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1. Setting

° <{Bf}t20 , PX> . kA-Brownian motion on R?

° <w = Z 5w,.,IF’) : Poisson point process on RY
i

with unit intensity
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1. Setting

° <{Bt}t>o , PX> . kA-Brownian motion on R?
° <w = Z 5w,.,IF’) : Poisson point process on RY
i with unit intensity

Potential
For a non-negative and integrable function v,

Vi(x) = Z v(x — wj).

i

(Typically v(x) = 1g(0,1)(x) or |x|7* A1 with a > d.)
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Annealed measure

We are interested in the behavior of Brownian motion under the
measure

exp {—/Ot Vw(Bs)dS} P® Po(-)

E® E [exp {—/Ot Vw(Bs)dsH |

The configuration is not fixed and hence Brownian motion and wj;'s
tend to avoid each other.

Qt(‘):
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eXp{_ fot Vw(BS)dS} : Iarge7 P: Iarge’ PO .

DA
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exp{— [y Vio(Bs)ds} : large, P :small,

Po : large
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2. Light tailed case

Donsker and Varadhan (1975)

When v(x) = o(|x|7972) as |x| — oo,

E® Ey [exp {—/Ot V,(Bs) ds}]
= exp {—c(d, m)td%?(l + 0(1))}
= Po (Bpp,q © Blx.t77Ro) ) P (w(B(x, 172 Ry)) = 0)
as t — oo.

Remark
c(d, k) = ir&f{mAD(U) + U]}
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One specific strategy gives dominant

contribution to the partition function.

4

It occurs with high probability under
the annealed path measure.

~
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Sznitman (1991, d = 2) and Povel (1999, d > 3)

When v has a compact support, there exists

De(w) € B(0,t7%(Ry + o(1)))

such that

Q: (B[o,t] C B(D¢(w), taz (Ry + 0(1)))) too g

Remark

Bolthausen (1994) proved the corresponding result for
two-dimensional random walk model.
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3. Heavy tailed case

Pastur (1977)
When v(x) ~ |[x|~* (o € (d,d + 2)) as |x| — o0,

E® E [eXp {—/Ot Vw(Bs)dsH = exp {—alt%u +0o(1))

where a; = |B(0,1)|F(229).

}

)
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In fact, Pastur's proof goes as follows:

E® E [exp {—/Ot Vw(Bs)dsH

~ Elexp{—tV,(0)}]

~ exp{—alt%}.
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In fact, Pastur's proof goes as follows:

E® E [exp {—/Ot Vw(Bs)dsH

~ Elexp{—tV,(0)}]

~ exp{—alt%}.

The effort of the Brownian motion is hidden in the lower order
terms.
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F. (2011)
When v(x)=|x|"* A1 (d < a < d 4 2),

E® Ep [exp {—/Ot Vw(Bs)dsH

= exp {_altg — (a2 + 0(1))1“%2‘;_2} :

where

ar = H¢)i”nf . {/H’V¢(X)|2 + C(d, @)|x|?¢(x)? dx}.
o=
Remark
The proof is an application of the general machinery developed by

Gartner-Konig 2000.
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Recalling the Donsker-Varadhan LDP

Po C /Otassdsw ¢2(x)dx> ~ exp{—t/ff\vqﬁ(X)\de}?

we expect the second term explains the behavior of the Brownian
motion.
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Po C /Otassdsw ¢2(x)dx> ~ exp{—t/ff\vqﬁ(X)\de}?

we expect the second term explains the behavior of the Brownian
motion.

In particular, since Py (Bjo,q C B(x, R)) ~ exp{—tR~?}, the
localization scale should be

a+d—2 a—d+2
tR2=1t 22 & R=t %
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Recalling the Donsker-Varadhan LDP

Po C /Otassdsw ¢2(x)dx> ~ exp{—t/ff\vqﬁ(X)\de}?

we expect the second term explains the behavior of the Brownian
motion.

In particular, since Py (Bjo,q C B(x, R)) ~ exp{—tR~?}, the
localization scale should be

a+d—2 a—d+2
tR2=1t 22 & R=t %

In addition, the term [ C(d, a)|x|?¢(x)? dx says that V,, (locally)
looks like a quadratic function.
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the below is the
section along this line

Heavy tailed case

h(t) th(t) > t/r(t)?
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the below is the
section along this line

Light tailed case

th(t) < t/r(t)?
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Main Theorem (F. 2012)

Q: (B[OJ] cB (0 t%%a (log t)2+6)> 2%,

a—d+2
o

Qe(Vi(x) = Violme(w)) ~t~ "5 C(d, ) x — mel(w)

in B(0, t* ”2+6)) tooo

_ a—d+2 |
{t 2 B adi2 } inlw, ou- process with
t 2a s)s>0

“random center”,

).

where m¢(w) is the minimizer of V,, in B(0,
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Main Theorem (F. 2012)

Q: (B[OJ] cB (0 t%%a (log t)2+6)> 2%,

a—d+2
o

Qe(Vi(x) = Violme(w)) ~t~ "5 C(d, ) x — mel(w)

in B(0, t* ”2+6)) tooo

_ a—d+2 |
{t 2 B adi2 } inlw, ou- process with
t 2a s)s>0

“random center”,

a— d+ —d+2
B a—d+2 = Bt = t da X atd—2
t 2a t 2«

where m¢(w) is the minimizer of V,, in B(0,

Remark: X5 : =t~

16
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4. Outline of the proof (of localization)

Observation: The 1st statement implies the 2nd one and vice versa.
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4. Outline of the proof (of localization)

Observation: The 1st statement implies the 2nd one and vice versa.

Indeed, it is easy to believe 2nd = 1st.

To see 1st = 2nd, let L; := %fot dp.ds and rewrite

_1 —t(Le, V)] poLe
Q () = 7 Eo [E [e } P (dw)} ,
where Z; is the normalizing constant and

exp{—t(L¢, V) }P(dw)
E[exp{—t{Ls, VL)}] -

PLt(dw) =

17/25



Assuming the 1st statement, we may replace L; by dr,, with
mi, = [ xL¢(dx) in the following:

_a—d+2

pe (Vw(x) — Vy(me(w)) ~ C(d, @)t~ yx\2) 17
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Assuming the 1st statement, we may replace L; by dr,, with
mi, = [ xL¢(dx) in the following: Let m;, = 0 for simplicity.

_a—d+2

p% (Vw(x) — V,(0) ~ C(d, a)t~ % yxy2) 17

This can be easily proved since (w, P%) is nothing but the Poisson
point process with intensity e~ t(xI"*A1)qx,
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Assuming the 1st statement, we may replace L; by dr,, with
mi, = [ xL¢(dx) in the following: Let m;, = 0 for simplicity.

_a—d+2

p% (Vw(x) — V,(0) ~ C(d, a)t~ % !x!2) 17

This can be easily proved since (w, P%) is nothing but the Poisson
point process with intensity e~ t(xI"*A1)qx,

Remark

In fact, a slightly weaker localization bound is enough to do the
above replacement.
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This observation is useless (circular argument) as it is. But due to
the last remark, there is a chance to go as follows:

crude control on the potential,
= crude control on the trajectory,
= fine control on the potential,

= fine control on the trajectory.
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This observation is useless (circular argument) as it is. But due to
the last remark, there is a chance to go as follows:

crude control on the potential,
= crude control on the trajectory,
= fine control on the potential,

= fine control on the trajectory.

Assume V,, attains its local minimum at O for simplicity.
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4.1 Crude control on the potential
Lemma 1

a—d _ 3a—3d+2

d
Qt <Vw(0) S aaltiT +t 4o (_M17 Ml)> — L
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4.1 Crude control on the potential
Lemma 1

a—d 3a— 3d+2

d
Q: <Vw(0) € aalt*T +t

(- M17M1)> -

Idea

Z, < Elexp{—tV,,(0 :eXp{ alt}
= Hlewlor ()}]{%supbo[ P(V,(0) ~ h)] .
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4.1 Crude control on the potential

Lemma 1

d a— a—
Q: <vw(0) € —ant™ " 4 TR My, M1)> — 1.

Idea

Z, < Elexp{—tV,,(0 :eXp{_altg}’
< Elexp{—tV,,(0)}] {% SUP 1o [e*thP(Vw(O) ~ h)] .

—d . ..
ait™ a = h(t) is the maximizer.

SE® E [exp { /Ot Vw(Bs)ds} - V,(0) is far from h(t)]

< E[exp{—tV,,(0)} : V,,(0) is far from h(t)] = o(Z:).
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Lemma 2

Qt<Vw(0) +Vo(x) > 2h(t) + crt™ T |x 2

d+6 a—d+6
for t° B < |x| < Mat" Ga )—>1.
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Lemma 2

Qt<Vw(0) + Vo(x) > 2h( ) + ot S x|
for tsa <|x| < Mztagi+6) — 1.
Idea
By Lemma 1,

exp {—/Ot Vw(Bs)ds} < exp {—th(t)} = exp {_;’alti}
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Lemma 2

Qt<Vw(0) + Vo(x) > 2h( ) + ot S x|
for tsa <|x| < Mztagi+6) — 1.
Idea
By Lemma 1,

exp {—/Ot Vw(Bs)ds} < exp {—th(t)} = exp {_;’alti}

Then, use

E [exp {—%(Vw(O) + Vw(x))H ~ exp {—altg -~ qt%IXIZ}

and Chebyshev's inequality.
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4.2 Crude control on the trajectory

a— d+6

Mzt 8ax




4.2 Crude control on the trajectory

o a6 a—d+6 i —d+6 a—di6
—Mot ™ Ba —t Ba 0 Sa I\/I2t 8a

By “penalizing a crossing”,

Qr (B[O t] C B (0 Mztasi%)) 1.



4.3 Fine control on the potential

The “crude control on the trajectory” is good enough to yield

a—d+2

Qe (Vi) = Vo(0) ~C(d, @)t P
in B(0, tﬂii““)) 1.
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4.4 Fine control on the trajectory
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4.4 Fine control on the trajectory

a—d
—t 4

— +2(|0g t)%+6
By “penalizing a crossing”,

Q: (B[Ot C B(O g (|ogt) )) — 1.
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Thank you!
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