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Simplest Example

(1+1)-dimensional oriented percolation.

Q. Asymptotics of the number of open paths of length n?
(We regard it as the “population”.)
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Related models

I Homogeneous branching random walks: each particle
splits and moves independently.

I Branching random walks in space time random
environment: the branching law depends on sites.

I Path counting on the oriented percolation: every particle
at the same site splits and moves in the same manner.
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Trivial half
p ≤ pc =⇒ extinct a.s.

(p = pc : Grimmett-Hiemer, Progr. Probab., 2002.)

Let p > pc . How fast the population grows on the event of
survival?

Branching process analogy

For the supercritical Galton-Watson process,

survival
a.s.⇐⇒ exponential growth
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Remark

Let |Nn| denote the total population at time n.

I For the supercritical Galton-Watson process with the
Kesten-Stigum condition,

P

(
lim

n→∞

|Nn|
E [|Nn|]

> 0

)
> 0.

I Without the Kesten-Stigum condition, we still have

P

(
lim

n→∞

|Nn|
Cn

> 0

)
> 0.

for some Cn ≈ E [|Nn|].
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I N. Yoshida (J. Stat. Phys., 2008) proved that

P

(
lim

n→∞

|Nn|
E [|Nn|]

> 0

)
> 0.

for the (1+ d)-dimensional oriented percolation if d ≥ 3 and p
is sufficiently large. (sufficient: p >return probability of SRW)

However, he also proved that it fails for d = 1, 2.
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Simple proof for the (1+1)-dimensional oriented percolation

Consider the rightmost infinite open path γ.

1. It changes the direction “many times”.

2. are open with probability p2

independently.

The law of large numbers shows that γ has
O(n)-bypasses until n.

Since the population doubles whenever
it has a bypass,...

=⇒ exponential growth along γ ¤
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Remark

Kesten-Nazarov-Peres-Sidoravicius have recently studied

“maximal paths”
def
= paths going through maximal

number of open sites.

Their reselt says:

For any p ∈ (0, 1) and any space dimension,

the number of maximal paths of length n

grows exponentially.

8 / 21



. . . . . .

We are interested in another generalization.

(1) General space dimension

(2) Non nearest neighbor immigration

(3) Spatial correlation

The “simple proof” breaks down since

(1) or (2) =⇒ no rightmost path,

(3) in addition =⇒ (possibly) no -bypass

but -bypass.
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Example (a discrete version of contact process)

(1) is open with probability q.

(2) For non-vertical bonds, choose one nearest neighbor
site at the previous level uniformly and
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General model{
Nn,x : the population at (n, x) ∈ Z+ × Zd ,

Nn = (Nn,x)x∈Zd

The evolution rule of the oriented percolation is

Nn+1,x =
∑

y

Nn,y · ηn+1,y ,x · 1{|x−y |=1}
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We can rewrite the equation as

Nn+1 = NnAn+1,

where An,x ,y = ηn,x ,y · 1{|x−y |=1}.

Key properties of {An}n∈N

(1) Z+-valued elements,

(2) I.I.D. in n ∈ N,

(3) (An,x ,y)x ,y∈Zd
law
= (An,x+z,y+z)x ,y∈Zd for any z ∈ Zd ,

(4) For some m ∈ N and x ∈ Zd ,

P ((A1 · · ·Am)0,x ≥ 2) > 0.
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The last condition (4) ensures the existence of a bypass.
Indeed,

(A1 · · ·Am)0,x =
∑

x1,...,xm−1

A1,0,x1 · · ·Am,xm−1,x .

If {An}n∈N are of finite range, then (4) is necessary for
exponential growth since

(4) fails =⇒ Nn,x ∈ {0, 1},
finite range =⇒ #{occupied sites} = O(nd).
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Viewing A1 · · ·Am as one step, we replace (4) by

(5) P(A1,0,x ≥ 2) > 0 for some x ∈ Zd .

Definition
Nn = (δ0,x)x∈Zd A1 · · ·An.

Theorem (F. and Yoshida)

Suppose (1)–(3) and (5) hold and the process survives with
positive probability. Then,

survival
a.s.⇐⇒ exponential growth
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Idea of the proof

We are going to find an open path on which
An,γ(n−1),γ(n) ≥ 2 many times.

However, for an infinite open path, it is difficult
to establish “independence” required to use the
law of large numbers.

Thus we first construct a path which is not
open in general.
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Let x ∈ Zd be such that P(A1,0,x ≥ 2) > 0.
Set γ(0) = 0 and given γ(n),

(1) γ(n + 1) = γ(n) + x if

(2) γ(n + 1) = γ(n) + y (y ̸= x) if

(3) If (n, γ(n)) is a dead end, then...
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Properties of γ

I prefers to choose x-direction,

I does not refer to the future,

I does not refer to the past beyond a percolation point,

I ∃ open path going through all percolation points on γ.
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Define the good events by

Gn =
{
An,γ(n−1),γ(n−1)+x ≥ 2 and (n, γ(n)) Ã ∞

}
(1) ∃ open path going through all sites where Gn occurs,

(2) {Gn}n∈N is stationary,

(3) P(Gn) = P(An,γ(n−1),γ(n−1)+x ≥ 2)P((n, γ(n)) Ã ∞)

= P(A1,0,x ≥ 2)P(survival)

> 0,

(4) {Gn}n∈N is mixing.
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P(Gm ∩ Gn)

= P(Am,γ(m−1),γ(m−1)+x ≥ 2, (m, γ(m)) Ã ∞,

An,γ(n−1),γ(n−1)+x ≥ 2, (n, γ(n)) Ã ∞)

= P(Am,—. ≥ 2, (m, γ(m)) Ã (n − 1, γ(n − 1)))

× P(An,—. ≥ 2, (n, γ(n)) Ã ∞)

∼ P(Gm)P(Gn) as n − m → ∞.
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The law of large numbers shows that

1

n

n∑
k=1

1Gk
−→ P(A1,0,x ≥ 2)P(survival).

By (1), there exists an open path going through
all sites where Gn occurs. Therefore we have an
open path with many bypasses.

=⇒ exponential growth.
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Thank you!
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