Definite spin 4-manifolds bounding homology spheres

定値偶形式をもつ4次元多様体とその境界

Motoo Tange

University of Tsukuba

2014/11/23

Problem

Let Y a homology sphere. Do there exist a spin negative definite W^4 .

Correction term d

If W^4 is a negative definite bounding of a homology sphere Y, then the following holds:

$$c_1^2(\mathfrak{s}) + b_2(W) \le 4d(Y)$$

for any spin^c structure \mathfrak{s} . In particular, if W is negative definite spin, then

$$b_2(W) \leq 4d(Y)$$
.

NS-invariant $\bar{\mu}$ (Ue)

Let Y be a rational Seifert homology sphere with spin structure c. If W has a negative-definite spin bounding W, then

$$-\frac{8\overline{\mu}(Y,c)}{9} \leq b_2(W) \leq -8\overline{\mu}(Y,c)$$

$\Sigma(2, 3, r)$

	μ	$\bar{\mu}$	d	Definite spin bounding
$\Sigma(2,3,12k-5)$	1	1	0	No.
$\Sigma(2,3,12k-1)$	0	0	2	No.
$\Sigma(2,3,12k+1)$	0	0	0	must be $b_2 = 0$
$\Sigma(2,3,12k+5)$	1	-1	2	must be $b_2 = 8$

$$4d(\Sigma(2,3,12k+5)) = -8\bar{\mu}(\Sigma(2,3,12k+5)) = 8$$

 $\Sigma(2,3,13), \Sigma(2,3,25)$ have contractible bounding.

Do $\Sigma(2,3,12k+1)$ have any contractible bounding?

Do $\Sigma(2,3,12k+5)$ have any $-E_8$ -bounding?

Theorem

Let $Y_n=\Sigma(2,3,12n+5)$ (0 $\leq n\leq 12,14$). Then there exists W_n with $\partial W_n=\Sigma(2,3,12n+5)$ and $Q_{W_n}\cong -E_8$. In particular

$$\mathfrak{ds}(\Sigma(2,3,6n-1)) = g_8(\Sigma(2,3,6n-1)) = 1.$$

Proof

Corollary

E(1) has the following decomposition:

$$E(1) = W_n \cup N_n$$

$$N_{-n}$$
: the Gompf Nuclei with $\begin{pmatrix} 0 & 1 \\ 1 & -n \end{pmatrix}$
 $N_{-n} = \chi(\text{trefoil}, meridian; 0, -n)$

 $\Sigma(2, 5, r)$

	· •				
		μ	$\bar{\mu}$	d	Definite spin bounding
	$\Sigma(2,5,20k-11)$	1	-1	2	must be $b_2 = 8$
	$\Sigma(2,5,20k-1)$	0	0	2	No.
	$\Sigma(2,5,20k+11)$	1	1	0	No.
ĺ	$\Sigma(2,5,20k+1)$	0	0	0	must be $b_2 = 0$
	$\Sigma(2,5,20k+3)$	1	-1	2	must be $b_2 = 8$
	$\Sigma(2,5,20k+13)$	0	0	2	No.
	$\Sigma(2,5,20k-3)$	1	1	0	No.
	$\Sigma(2,5,20k-13)$	0	0	0	must be $b_2 = 0$
,					•

Minimal resolution

$$Q_{R_{2k}} \cong -E_8 \oplus^{2k} \langle -1 \rangle . (n = 2k)$$

The -1 classes in R_{2k} cannot be blow-downed.

Indefinite invariant

Definition (Bounding genus)

Let Y be a homology 3-sphere. Then the bounding genus |Y| of Y is defined to be

$$|Y| := egin{cases} \min\{n | \partial X = Y, Q_X = nH\} & \mu(Y) = 0, \\ \infty & \mu(Y) = 1, \end{cases}$$

where the bounding 4-manifold X is restricted to homologically 1-connected 4-manifold.

$$|\cdot|:\Theta^3_{\mathbb{Z}}\to\mathbb{N}\cup\{0,\infty\}.$$

Definite spin invariants

Definition $(\mathfrak{ds}, \overline{\mathfrak{ds}})$

If Y has a definte spin bounding X, then

$$\mathfrak{ds}(Y) := \max \left\{ \frac{b_2(X)}{8} | b_2(X) = |\sigma(X)|, \ w_2(X) = 0 \ \& \ \partial X = Y \right\}$$

$$\overline{\mathfrak{ds}}(Y) := \min \left\{ \frac{b_2(X)}{8} | b_2(X) = |\sigma(X)|, \ w_2(X) = 0 \ \& \ \partial X = Y \right\}$$

If Y has no definte spin bounding,

$$\mathfrak{ds}(Y) = \overline{\mathfrak{ds}}(Y) = \infty$$

We assume homologically 1-connected bounding as X.

Definition (ϵ)

$$\epsilon(Y) = \begin{cases} 1 & \partial X = Y; X \textit{positive definite spin with } b_2(X) > 0 \\ -1 & \partial X = Y; X \textit{negative definite spin with } b_2(X) > 0 \\ 0 & \partial X = Y; b_2(X) = 0 \\ \infty & \textit{no definite spin bound} \end{cases}$$

Proposition

 ϵ is well-defined.

Definition $(g_8, \overline{g_8})$

Let Y be a homology 3-sphere with finite $\epsilon(Y)$. If Y has an E_8 -bounding, then we define the E_8 -genera as follows:

$$g_8(Y)=\max\{|n||Y=\partial X \ \text{and} \ , w_2(X)=0, Q_X=nE_8\}$$

$$\overline{g_8}(Y) = \min\{|n||Y = \partial X \text{ and }, w_2(X) = 0, Q_X = nE_8\},\$$

11/8 conjecture

Proposition

The following is equivalent to each other

- Any closed spin smooth 4-manifold X satisfies $b_2(X) \geq \frac{11}{8} |\sigma(X)|$.
- Any colsed homology 3-sphere Y with $\mu(Y) = 0$ and $\mathfrak{ds}(Y) < \infty$ satisfies $2|Y| \ge 3\mathfrak{ds}(Y)$.

Similar invariants

Definition (Manolescu's ξ .)

$$\xi(Y) = \max\{p - q | p, q \in \mathbb{Z}, q > 0, p(-E_8) \oplus qH = Q_X$$

 $, \partial X = Y \text{ and } w_2(X) = 0\}.$
 $\xi(Y) \le \kappa(Y) - 1$

Definition (Bohr and Lin's m, \overline{m} **)**

$$m(Y) = \max \left\{ \frac{5}{4} \sigma(X) - b_2(X) | p, q, \in \mathbb{Z}, \partial X = Y, \text{ and } w_2(X) = 0 \right\}$$

$$\overline{m}(Y) = \min \left\{ \frac{5}{4} \sigma(X) - b_2(X) | p, q, \in \mathbb{Z}, \partial X = Y, \text{ and } w_2(X) = 0 \right\}$$

$$m(-Y)/2 = \max \left\{ \frac{b_2(N)}{8} - q | \partial X = Y, Q_X \cong N \oplus qH \right\}$$

and N: even negative-definite form, $w_2(X) = 0$.

 $m(-Y)/2 < \xi(Y) + 1$,

Thus we have

Question

Can the Seiberg-Witten invariant or Donaldson Invarinats contribute to 0s?

Fundamental properties

Theorem (Properties of \mathfrak{ds})

Let \mathfrak{ds}' be one of \mathfrak{ds} , $\overline{\mathfrak{ds}}$, g_8 , \overline{g}_8 .

- 1 The \mathfrak{ds}' and g_8' are h-cobordism invariants i.e., $\mathfrak{ds}':\Theta^3_{\mathbb{Z}}\to\mathbb{N}\cup\{0,\infty\}.$
- 2 $\overline{\mathfrak{ds}}(Y) = 0$ or $\overline{g_8}(Y) = 0$, if and only if [Y] = 0 in $\Theta^3_{\mathbb{Z}}$.

- **6** If $\epsilon(Y_1)\epsilon(Y_2) = 1$, then $\overline{\mathfrak{ds}}(Y_1 + Y_2) \leq \overline{\mathfrak{ds}}(Y_1) + \overline{\mathfrak{ds}}(Y_2)$.
- **6** If $\mathfrak{ds}(Y) = 1$, then $g_8(Y) = 1$.
- $\mathfrak{ds}(-Y) = \mathfrak{ds}(Y)$ and $\overline{\mathfrak{ds}}(-Y) = \overline{\mathfrak{ds}}(Y)$.
- **8** $g_8(-Y) = g_8(Y)$ and $\overline{g_8}(-Y) = \overline{g_8}(Y)$.

- 9 If $0 < \mathfrak{ds}(Y) < \infty$, then $\epsilon(Y)d(Y) < 0$ and $\mathfrak{ds}(Y) < |d(Y)|/2$.
- If $\mathfrak{ds}'(Y)$ or $g_8'(Y)$ is odd, then $|Y| = \infty$.
- ① If $d\mathfrak{s}(Y)$ is even, then we have $d\mathfrak{s}(Y) + 1 < |Y|$.
- \P If |Y|=1,2, then $\mathfrak{ds}(Y)=\infty$.
- \bullet If $\epsilon(Y) \neq \infty$, then $\mathfrak{ds}(Y) 1 \leq m(-Y)/2 1$.
- \bigcirc Suppose that Y is a Seifert homology 3-sphere. If $\mathfrak{ds}(Y) < \infty$, then $\bar{\mu}(Y)\epsilon(Y) > 0$ and $\mathfrak{ds}(Y) < |\bar{\mu}(Y)|$.
- **I** Can the values of \mathfrak{ds} can give examples with $2|Y| < 30\mathfrak{s}(Y).(11/8\text{-conjecture})$

Qestions

Question

- 1 Find more general constructions of positive (or negative) E₈-boundings for many homology 3-spheres.
- **2** When \mathfrak{ds} or $\overline{\mathfrak{ds}}$ is additive? For two homology 3-spheres with $\mathfrak{ds}(X_i) < \infty$ (i = 1, 2), Let denote $\widetilde{\mathfrak{ds}}(Y) = \epsilon(Y)\mathfrak{ds}(Y)$. Then when does the equality

$$\tilde{\mathfrak{ds}}(X_1) + \tilde{\mathfrak{ds}}(X_2) = \tilde{\mathfrak{ds}}(X_1 \# X_2)$$

hold?

- 3 Let Y be a Brieskorn homology 3-sphere. If $4d(Y) = -8\overline{\mu}(Y) > 0$, then is $\mathfrak{ds}(Y) = \frac{d(Y)}{2}$ true?
- **4** If $\mathfrak{ds}(Y) < \infty$, then does Y have an E_8 -bounding?

Question

- **1** When the equality $m(-Y)/2 = \mathfrak{ds}(Y)$ or $\overline{m}(-Y)/2 = \overline{\mathfrak{ds}}(Y)$ hold?
- 2 Are there exist any homology 3-spheres $g_8(Y) < \overline{g_8}(Y)$, $\mathfrak{ds}(Y) \neq g_8(Y)$ or $\overline{\mathfrak{ds}}(Y) \neq \overline{g_8}(Y)$?

Definite spin buondings

Construction

Minimal resolution

$$\Sigma(4n-2,4n-1,8n-3), \Sigma(4n-1,4n,8n-1)$$

$$\Sigma(4n-2,4n-1,8n^2-4n+1), \ \Sigma(4n-1,4n,8n^2-1)$$

have $\mathfrak{ds} = n$.

 $\Sigma(4n-2,4n-1,8n^2-4n+1)$ $\Sigma(4n-1,4n,8n^2-1)$

Theorem

If Brieskorn homology spheres $\Sigma(a_1, a_2 \cdots, a_n)$ has the minimal resolution with intersection form $-E_8$, then it is one of the following:

$$\Sigma(2,3,5), \Sigma(3,4,7), \Sigma(2,3,7,11), \Sigma(2,3,7,23), \Sigma(3,4,7,43)$$

Blow-down of minimal resolution

(1)	$3k-2\ell\pm 2$	$-2k+3\ell\mp 2$	$3k^2 - 4k\ell + 3\ell^2 \pm 2(2k - 2\ell) + 2$
(2)	$4k - \ell \pm 2$	$-3k+2\ell\mp2$	$6k^2 - 3k\ell + \ell^2 \pm 2(3k - \ell) + 2$
(3)	$4k-3\ell\pm 2$	$-3k+4\ell\mp2$	$6k^2 - 9k\ell + 6\ell^2 \pm 2(3k - 3\ell) + 2$
(4)	$5k-2\ell\pm 2$	$-4k+3\ell \mp 2$	$10k^2 - 8k\ell + 3\ell^2 \pm 2(4k - 2\ell) + 2$
(5)	$6k - \ell \pm 2$	$-5k+2\ell\mp2$	$15k^2 - 5k\ell + \ell^2 \pm 2(5k - \ell) + 2$
(6)	$12k-4\ell\pm3$	$-10k + 6\ell \mp 3$	$60k^2 - 40k\ell + 12\ell^2 \pm 6(5k - 2\ell) + 4\ell$
(6)	$12k-4\ell\pm 5$	$-10k + 6\ell \mp 5$	$60k^2 - 40k\ell + 12\ell^2 \pm 10(5k - 2\ell) + 10$
(6)	$12k-4\ell\pm1$	$-10k + 6\ell$	$60k^2 - 40k\ell + 12\ell^2 \pm 10k + 1$
(6)	$12k-4\ell\pm3$	$-10k + 6\ell \mp 2$	$60k^2 - 40k\ell + 12\ell^2 \pm 2(15k - 4\ell) +$
(7)	$14k-2\ell\pm3$	$-12k + 4\ell \mp 3$	$84k^2 - 24k\ell + 4\ell^2 \pm 6(6k - \ell) + 4$
(7)	$14k-2\ell\pm 5$	$-12k + 4\ell \mp 5$	$84k^2 - 24k\ell + 4\ell^2 \pm 10(6k - \ell) + 11$
(7)	$14k-2\ell\pm2$	$-12k + 4\ell \mp 1$	$84k^2 - 24k\ell + 4\ell^2 \pm 12(2k - \ell) + 2$
(7)	$14k - 2\ell \pm 4$	$-12k + 4\ell \mp 3$	$84k^2 - 24k\ell + 4\ell^2 \pm 6(8k - \ell) + 7$

The negative-definite E_8 -boundings for (G; a, b, c)

С

G

р	q	r		
10i + 7	15i + 8	$120i^2 + 148i + 45$		
10i + 3	15i + 2	$120i^2 + 52i + 5$		
20 <i>i</i> – 8	30i - 17	$480i^2 - 464i + 109$		
20i + 8	30i + 7	$480i^2 + 304i + 45$		
30i - 13	45 <i>i</i> — 27	$1080i^2 - 1116i + 281$		
30 <i>i</i> – 7	45 <i>i</i> — 18	$1080i^2 - 684i + 101$		
30i + 7	45i + 3	$1080i^2 + 324i + 17$		
30i + 13	45i + 12	$1080i^2 + 756i + 125$		
20i + 2	30 <i>i</i> – 7	$480i^2 - 64i - 11$		
20 <i>i</i> – 2	30 <i>i</i> – 23	$480i^2 - 256i + 21$		
10i + 7	15 <i>i</i> – 2	$120i^2 + 68i - 365$		
10i + 13	15i + 7	$120i^2 + 212i + 73$		
60 <i>i</i> – 28	90 <i>i</i> — 57	$4320i^2 - 4752i + 1277$		
60 <i>i</i> – 8	90 <i>i</i> – 27	$4320i^2 - 1872i + 173$		
60i + 8	90 <i>i</i> – 3	$4320i^2 + 432i - 19$		
60i + 28	90i + 27	$4320i^2 + 3312i + 605$		
$\Sigma(p,q,r)$ with (1) and $1\leq a\leq 6$				

Theorem

Any Σ in this table, $\mathfrak{ds}(\Sigma) = g_8(\Sigma) = 1$.

 \therefore The simple computation of $\bar{\mu}(\Sigma) = -1$.

Other examples

Theorem (Milnor fibration)

$$\mathfrak{ds}(\Sigma(2,3,6n-1)\#(-\Sigma(2,3,6n-5)))$$

= $g_8(\Sigma(2,3,6n-1)\#(-\Sigma(2,3,6n-5))) = 1$

K. Sato's examples

Let K be a knot. $K_{2,4q\pm1}$: Cable knot of K.

$$Y = S_{sgn(q)}^3(K_{2,4q\pm 1}) \ (q \neq 0)$$
. Then

$$\overline{\mathfrak{ds}}(Y) \leq q \leq \mathfrak{ds}(Y)$$

In particular, suppose that K bound null-homologous disk in a punctured $\#^n\overline{\mathbb{C}P^2}$ and $q \neq 0$. e.g., K torus knot or figure-8, then

$$\mathfrak{ds}(Y) = |q|$$
 $\epsilon(Y) = \operatorname{sgn}(q)$

Minimal genus in E(1)

E(n): elliptic fibration with $\chi=12n$ without no multiple fibers $E(1)=\mathbb{C}P^2\#^9\overline{\mathbb{C}P^2}$

The minimal genus problem of non-negative classes in $\mathbb{C}P^2\#^n\overline{\mathbb{C}P^2}$ $(7\leq n<9)$ or surface bundle is completely solved by Gauge theory.

For the negative classes in $\mathbb{C}P^2\#^9\overline{\mathbb{C}P^2}$, not much is known.

Fact (Li²)

If $\xi \in H_2(\mathbb{C}^2 \#^n \overline{\mathbb{C}P^2})$, then all classes with $0 > \xi^2 > -(n+7)$ have minimal genus 0.

In the case of $\xi^2 \ge -16$, the orbit of $\operatorname{Aut}(H_2(\mathbb{C}P^2\#^9\overline{\mathbb{C}P^2}))$ is unique. But $\xi^2 = -17$, they are not unique.

Finashin-Mikalkin

There exists a smooth embedding of S^2 into a K3-surface X with the normal Euler number equal to n for any negative even $n \ge -86$.

F: the fiber class S: the section class The class $n \cdot F - S$

$$(n \cdot F - S)^2 = -(2n+2)$$

Theorem

Suppose that $x = n \cdot F - S \in H_2(E(1)) = H_2(\mathbb{C}P^2 \#^9 \overline{\mathbb{C}P^2})$. If $x^2 \ge -31$, then G(x) = 0.

$$\mathbf{x} \in H_2(X),$$

$$G(\mathbf{x}) = \min\{g(\Sigma)|[\Sigma] = \mathbf{x}\}$$

Proposition

Suppose that
$$x = n \cdot F - S \in H_2(E(1)) = H_2(\mathbb{C}P^2 \#^9 \overline{\mathbb{C}P^2})$$
. If $x \le -25$ or $x^2 = -29$, then $G(x) = 0$.

Proof of Proposition

: By using decomposition $E(1) = W_n \cup_{Y_n} N_n \ E(1) = W_n \cup N_n$ for $n \equiv 1(2), \ 1 \le n \le 25$ or n = 29.

Proposition

Suppose that
$$x = n \cdot F - S \in H_2(E(1)) = H_2(\mathbb{C}P^2 \#^9 \overline{\mathbb{C}P^2})$$
. If $x^2 = -27$ or -31 , then $G(x) = 0$.

Proof of Proposition

$$E(1) \rightsquigarrow E(1)_1 = W_1 \cup N_{-1}(1) = E(1)$$
 1-log transform.
 $\partial D^2 \rightarrow \partial D^2 + \alpha$

Proof of Proposition

F-S

Use the same handle slide in the first theorem.

Theorem (Estimate of genus)

Let
$$n = -(p^2 + p + 2s + 1)$$
, where $0 \le s \le 15$. Suppose that $\mathbf{x}_p = n \cdot F - S$. Then $G(\mathbf{x}_p) \le \frac{p(p-1)}{2}$.

$$\therefore p$$
 – log-transform $E(1)_p = E(1)$ gives a surface with genus $\frac{p(p-1)}{2}$.

Conjecture

For
$$\mathbf{x}_n = n \cdot F - S$$

$$G(\mathbf{x}_n) \sim \frac{n}{2}$$

What about classes \mathbf{x} in $H_2(\mathbb{C}P^2\#^9\overline{\mathbb{C}P^2})$?

The orbit set with $\mathbf{x}^2 = -n$ is finite.