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1　Introduction

4-manifolds ←− Lefschetz fibrations −→ mapping class groups
total space monodromy

Elliptic surfaces w/o multiple tori −→ Hyperelliptic Lefschetz fibrations
natural generalization

In this talk . . .

⋆ We define a new invariant w for hyperelliptic Lefschetz fibrations

⋆ We employ Kamada’s chart description to introduce w

⋆ A detailed proof of invariance of w is given

Reference: H. Endo and S. Kamada,

Counting Dirac braids and hyperelliptic Lefschetz fibrations, arXiv:1508.07687.
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2　Hyperelliptic Lefschetz fibrations

• Lefschetz fibrations

M,B : closed oriented smooth 4-manifold and 2-manifold
Σg : a closed surface of genus g , f : M → B : a smooth map

Def. : f is a (achiral) Lefschetz fibration (LF) of genus g

⇐⇒ (1) ∆ ⊂ B : the set of the critical values of f,
f is a fiber bundle with fiber Σg over B −∆

(2) there exists a unique critical point p on Fb := f−1(b),

f is written as (z1, z2) 7→ z1z2 or z1z̄2 about p and b

(3) no fiber contains a (±1)-sphere

M : total space, B : base space, f : projection, Σg : fiber,
Fb : singular fiber (b ∈ ∆)
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• Anatomy of an LF

M

f

B

Σg

Fb1 Fb2 Fbn F0

p1
p2

pn

b1 b2 bn q0
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• Monodromy

Φ : Σg → F0 := f−1(b0) : an orientation-preserving diffeomorphism
γ : [0, 1]→ B −∆ : a loop based at b0

⇝ the pull-back γ∗f : γ∗M → [0, 1] of f is a trivial bundle

⇝ ∃ a natural “bundle map” φ : [0, 1]× Σg →M extending Φ

⇝ ρ : π1(B −∆, b0)→ π1(BDiff+Σg)
∼= π0(Diff+Σg) =:Mg

: [γ] 7→ [Φ ◦ φ1] : monodromy representation of f w.r.t. Φ

γ b

b0

ρ
c

t±1
c

Dehn twist

⋆ The mapping calss groupMg of Σg acts on the right.
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• Hurwitz system of LF over S2

π1(S
2 −∆, b0) = ⟨a1, · · · , an | a1 · · · an = 1⟩

a1 a2 an

b1 b2 bn

b0

⇝ ρ : a1 · · · an = 1 7→ tε1a1
· · · tεnan

= 1 ∈Mg (εi = ±1)
⇝ (ρ(a1), . . . , ρ(an)) = (tε1a1

, . . . , tεnan
) : a Hurwitz system of f

Theorem (Kas, cf. Matsumoto) : g ≧ 2

{ LF f : M → B of genus g }/ isomorphism ∼= of LF
1:1←→ { homomorphism ρ : π1(B −∆, b0)→Mg with ρ(ai) a Dehn

twist }/ equivalence
1:1←→

B=S2
{ Hurwitz system (tε1a1

, . . . , tεnan
) }/ Hurwitz equiv. & conj.
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• Singular fibers and vanishing cycles

p c

cp

Fb F0 Fb F0

h

g−h

non-separating, type I± separating, type II±h
# = n±

0 (f) # = n±
h (f)
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• Hyperelliptic mapping class group

ι : Σg → Σg : an involution of Σg with 2g + 2 fixed points

Hg := {φ ∈Mg |φι = ιφ} : hyperelliptic mapping class group

Σg

C1

C2

C3

C4 C2g

C2g+1

ι
180◦

Σg C2 C2h C2h+2 C2g

Sh

⋆ tC ∈ Hg ⇔ tι(C) = tC ⇔ ι(C) = C

⋆ ζi := tCi
, σh := tSh

(i = 1, . . . , 2g + 1, h = 1, . . . , [g/2])
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• Hyperelliptic Lefschetz fibrations

f : M → B : an LF of genus g

Φ : Σg → F0 := f−1(b0) : an orientation-preserving diffeomorphism
ρ : π1(B −∆, b0)→Mg : monodromy of f w.r.t. Φ

Def. : (f,Φ) is a hyperelliptic LF ⇐⇒ Im ρ⊂Hg

⋆ We can define an isomorphism ∼=H of two hyperelliptic LFs.

(1) (f,Φ)∼=H (f ′,Φ′) ⇔ ρ, ρ′ is equiv. in Hg up to conj.

(2) (f,Φ)∼=H (f ′,Φ′) ⇒ f ∼= f ′ as LFs

(3) Im ρ=Hg and f ∼= f ′ ⇒ (f,Φ)∼=H (f ′,Φ′)

⋆ We often denote (f,Φ) by f for short.
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3　Chart descriptions

• G-monodromy representations

B : a closed oriented smooth 2-manifold
∆ : a finite subset of B , b0 : a base point of B −∆

X : a set , R,S : sets of words in X ∪ X−1

G : a group with presentation ⟨X |R⟩
C := (X ,R,S)

M(B,∆, b0; C) := {ρ : π1(B −∆, b0)→ G : homomorphism
| ρ([ℓ]) ∼ [s] (∃s ∈ S) for every meridional loop ℓ}

b0
ℓ

b ∈ ∆b

⋆ We can define an equivalence of two such ρ s.
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• Charts

Γ : a finite graph in B, edges oriented and labeled with x ∈ X

Def. : the intersection word wΓ(γ) of a simple path γ w.r.t. Γ

⇐⇒
γ

x y x z y

wΓ(γ) = xy−1x−1zy

Def. : Γ is a C-chart in B

⇐⇒ Γ saitisfies (1) and (2):
(1) vertices of Γ : white vertices and black vertices
(2) for each white vertex v, wΓ(mv) ∈ R ∪R−1;

for each black vertex v, wΓ(mv) ∈ S

mv : a (counterclockwise) meridian loop of v

v : white vertex of type r ⇐⇒ wΓ(mv)
−1 = r ∈ R

v : black vertex of type s ⇐⇒ wΓ(mv) = s ∈ S
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• Charts and monodromies

Γ : a C-chart in B with base point b0
∆Γ : the set of black vertices of Γ

Def. : the homomorphism determined by Γ

⇐⇒ ρΓ : π1(B −∆Γ, b0)→ G : [η] 7→ [wΓ(η)]

Theorem (Kamada, Hasegawa) :
For any ρ ∈M(B,∆, b0; C), there exists a C-chart Γ with ρΓ=ρ.

Theorem (Kamada, Hasegawa) :
M(B,∆, b0; C)/ equivalence of G-monodromies

1:1←→ { C-charts Γ in B }/ chart moves

⋆ We use the terminology of chart description in Kamada’s paper:
S. Kamada, Topology Appl. 154 (2007)
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• An example of C-chart Γ

G := B4, C := (X ,R,S), X := S := {σ1, σ2, σ3},
R := {σ1σ3σ

−1
1 σ−1

3 , σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2 , σ2σ3σ2σ

−1
3 σ−1

2 σ−1
3 }

b0
1

2

1 2

1

3 3

3

2

2

γ1

γ2

γ3

γ4

⇝ wΓ(γ1) = σ−1
1 σ−1

2 σ1σ2σ1, wΓ(γ2) = σ−1
1 σ3σ1, . . . etc.
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• Chart moves

Γ,Γ′ : C-charts in B, b0 : a base point of B

Def. : Γ′ is obtained from Γ by chart move of type W
⇐⇒ • Γ ∩ (B − IntD) = Γ′ ∩ (B − IntD)

• both Γ ∩D and Γ′ ∩D have no black vertices
for a disk D embedded in B − {b0}

x

x

x

x

x

empty

r r−1
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Def. : Γ′ is obtained from Γ by chart move of transition
⇐⇒ Γ′ is obtained from Γ by a local replacement depicted below

s s′ w

w

s

T

where s, s′ ∈ S, w ∈ X ∪ X−1, and
• s′ and wsw−1 determine the same element of G
• the box labeled T is filled only by edges and white vertices
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Def. : Γ′ is obtained from Γ by chart move of conjugacy type
⇐⇒ Γ′ is obtained from Γ by a local replacement depicted below

b0 b0 x b0 b0 x

Def. : chart moves for C-charts
⇐⇒ the following four kinds of moves:

• chart moves of type W
• chart moves of transition
• chart moves of conjugacy type
• sending by orientation preserving diffeomorphisms of B
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4　An invariant w

• Three explicit Cs — Ê C forM0,2g+2

G =M0,2g+2 : the mapping class group of S2 with 2g + 2 points

C0 := (X0,R0,S0), X0 := {ξ1, ξ2, . . . , ξ2g+1},
R0 := {r1(i, j) | |i− j| > 1} ∪ {r2(i) | i = 1, . . . , 2g} ∪ {r3, r4},
S0 := {ℓ0(i)±1 | i = 1, . . . , 2g + 1} ∪ {ℓ±1

h |h = 1, . . . , [g/2]}

r1(i, j) := ξiξjξ
−1
i ξ−1

j (|i− j| > 1),

r2(i) := ξiξi+1ξiξ
−1
i+1ξ

−1
i ξ−1

i+1 (i = 1, . . . , 2g),

r3 := ξ1ξ2 · · · ξ2g+1ξ2g+1 · · · ξ2ξ1,
r4 := (ξ1ξ2 · · · ξ2g+1)

2g+2,

ℓ0(i) := ξi (i = 1, . . . , 2g + 1),

ℓh := (ξ1ξ2 · · · ξ2h)4h+2 (h = 1, . . . , [g/2]).

⋆M0,2g+2 = ⟨X0 |R0⟩ (Magnus)
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• Vertices of types ℓ0(i)
±1, r1(i, j), r2(i)

i

i
i

j i

j i

j i

j

=

i

i+1

i i+1

i

i+1

• Vertices of types r3, r4, ℓh

1

2g + 1
2g + 1

1

2g + 1

1

2g + 1

1
2g + 1

1

1

2h
1

2h

1

2h
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• Three explicit Cs — Ë C for B2g+2(S
2)

G = B2g+2(S
2) : the braid group of S2 with 2g + 2 strands

C̃ := (X̃ , R̃, S̃), X̃ := {x1, x2, . . . , x2g+1},
R̃ := {r̃1(i, j) | |i− j| > 1} ∪ {r̃2(i) | i = 1, . . . , 2g} ∪ {r̃3},
S̃ := {ℓ̃0(i)±1 | i = 1, . . . , 2g + 1} ∪ {ℓ̃±1

h |h = 1, . . . , [g/2]}

r̃1(i, j) := xixjx
−1
i x−1

j (|i− j| > 1),

r̃2(i) := xixi+1xix
−1
i+1x

−1
i x−1

i+1 (i = 1, . . . , 2g),

r̃3 := x1x2 · · ·x2g+1x2g+1 · · ·x2x1,

ℓ̃0(i) := xi (i = 1, . . . , 2g + 1),

ℓ̃h := (x1x2 · · ·x2h)
4h+2 (h = 1, . . . , [g/2]).

⋆ B2g+2(S
2) = ⟨X̃ | R̃⟩ (Fadell–Van Buskirk)

⋆ Vertices of types ℓ̃0(i)
±1, r̃1(i, j), r̃2(i), r̃3, ℓ̃h in C̃–charts are

similar to those of types ℓ0(i)
±1, r1(i, j), r2(i), r3, ℓh in C0–charts
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• Three explicit Cs — Ì C for Hg

G = Hg : the hyperelliptic mapping class group of Σg

Ĉ := (X̂ , R̂, Ŝ), X̂ := {ζ1, ζ2, . . . , ζ2g+1},
R̂ := {r̂1(i, j) | |i− j| > 1} ∪ {r̂2(i), r̂5(i) | i = 1, . . , 2g} ∪ {r̂3, r̂4},
Ŝ := {ℓ̂0(i)±1 | i = 1, . . . , 2g + 1} ∪ {ℓ̂±1

h |h = 1, . . . , [g/2]}

r̂1(i, j) := ζiζjζ
−1
i ζ−1

j (|i− j| > 1),

r̂2(i) := ζiζi+1ζiζ
−1
i+1ζ

−1
i ζ−1

i+1 (i = 1, . . . , 2g),

r̂3 := (ζ1ζ2 · · · ζ2g+1ζ2g+1 · · · ζ2ζ1)2,
r̂4 := (ζ1ζ2 · · · ζ2g+1)

2g+2,

r̂5(i) := [ζi, ζ1ζ2 · · · ζ2g+1ζ2g+1 · · · ζ2ζ1] (i = 1, . . . , 2g + 1),

ℓ̂0(i) := ζi (i = 1, . . . , 2g + 1),

ℓ̂h := (ζ1ζ2 · · · ζ2h)4h+2 (h = 1, . . . , [g/2]).

⋆ Hg = ⟨X̂ | R̂⟩ (Birman–Hilden)
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• Vertices of types r̂3, r̂5(i)

1

2g + 1
2g + 1

1
1

2g + 1
2g + 1

1

1

2g + 1
2g + 1

1

1

2g + 1
2g + 1

1

i

i

⋆ Vertices of types ℓ̂0(i)
±1, r̂1(i, j), r̂2(i), r̂4, ℓ̂h in Ĉ–charts are

similar to those of types ℓ0(i)
±1, r1(i, j), r2(i), r4, ℓh in C0–charts

⋆ 1→ Z2 −→ B2g+2(S
2) −→M0,2g+2→ 1 : central extension

⋆ 1 −→ Z2 −→ Hg
π−→M0,2g+2 −→ 1 : central extension
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• Charts and Hyperelliptic Lefschetz fibrations

Γ : a Ĉ-chart in B with base point b0
∆Γ : the set of black vertices of Γ
ρΓ : π1(B −∆Γ, b0)→Hg : the homomorphism determined by Γ

Propositon (Kamada–E.) :
(f,Φ) : hyperelliptic LF of genus g over B, g ≧ 2

ρ : π1(B −∆, b0)→Hg : a monodromy representation of (f,Φ)

=⇒ there exists a Ĉ-chart Γ which satisfies ρΓ = ρ.

Theorem (Kamada–E.) : g ≧ 2

{ hyperelliptic LFs (f,Φ) of genus g over B}/ ∼=H
1:1←→ { monodromies ρ : π1(B −∆)→Hg }/ equivalence for Hg
1:1←→ { Ĉ-charts Γ }/ chart moves
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• An invariant w

(f,Φ) : hyperelliptic LF of genus g over B
ρ : π1(B −∆, b0)→Hg : a monodromy representation of f
Γ̂ : a Ĉ-chart in B which satisfies ρΓ̂ = ρ.

Def. : w(Γ̂) : # of white vertices of type r̂±1
4 included in Γ̂ mod 2

w(f,Φ) := w(Γ̂)

Theorem (Kamada–E.): w is invariant under chart moves for odd g

Γ : a C0-chart in B with base point b0

Def. : w(Γ) : # of white vertices of type r±1
4 included in Γ mod 2

(f,Φ), ρ, Γ̂ : as above
⇝ We can construct a C0-chart Γ by changing Γ̂ locally

• Γ corresponds to ρ0 := π ◦ ρ : π1(B −∆, b0)→M0,2g+2

• w(Γ) = w(Γ̂) in Z2
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• Examples

Hurwitz system (for odd g)
W := (ζ1, . . . , ζ2g+1, ζ2g+1, . . . , ζ1)

g+1

W ′ := (ζ1, . . . , ζ2g+1)
2g+2

⇝ We obtain hyperelliptic LFs f, f ′ of genus g over S2

Both f and f ′ have 2(g + 1)(2g + 1) non-separating fibers,
and they do not have separating fibers
⇝ they have the same Euler characteristic and the same signature

Drawing Ĉ-charts corresponding to f and f ′,
we obtain w(f) = 0 and w(f ′) = 1

⇝ f and f ′ are not isomorphic.

⋆ By a theorem of Usher, the total spaces of f and f ′ are
homeomorphic but not diffeomorphic to each other.
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5　Proof of invariance

We will show the invariance of w for C0-charts.

⇝ It is obvious that w is invariant under chart moves of conjugacy
and orientation preserving diffeomorphisms

⇝ It suffices to show the invariance under chart moves of type W
and chart moves of transition

• Invariance under chart move of type W

Prop. : w is invariant under chart moves of type W

We need a lemma.
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Lem. : For a C0-chart below, the box labeled Tk can be filled only
with edges and white vertices of types r1(i, j)

±1, r2(i)
±1, r±1

3 .

2g + 1

1

2g + 1

1
2g + 1

1

k

k

Tk

2g + 1

1

2g + 1

1
2g + 1

1

Proof : The Dirac braid ∆ := (x1x2 · · ·x2g+1)
2g+2 is included in

the center of of B2g+2(S
2)

⇝ We can fill the box labeled Tk with C̃-chart
⇝ Change all labels xi of edges into ξi to obtain a C0-chart □
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Proof of Prop. : It suffices to show that w(Γ) = 0 for every
C0-chart Γ in S2 without black vertices.
⇝ Consider the chart move of type W below

2g + 1

1

2g + 1

1
2g + 1

1

r4

k

2g + 1

1

2g + 1

1
2g + 1

1

r4

k

k

Tk

⇝ By Lemma, the box labeled Tk can be filled only with edges and
white vertices of types r1(i, j)

±1, r2(i)
±1, r±1

3 .
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⇝ Use this move repeatedly to obtain Γ1 below from Γ

Θ1

r±1
4 r±1

4

Γ1

Θ2

rε4 rε4
Γ2

Θ2

w

Γ3

⇝ Cancel pairs of white vertices of type r±1
4 to obtain Γ2 from Γ1

n := # of white vertices of type rε4 in Γ2

⇝ Replace all white vertices of type rε4 with black vertices of type
ℓ0(i)

−ε to obtain Γ3 from Γ2

⋆ the box labeled Θ1,Θ2 is filled only with edges and white vertices
of types r1(i, j)

±1, r2(i)
±1, r±1

3 .
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⇝ Change all labels ξi of edges into xi to obtain a C̃-chart Γ̃3

⇝ The intersection word w is ∆εn = (x1x2 · · ·x2g+1)
ε(2g+2)n,

which represents 1 of B2g+2(S
2)

⇝ n must be even because ∆ represents an element of order two

Thus we have

w(Γ) = w(Γ1) = w(Γ2) = n = 0

and this completes the proof. □
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• Invariance under chart move of transition

Prop. : w is invariant under chart moves of transition if g is odd

We divide chart moves of transition for C0-charts into two cases.

Ê s, s′ ∈ {ℓ0(i)±1 | i = 1, . . . , 2g + 1} (ℓ0(i) := ξi)

Ë s, s′ ∈ {ℓ±1
h |h = 1, . . . , [g/2]} (ℓh := (ξ1ξ2 · · · ξ2h)4h+2)

s s′ w

w

s

T

We will give a proof of Prop. only for Case Ë.
The proof for Case Ê is omitted.
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Proof for Case Ë : Assume s = s′ = (ξ1ξ2 · · · ξ2h)4h+2.

φ := [w], τh := [(ξ1ξ2 · · · ξ2h)4h+2] ∈M0,2g+2

⇝ a relation φτhφ
−1 = τh inM0,2g+2 from the chart above

pr : Σg −→ Σg/I = S2 : the projection
ai := pr(Ci), bh := pr(Sh)

F : S2→ S2 : an orientation preserving diffeo. representing φ

⇝ (bh)F is isotopic to bh
⇝ We can assume F fixes bh pointwise because g is odd

a1 a2h a2h+2 a2g+1

bh

⇝ φ is represented by a word w′ in ξ±1
1 , . . . , ξ±1

2h , ξ±1
2h+2, . . . , ξ

±1
2g+1
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We divide the box labeled T into three boxes labeled T ′, Θ, Θ∗

ℓ2(h)

w

w

T = ℓ2(h)

w

w

w′

w′

Θ∗

Θ

T ′

⋆ The box labeled Θ is filled only with edges and white vertices

⋆ The box labeled Θ∗ is the mirror image of Θ

⋆ Since w′ is a word in ξ±1
1 , . . . , ξ±1

2h , ξ±1
2h+2, . . . , ξ

±1
2g+1,

the box labeled T ′ is filled with copies of (a) and (b) below
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Ωi+1

Ω2h

Ω1

Ω2

Ωi

(a)

2h

1

2h

1
2h

1

j

j

2h

1

2h

1
2h

1

(b)

Ωk =

2h

k + 1
k

k − 1
k − 2

1

k − 1

k

2h

k + 1
k
k − 1
k − 2

1

⋆ (a) corresponds to ξi (i = 1, . . . , 2h)

⋆ (b) corresponds to ξj (j = 2h + 2, . . . , 2g + 1)

⋆ Ωk for k = 2, . . . , 2h is depicted above

⋆ Ω1 is depicted below
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Ω1 =

2h
2h− 1
2h− 2
2h− 3

3
2
1

2h
2h− 2
2h− 2

4
3
2
1

2h

2h − 2

3

2

1

2h
2h− 1
2h− 2
2h− 3

3
2
1
2h
2h− 1
2h− 2

4
3
2
1

⇝ The box labeled T ′ is filled only with edges and white vertices
of types r1(i, j)

±1 and r2(i)
±1
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⇝ # of white vertices of type r±1
4 included in the box labeled Θ∗

is equal to that for the box labeled Θ

⇝ The box labeled T is filled with edges, white vertices
of types r1(i, j)

±1, r2(i)
±1, r±1

3 , and an even number of
white vertices of types r±1

4

By virtue of the invariance under chart moves of type W, any
subchart filling the box labeled T has this property □

We thus proved our main theorem.

– Owari –
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