box;
10e

with probability at least exp{—(log n) = },
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Schematic argument

There are n'=°(1) many black boxes.
On each black box, we re-sample
the configuration.

We find a configuration that has
e almost straightly aligned points;
e the middle point (log n)¢ away;
e otherwise no points inside the box;

with probability at least exp{—(log n)%}

that is much larger than n=1t°(1) for
small e.

If there is such a box, the optimal path
does make a (log n)¢ jump.
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Schematic argument
There are two ways to make sense/use of “re-sampling”.
» Van den Berg—Kesten: By looking at mean values;

» Duminil-Copin et al.: Multi-valued map principle.
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Schematic argument
There are two ways to make sense/use of “re-sampling”.

» Van den Berg—Kesten: By looking at mean values;
» Duminil-Copin et al.: Multi-valued map principle.
We use the latter that relies on a combinatorial interpretation of

the re-sampling:

Paths without big jumps Paths with a big jump
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Schematic argument
There are two ways to make sense/use of “re-sampling”.

» Van den Berg—Kesten: By looking at mean values;
» Duminil-Copin et al.: Multi-valued map principle.
We use the latter that relies on a combinatorial interpretation of

the re-sampling:

#{Paths without big jumps} <  #{Paths with a big jump}
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Thank you!



