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Problem

Let Y a homology sphere. Do there exist a spin negative definite
w4,




Correction term d

If W# is a negative definite bounding of a homology sphere Y,
then the following holds:

(s) + ba(W) < 4d(Y)

for any spin® structure s.
In particular, if W is negative definite spin, then

by(W) < 4d(Y).

NS-invariant i (Ue)
Let Y be a rational Seifert homology sphere with spin structure c.
If W has a negative-defnite spin bounding W, then

8u(Y, )

S < py(w) < —8a(Y, )




¥(2,3,r)

1| it | d| Definite spin bounding
¥(2,3,12k—5)|1| 1 |0 No.
¥(2,3,12k—1)|0| 0 |2 No.
¥(2,3,12k+1)|0| 0 | O must be b =0
¥(2,3,12k+5) |1 |—-1]|2 must be by =8

4d(X(2,3,12k + 5)) = —8/i(X(2,3,12k + 5)) = 8

¥(2,3,13),%(2,3,25) have contractible bounding.
Do (2, 3,12k + 1) have any contractible bounding?
Do X(2,3,12k + 5) have any —Eg-bounding?



Theorem

Let Y, =%(2,3,12n+5) (0 < n <12,14). Then there exists W,
with OW, = ¥(2,3,12n+5) and Quw, = —Es.
In particular

0s(X(2,3,6n—1)) = gg(X(2,3,6n—1)) = 1.




Proof

Corollary

E(1) has the following decomposition:

E(1) = W, U N,

N_, : the Gompf Nuclei with <(1) —1n)

N_, = x(trefoil, meridian; 0, —n)



X(2,5,r)

u| @ | d| Definite spin bounding
¥(2,5,20k —11) | 1| -1 |2 must be by = 8
¥(2,5,20k—1) |[0| 0 |2 No.
Y(2,5,20k+11) | 1| 1 |0 No.
¥(2,5,20k+1) |0| O |O must be by =0
¥(2,5,20k+3) |1|-1]2 must be by =8
¥(2,5,20k+13)| 0| 0 |2 No.
¥(2,5,20k—3) [1]| 1 |0 No.
¥(2,5,20k—13)| 0| 0 |O must be b, =0




Minimal resolution

-2 -2 -2 -2 -5 -2 =2 -2 =2
| T
9 n—1
-2
¥(2,5,10n + 3)
-2
-2

QRZk = —Eg @2k <_1>'(n = 2k)
The —1 classes in Ry, cannot be blow-downed.



Indefinite invariant

Definition (Bounding genus)

Let Y be a homology 3-sphere. Then the bounding genus |Y| of Y
is defined to be

Y| = min{n|0X =Y,Qx = nH} pn(Y)=0,
~ | wY)=1,

where the bounding 4-manifold X is restricted to homologically
1-connected 4-manifold.

|-]:©3 - NU{0,o00}.



Definite spin invariants

Definition (s, 0s)
If'Y has a definte spin bounding X, then

25(Y) = max{bzéx)\bz(X) o)), wa(X) = 0 & OX y}

95(Y) := min { bzéx) 1b2(X) = |o(X)], wa(X) =0 & OX = Y}

If'Y has no definte spin bounding,

ds(Y) = 5(Y) = 00

We assume homologically 1-connected bounding as X.



Definition (¢)

1 09X =Y, Xpositive definite spin with by(X) > 0
—1 90X = Y; Xnegative definite spin with bo(X) > 0

e(Y) =
) 0 IX=Y;h(X)=0
oo no definite spin bound
Proposition

€ is well-defined.




Definition (gs, 25)

Let Y be a homology 3-sphere with finite e(Y). If Y has an
Eg-bounding, then we define the Eg-genera as follows:

gs(Y) = max{|n||Y = 0X and ,wr(X) =0, Qx = nEg}

gs(Y) = min{|n||Y = 0X and ,ws(X) =0, Qx = nEs},




11/8 conjecture

Proposition

The following is equivalent to each other

e Any closed spin smooth 4-manifold X satisfies
ba(X) = Flo(X)-

e Any colsed homology 3-sphere Y with u(Y) =0 and
0s(Y) < oo satisfies 2| Y| > 30s(Y).

Y



Similar invariants

Definition (Manolescu’s ¢.)
&(Y) =max{p—qlp,q € Z,q > 0, p(—Es) & gH = Qx
,0X =Y and wp(X) = 0}.
&Y)<k(Y)-1

Definition (Bohr and Lin’s m, m)
m(Y) = max{ga(X) — ba(X)|p, g, € Z,0X =Y, and wa(X) =0

m(Y) = min {ZU(X) — b (X)|p,q,€ Z,0X =Y, and wo(X) =0

v




m(—Y)/2 = max { bng) —qlOX =Y,Qx = N©qgH

and N : even negative-definite form, wo(X) = 0} .

Thus we have
m(—=Y)/2 <&(Y)+1,



Question

Can the Seiberg-Witten invariant or Donaldson Invarinats
contribute to 0s?




Fundamental properties

Theorem (Properties of 0s)

Let 95’ be one of 05,05, g5, g3-
©® Theds' and g} are h-cobordism invariants i.e.,
s’ : ©3 — NU{0,00}.
® 0s5(Y)=0o0rgs(Y)=0, ifand only if [Y] =0 in ©3.
© Ifos(Y),gs(Y) < oo, then
w(Y)=0s'(Y) = g4(Y) =0 mod 2
O Ife(Y1)e(Y2) =1, then 0s(Y1) +0s(Y2) < 0s(Y1 + Y2).
(5) /fe(yl)E(YQ) =1, then &(Yl + Yg) < &(Yl) +$(Y2).
O Ifos(Y) =1, then gg(Y) = 1.
@ 0s(—Y) =0s(Y) and ds(—Y) = 0s(Y).
O gs(—Y) = gs(Y) and gg(—Y) = gs(Y).




O If0<0s(Y) < oo, then ¢(Y)d(Y) <0 and
os(Y) < |d(Y)|/2.
@ If 95'(Y) or g§(Y) is odd, then |Y| = co.
® If 0s(Y) is even, then we have 0s(Y) +1 < |Y].
® If |Y|=1,2, then 0s(Y) = oo.
& If e(Y) # o0, then0s(Y) -1 < m(-Y)/2—1.
¥ Suppose that Y is a Seifert homology 3-sphere. If
0s(Y) < oo, then i(Y)e(Y) > 0 and 0s(Y) < |a(Y)].
® Can the values of 0s can give examples with
2|Y| < 30s(Y).(11/8-conjecture)




Qestions

Question

@ Find more general constructions of positive (or negative)
Eg-boundings for many homology 3-spheres.

® When 0s or s is additive? For two homology 3-spheres with
05(X;) < oo (i =1,2), Let denote 9s5(Y) = ¢(Y)0s(Y). Then
when does the equality

DNE(Xl) + DNE(XQ) = DNE(Xl#XQ)

hold?

© Let Y be a Brieskorn homology 3-sphere. If
4d(Y) = —-8u(Y) >0, then isds(Y) = @ true?
O If0s(Y) < oo, then does Y have an Eg-bounding?




Question
©® When the equality m(—Y)/2 =0s(Y) or m(—Y)/2 =0s(Y)
hold?

@ Are there exist any homology 3-spheres gs(Y) < gs(Y),
25(Y) # go(Y) or 3s(Y) £ Za(Y)?




Definite spin buondings

Construction
Minimal resolution

Y(4n—2,4n—1,8n—3), X(4n—1,4n,8n—1)

Y(4n—2,4n—1,8n> —4n+1), X(4n—1,4n,8n* — 1)

have 0s = n.




—" (4n—13)

=% (4n—2)

—2n =2 -2 =2

(4n —3)

(4n) (4n —2)

Y(4n—2,4n—1,8n> —4n+1) X(4n—1,4n,8n> —1)



Theorem

If Brieskorn homology spheres ¥(ai, a2 - ,a,) has the minimal
resolution with intersection form —Eg, then it is one of the
following:

¥(2,3,5),%(3,4,7),%(2,3,7,11),%(2,3,7,23),%X(3,4,7,43)

v



Blow-down of minimal resolution

/// ///
i blow down g
Sy

=d —a =3d =il =2 =g —2 -3 -3 -2 -1-3-2

blow down T+ 2 2 blow down r+6 2 blow down
—_— 9 —_— 9 :1,; --------- >
-3 -3-1-2 -2 -3-2 -1 -2

+2 2 1 0 - x+6 3 2
2 -1 1 0 -- 3 -1 1
1
0

1 —2 1 |7 2 1 -2






blow down T+ b2
e a+b b

O T v X

o< w

y+1

x+b> a+b
at+b y+1
b 1

z+1

b
1
z+1



%(;C

(3)

1)
pg’éc

p
(4)

—2cC
a

(6)

)




G a b c

(1) | 3k—204+2 | —2k+3(F2 3k? — 4kl + 307 + 2(2k — 20) + 2
(2) ]| 4k—£+2 | —3k+20F2 6k?> — 3kl + (2 £2(3k — £) +2
(3) | 4k —3(+2 | —3k+4LF2 6k> — 9kl + 602 + 2(3k — 3() + 2
(4)| Bk —20+2 | -4k +3(F2 10k? — 8kl + 302 +2(4k — 20) + 2
(5)] 6k—¢+2 | —Bk+20F2 15k? — 5kf + 02 £ 2(5k — £) + 2
(6) | 12k — 40 £3 [ —10k + 6/ F 3 | 60k> — 40k( + 1202 + 6(5k — 20) + 4
(6) | 12k — 40 £5 | —10k + 6/ F 5 | 60k> — 40k( + 120> £+ 10(5k — 2¢) + 11
(6) | 12k —4¢+£1] —10k +6¢ 60k> — 40k( + 1202 + 10k + 1
(6) | 12k — 40 +£3 | —10k + 6/ F 2 | 60k? — 40k + 12(%> +2(15k — 4¢) + 4
(7) | 14k —20 £3 | —12k + 40 F3 | 84k® —24k( + 40%> + 6(6k — () + 4
(7) | 14k —20 £5 | —12k + 40 F5 | 84k> — 24kl + 40> £10(6k — ¢) + 11
(7) | 14k —20£2 | —12k +40F 1| 84k? — 24kl + 40% + 12(2k — {) + 2
(7) | 14k — 20+ 4| 12k +40F 3| 84k> — 24kl + 402 +6(8k — 0) +7

The negative-definite Eg-boundings for (G; a, b, ¢)



p q r
10i+7 | 15/ +8 120/ + 148/ + 45
10i+3 | 15/ +2 120/ + 52i + 5
20i —8 | 30i — 17 | 480i/%> — 464i + 109
20i +8 | 30i+7 480/% + 304/ + 45
30/ — 13 | 45/ — 27 | 1080/2 — 1116/ + 281
30i — 7 | 45/ — 18| 1080/° — 684/ + 101
30i+7 | 45i+3 | 1080/% + 324 + 17
30/ + 13 | 45/ + 12 | 1080/2 + 756/ + 125
20i +2 | 30i —7 480/° — 64i — 11
20i —2 | 30i —23| 480i° — 256/ + 21
10i +7 | 15/ —2 120/° + 68/ — 365
10/ + 13| 15/ +7 120/° + 212/ + 73
60/ — 28 | 90/ — 57 | 43202 — 4752 + 1277
60/ — 8 | 90/ — 27 | 4320/%2 — 1872/ + 173
60i +8 | 90i —3 | 43202 + 432/ — 19
60/ + 28 | 90/ + 27 | 4320/ + 3312/ + 605

Y(p,q,r) with (1) and 1 <a<6




Theorem
Any X in this table, 0s(X) = gg(X) = 1.

" The simple computation of i(X) = —1.



Other examples
Theorem (Milnor fibration)
0s(X(2,3,6n — 1)#(—X(2,3,6n —5)))
= gs(X(2,3,6n — 1)#(—%(2,3,6n—5))) =1

K. Sato’s examples

Let K be a knot. K5 44+1: Cable knot of K.

Y = Sggn(q)(KZflqil) (q 75 0) Then

35(Y) < g < s(Y)

In particular, suppose that K bound null-homologous disk in a
punctured #"CP?2 and g # 0. e.g., K torus knot or figure-8, then

2s(Y) = g

€(Y) = sgn(q)




Minimal genus in E£(1)

E(n): elliptic fibration with x = 12n without no multiple fibers
E(1) = CP?#°CP2

The minimal genus problem of non-negative classes in
CP2#rCP2 (7 < n < 9) or surface bundle is completely solved by
Gauge theory.

For the negative classes in CP2#2CP2, not much is known.




Fact (Li%)

If € € Hy(C2#"CP2), then all classes with 0 > £2 > —(n+7)
have minimal genus Q.

In the case of £2 > —16, the orbit of Aut(H2(CP?#°CP?)) is
unique. But £ = —17, they are not unique.



Finashin-Mikalkin

There exists a smooth embedding of S? into a K3-surface X with
the normal Euler number equal to n for any negative even
n > —386.

F: the fiber class
S: the section class
Theclassn-F—S

(n-F—5)*=—(2n+2)



Theorem

Suppose that x = n- F — S € Hy(E(1)) = Hy(CP?#°CP?). If
x? > 31, then G(x) = 0.

X € HQ(X), .
G(x) = min{g(X)|[X] = x}



Proposition

Suppose that x = n-F — S € Hy(E(1)) = Ho(CP?#°CP?). If
x < =25 or x> = =29, then G(x) = 0.

Proof of Proposition
*.* By using decomposition E(1) = W, Uy, N, E(1) = W, U N, for
n=1(2),1<n<250rn=29.

Proposition

Suppose that x = n- F — S € Hy(E(1)) = Hy(CP?#°CP?). If
x? = —27 or —31, then G(x) = 0.

Proof of Proposition
E(1) ~ E(1)1 = W1 UN_1(1) = E(1) 1-log transform.
0D? — 0D? + «



Proof of Proposition

O log transfom / \
.\

Use the same handle slide in the first theorem.



Theorem (Estimate of genus)

Let n = —(p? +p+2s+1), where 0 < s < 15. Suppose that
X, =n-F—35S. Then G(x,) < @.

" p — log-transform E(1), = E(1) gives a surface with genus
P(P2—1)_

Conjecture

Forx,=n-F—-S
n

G(xp) ~ )

What about classes x in Hy(CP?#°CP2)?
The orbit set with x*> = —n is finite.






