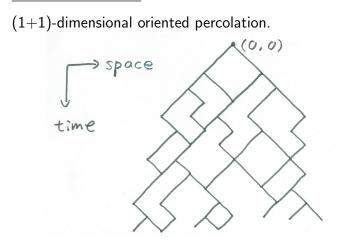
On exponential growth for a certain class of linear systems

Ryoki Fukushima (Tokyo Institute of Technology)

Joint work with Nobuo Yoshida (Kyoto university)

Universality and Scaling Limits in Probability and Statistical Mechanics September 1, 2010

Simplest Example



<u>Q.</u> Asymptotics of the number of open paths of length n? (We regard it as the "population".)

Related models

- Homogeneous branching random walks: each particle splits and moves independently.
- Branching random walks in space time random environment: the branching law depends on sites.
- Path counting on the oriented percolation: every particle at the same site splits and moves in the same manner.

Trivial half

$$p \leq p_c \Longrightarrow$$
 extinct a.s.

 $(p = p_c: \text{ Grimmett-Hiemer, } Progr. Probab., 2002.)$

Let $p > p_c$. How fast the population grows on the event of survival?

Trivial half

 $p \leq p_c \Longrightarrow$ extinct a.s.

 $(p = p_c: \text{ Grimmett-Hiemer, } Progr. Probab., 2002.)$

Let $p > p_c$. How fast the population grows on the event of survival?

Branching process analogy

For the supercritical Galton-Watson process,

survival $\stackrel{a.s.}{\Longleftrightarrow}$ exponential growth

<u>Remark</u>

Let $|N_n|$ denote the total population at time n.

 For the supercritical Galton-Watson process with the Kesten-Stigum condition,

$$P\left(\lim_{n\to\infty}\frac{|N_n|}{E[|N_n|]}>0\right)>0.$$

<u>Remark</u>

Let $|N_n|$ denote the total population at time n.

 For the supercritical Galton-Watson process with the Kesten-Stigum condition,

$$P\left(\lim_{n\to\infty}\frac{|N_n|}{E[|N_n|]}>0\right)>0.$$

Without the Kesten-Stigum condition, we still have

$$P\left(\lim_{n\to\infty}\frac{|N_n|}{C_n}>0\right)>0.$$

for some $C_n \approx E[|N_n|]$.

N. Yoshida (J. Stat. Phys., 2008) proved that

$$P\left(\lim_{n\to\infty}\frac{|N_n|}{E[|N_n|]}>0\right)>0.$$

for the (1 + d)-dimensional oriented percolation if $d \ge 3$ and p is sufficiently large. (sufficient: p >return probability of SRW)

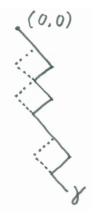
However, he also proved that it fails for d = 1, 2.

Simple proof for the (1+1)-dimensional oriented percolation

Consider the rightmost infinite open path γ .

 $1. \ \mbox{It changes the direction "many times"}.$

2. are open with probability
$$p^2$$
 independently.



Simple proof for the (1+1)-dimensional oriented percolation

Consider the rightmost infinite open path γ .

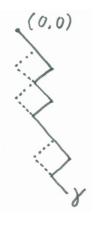
1. It changes the direction "many times".

2. are open with probability
$$p^2$$
 independently.

The law of large numbers shows that γ has O(n)-bypasses until n.

Since the population doubles whenever it has a bypass,...

 \implies exponential growth along γ



(日) (同) (目) (日)

Remark

Kesten-Nazarov-Peres-Sidoravicius have recently studied

"maximal paths" $\stackrel{\text{def}}{=}$ paths going through maximal number of open sites.

Their reselt says:

For any $p \in (0, 1)$ and any space dimension, the number of maximal paths of length ngrows exponentially. We are interested in another generalization.

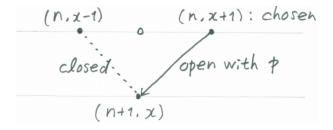
- (1) General space dimension
- (2) Non nearest neighbor immigration
- (3) Spatial correlation

The "simple proof" breaks down since

(1) or (2)
$$\implies$$
 no rightmost path,
(3) in addition \implies (possibly) no \bigcirc -bypass
but $\stackrel{\Im}{\longrightarrow}$ -bypass.

Example (a discrete version of contact process)

- (1) $\begin{pmatrix} (n, \chi) \\ \downarrow \\ (n+1, \chi) \end{pmatrix}$ is open with probability q.
- (2) For non-vertical bonds, choose one nearest neighbor site at the previous level uniformly and



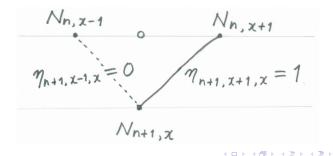
(ロ) (部) (言) (言) (こ) (10/21)

General model

$$\left\{ egin{array}{l} N_{n,x}: ext{the population at } (n,x) \in \mathbb{Z}_+ imes \mathbb{Z}^d, \ N_n = (N_{n,x})_{x \in \mathbb{Z}^d} \end{array}
ight.$$

The evolution rule of the oriented percolation is

$$N_{n+1,x} = \sum_{y} N_{n,y} \cdot \eta_{n+1,y,x} \cdot \mathbf{1}_{\{|x-y|=1\}}$$



We can rewrite the equation as

$$N_{n+1}=N_nA_{n+1},$$

where $A_{n,x,y} = \eta_{n,x,y} \cdot 1_{\{|x-y|=1\}}$.

$$P\left((A_1\cdots A_m)_{0,x}\geq 2\right)>0.$$

The last condition (4) ensures the existence of a bypass. Indeed,

$$(A_1 \cdots A_m)_{0,x} = \sum_{x_1, \dots, x_{m-1}} A_{1,0,x_1} \cdots A_{m,x_{m-1},x}.$$

The last condition (4) ensures the existence of a bypass. Indeed,

$$(A_1 \cdots A_m)_{0,x} = \sum_{x_1, \dots, x_{m-1}} A_{1,0,x_1} \cdots A_{m,x_{m-1},x}$$

If $\{A_n\}_{n\in\mathbb{N}}$ are of finite range, then (4) is necessary for exponential growth since

(4) fails $\implies N_{n,x} \in \{0,1\},\$ finite range $\implies \#\{\text{occupied sites}\} = O(n^d).$ Viewing $A_1 \cdots A_m$ as one step, we replace (4) by (5) $P(A_{1,0,x} \ge 2) > 0$ for some $x \in \mathbb{Z}^d$. Viewing $A_1 \cdots A_m$ as one step, we replace (4) by (5) $P(A_{1,0,x} \ge 2) > 0$ for some $x \in \mathbb{Z}^d$.

Definition

$$N_n = (\delta_{0,x})_{x \in \mathbb{Z}^d} A_1 \cdots A_n.$$

Theorem (F. and Yoshida)

Suppose (1)-(3) and (5) hold and the process survives with positive probability. Then,

survival
$$\stackrel{a.s.}{\iff}$$
 exponential growth

14/21

Idea of the proof

We are going to find an open path on which $A_{n,\gamma(n-1),\gamma(n)} \ge 2$ many times.

However, for an infinite open path, it is difficult to establish "independence" required to use the law of large numbers.

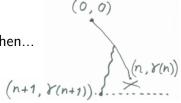
Thus we first construct a path which is not open in general.

Let $x \in \mathbb{Z}^d$ be such that $P(A_{1,0,x} \ge 2) > 0$. Set $\gamma(0) = 0$ and given $\gamma(n)$,

(1)
$$\gamma(n+1) = \gamma(n) + x$$
 if $\begin{pmatrix} n & \gamma(n) \end{pmatrix} \chi$

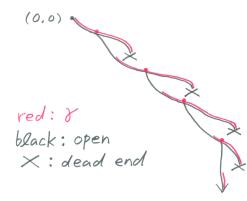
(2)
$$\gamma(n+1) = \gamma(n) + y \ (y \neq x)$$
 if γ

(3) If $(n, \gamma(n))$ is a dead end, then...



Properties of γ

- prefers to choose x-direction,
- does not refer to the future,
- does not refer to the past beyond a percolation point,
- ▶ ∃ open path going through all percolation points on γ .



Define the good events by

$$G_n = \left\{ A_{n,\gamma(n-1),\gamma(n-1)+x} \ge 2 \text{ and } (n,\gamma(n)) \rightsquigarrow \infty \right\}$$

 ∃ open path going through all sites where G_n occurs,
 {G_n}_{n∈N} is stationary,
 P(G_n) = P(A_{n,γ(n-1),γ(n-1)+x} ≥ 2)P((n, γ(n)) → ∞) = P(A_{1,0,x} ≥ 2)P(survival) > 0,
 {G_n}_{n∈N} is mixing.

$$P(G_m \cap G_n)$$

$$= P(A_{m,\gamma(m-1),\gamma(m-1)+x} \ge 2, (m,\gamma(m)) \rightsquigarrow \infty,$$

$$A_{n,\gamma(n-1),\gamma(n-1)+x} \ge 2, (n,\gamma(n)) \rightsquigarrow \infty)$$

$$= P(A_{m,-.} \ge 2, (m,\gamma(m)) \rightsquigarrow (n-1,\gamma(n-1)))$$

$$\times P(A_{n,-.} \ge 2, (n,\gamma(n)) \rightsquigarrow \infty)$$

$$\sim P(G_m)P(G_n) \text{ as } n-m \to \infty.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The law of large numbers shows that

$$\frac{1}{n}\sum_{k=1}^{n} \mathbb{1}_{G_k} \longrightarrow P(A_{1,0,x} \ge 2)P(\text{survival}).$$

The law of large numbers shows that

$$\frac{1}{n}\sum_{k=1}^{n}1_{G_{k}}\longrightarrow P(A_{1,0,x}\geq 2)P(\text{survival}).$$

By (1), there exists an open path going through all sites where G_n occurs. Therefore we have an open path with many bypasses.

 \implies exponential growth.

イロト イポト イヨト イヨト

Thank you!