Hyperelliptic Lefschetz fibrations and the Dirac braid

joint work with Seiichi Kamada

Hisaaki Endo (Tokyo Institute of Technology)

TOKYD

Differential Topology 2016 March 20, 2016, University of Tsukuba

Contents

- **1** Introduction
- **2** Hyperelliptic Lefschetz fibrations
- **3** Chart descriptions
- 4 An invariant w
- **5 Proof of invariance**

1 Introduction

4-manifolds ← Lefschetz fibrations → mapping class groups total space monodromy

Elliptic surfaces w/o multiple tori \longrightarrow Hyperelliptic Lefschetz fibrations natural generalization

In this talk ...

 \star We define a new invariant w for hyperelliptic Lefschetz fibrations

- \star We employ Kamada's chart description to introduce w
- \star A detailed proof of invariance of w is given

Reference: H. Endo and S. Kamada,

Counting Dirac braids and hyperelliptic Lefschetz fibrations, arXiv:1508.07687.

- **2** Hyperelliptic Lefschetz fibrations
- Lefschetz fibrations
- M,B : closed oriented smooth 4-manifold and 2-manifold
- Σ_g : a closed surface of genus $g \ , \ f: M o B$: a smooth map
- **Def.** : *f* is a (achiral) **Lefschetz fibration (LF) of genus** *g*
- \iff (1) $\Delta \subset B$: the set of the critical values of f, f is a fiber bundle with fiber Σ_q over $B - \Delta$
 - (2) there exists a unique critical point p on $F_b := f^{-1}(b)$, f is written as $(z_1, z_2) \mapsto z_1 z_2$ or $z_1 \overline{z}_2$ about p and b

(3) no fiber contains a (± 1) -sphere

M: total space, B: base space, f: projection, $\Sigma_g:$ fiber, $F_b:$ singular fiber $(b\in\Delta)$

• Anatomy of an LF

Monodromy

 $\Phi: \Sigma_g o F_0 := f^{-1}(b_0)$: an orientation-preserving diffeomorphism $\gamma: [0,1] o B - \Delta$: a loop based at b_0

 \rightsquigarrow the pull-back $\gamma^*f:\gamma^*M
ightarrow [0,1]$ of f is a trivial bundle

 $\rightsquigarrow \exists$ a natural "bundle map" $arphi:[0,1] imes \Sigma_g o M$ extending Φ

 $\stackrel{\sim}{\to} \rho: \pi_1(B - \Delta, b_0) \to \pi_1(\mathrm{BDiff}_+\Sigma_g) \cong \pi_0(\mathrm{Diff}_+\Sigma_g) =: \mathcal{M}_g \\ : [\gamma] \mapsto [\Phi \circ \varphi_1]: \text{ monodromy representation of } f \text{ w.r.t. } \Phi$

\star The mapping calss group \mathcal{M}_g of Σ_g acts on the right.

• Hurwitz system of LF over S^2

 $\pi_1(S^2-\Delta,b_0)=\langle a_1,\cdots,a_n\,|\, a_1\cdots a_n=1
angle$

 $\begin{array}{l} \rightsquigarrow \rho: a_{1} \cdots a_{n} = 1 \mapsto t_{a_{1}}^{\varepsilon_{1}} \cdots t_{a_{n}}^{\varepsilon_{n}} = 1 \in \mathcal{M}_{g} \ (\varepsilon_{i} = \pm 1) \\ \rightsquigarrow (\rho(a_{1}), \ldots, \rho(a_{n})) = (t_{a_{1}}^{\varepsilon_{1}}, \ldots, t_{a_{n}}^{\varepsilon_{n}}): \text{ a Hurwitz system of } f \\ \hline \text{Theorem (Kas, cf. Matsumoto)}: g \geq 2 \\ \qquad \{ \text{ LF } f: M \rightarrow B \text{ of genus } g \} / \text{ isomorphism } \cong \text{ of LF} \\ \xleftarrow{1:1} \{ \text{ homomorphism } \rho: \pi_{1}(B - \Delta, b_{0}) \rightarrow \mathcal{M}_{g} \text{ with } \rho(a_{i}) \text{ a Dehn} \\ \text{twist } \} / \text{ equivalence} \\ \xleftarrow{1:1}{B=S^{2}} \{ \text{ Hurwitz system } (t_{a_{1}}^{\varepsilon_{1}}, \ldots, t_{a_{n}}^{\varepsilon_{n}}) \} / \text{ Hurwitz equiv. & conj.} \end{array}$

• Singular fibers and vanishing cycles

• Hyperelliptic mapping class group

 $\iota: \Sigma_g \to \Sigma_g$: an involution of Σ_g with 2g + 2 fixed points $\mathcal{H}_g := \{ \varphi \in \mathcal{M}_g \, | \, \varphi \iota = \iota \varphi \}$: hyperelliptic mapping class group

 $\bigstar t_C \in \mathcal{H}_g \Leftrightarrow t_{\iota(C)} = t_C \Leftrightarrow \iota(C) = C$ $\bigstar \zeta_i := t_{C_i}, \, \sigma_h := t_{S_h} \, (i = 1, \dots, 2g + 1, \, h = 1, \dots, [g/2])$

• Hyperelliptic Lefschetz fibrations

 $f: M \to B$: an LF of genus g $\Phi: \Sigma_a \to F_0 := f^{-1}(b_0)$: an orientation-preserving diffeomorphism $ho: \pi_1(B-\Delta,b_0)
ightarrow \mathcal{M}_q$: monodromy of f w.r.t. Φ **Def.** : (f, Φ) is a hyperelliptic LF \iff Im $\rho \subset \mathcal{H}_q$ \star We can define an isomorphism \cong_H of two hyperelliptic LFs. (1) $(f, \Phi) \cong_{H} (f', \Phi') \Leftrightarrow \rho, \rho'$ is equiv. in \mathcal{H}_{q} up to conj. (2) $(f, \Phi) \cong_H (f', \Phi') \Rightarrow f \cong f'$ as LFs (3) Im $\rho = \mathcal{H}_a$ and $f \cong f' \Rightarrow (f, \Phi) \cong_{\mathbf{H}} (f', \Phi')$ **★** We often denote (f, Φ) by f for short.

3 Chart descriptions

• G-monodromy representations

B : a closed oriented smooth 2-manifold

- Δ : a finite subset of B , b_0 : a base point of $B \Delta$
- \mathcal{X} : a set , \mathcal{R}, \mathcal{S} : sets of words in $\mathcal{X} \cup \mathcal{X}^{-1}$
- $m{G}$: a group with presentation $\langle \mathcal{X} \, | \, \mathcal{R}
 angle$ $m{\mathcal{C}} := (\mathcal{X}, \mathcal{R}, \mathcal{S})$

 $\mathcal{M}(B, \Delta, b_0; \mathcal{C}) := \{ \rho : \pi_1(B - \Delta, b_0) \to G : \text{homomorphism} \\ | \rho([\ell]) \sim [s] \, (\exists s \in \mathcal{S}) \text{ for every meridional loop } \ell \}$

 \star We can define an equivalence of two such ρ s.

• Charts

 $\begin{array}{cccc} & \stackrel{i}{x} & \stackrel{i}{y} & \stackrel{i}{x} & \stackrel{i}{z} & \stackrel{i}{y} \end{array} \\ \hline \text{Def.} : \Gamma \text{ is a } \mathcal{C}\text{-chart in } B \\ \Leftrightarrow & \Gamma \text{ saitisfies (1) and (2):} \\ (1) \text{ vertices of } \Gamma : \text{ white vertices and black vertices} \\ (2) \text{ for each white vertex } v, w_{\Gamma}(m_v) \in \mathcal{R} \cup \mathcal{R}^{-1}; \\ \text{ for each black vertex } v, w_{\Gamma}(m_v) \in \mathcal{S} \end{array}$

- m_v : a (counterclockwise) meridian loop of v
- v: white vertex of type $r \Longleftrightarrow w_{\Gamma}(m_v)^{-1} = r \in \mathcal{R}$
- v: black vertex of type $s \Longleftrightarrow w_\Gamma(m_v) = s \in \mathcal{S}$

- Charts and monodromies
- Γ : a \mathcal{C} -chart in B with base point b_0
- Δ_{Γ} : the set of black vertices of Γ
- Def. : the homomorphism determined by Γ $\iff \rho_{\Gamma} : \pi_1(B - \Delta_{\Gamma}, b_0) \to G : [\eta] \mapsto [w_{\Gamma}(\eta)]$

Theorem (Kamada, Hasegawa) : For any $\rho \in \mathcal{M}(B, \Delta, b_0; \mathcal{C})$, there exists a \mathcal{C} -chart Γ with $\rho_{\Gamma} = \rho$.

Theorem (Kamada, Hasegawa) : $\mathcal{M}(B, \Delta, b_0; \mathcal{C}) / \text{ equivalence of } G\text{-monodromies}$ $\stackrel{1:1}{\longleftrightarrow} \{ \mathcal{C}\text{-charts } \Gamma \text{ in } B \} / \text{ chart moves}$

★ We use the terminology of chart description in Kamada's paper: S. Kamada, Topology Appl. 154 (2007) • An example of \mathcal{C} -chart Γ

 $G := B_4, \ C := (\mathcal{X}, \mathcal{R}, \mathcal{S}), \ \mathcal{X} := \mathcal{S} := \{\sigma_1, \sigma_2, \sigma_3\}, \\ \mathcal{R} := \{\sigma_1 \sigma_3 \sigma_1^{-1} \sigma_3^{-1}, \sigma_1 \sigma_2 \sigma_1 \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1}, \sigma_2 \sigma_3 \sigma_2 \sigma_3^{-1} \sigma_2^{-1} \sigma_3^{-1}\}$

 $\rightsquigarrow w_{\Gamma}(\gamma_1) = \sigma_1^{-1} \sigma_2^{-1} \sigma_1 \sigma_2 \sigma_1, w_{\Gamma}(\gamma_2) = \sigma_1^{-1} \sigma_3 \sigma_1, \dots$ etc.

• Chart moves

 Γ, Γ' : C-charts in B, b_0 : a base point of B

Def. : Γ' is obtained from Γ by chart move of type W $\iff \Gamma \cap (B - \operatorname{Int} D) = \Gamma' \cap (B - \operatorname{Int} D)$ • both $\Gamma \cap D$ and $\Gamma' \cap D$ have no black vertices for a disk D embedded in $B - \{b_0\}$

Def. : Γ' is obtained from Γ by chart move of transition $\iff \Gamma'$ is obtained from Γ by a local replacement depicted below

where $s, s' \in S, w \in X \cup X^{-1}$, and

- s' and wsw^{-1} determine the same element of G
- the box labeled T is filled only by edges and white vertices

Def. : Γ' is obtained from Γ by chart move of conjugacy type $\iff \Gamma'$ is obtained from Γ by a local replacement depicted below

$$ullet b_0 \longleftrightarrow b_0 x ullet b_0 \leftrightarrow ullet b_0 x$$

Def. : chart moves for C-charts

 \iff the following four kinds of moves:

- chart moves of type W
- chart moves of transition
- chart moves of conjugacy type
- ullet sending by orientation preserving diffeomorphisms of B

4 An invariant w

• Three explicit $\mathcal{C}s - \mathbf{0} \ \mathcal{C}$ for $\mathcal{M}_{0,2g+2}$

 $G = \mathcal{M}_{0,2g+2}$: the mapping class group of S^2 with 2g+2 points

$$egin{aligned} \mathcal{C}_0 &:= (\mathcal{X}_0, \mathcal{R}_0, \mathcal{S}_0), \; \mathcal{X}_0 := \{\xi_1, \xi_2, \dots, \xi_{2g+1}\}, \ \mathcal{R}_0 &:= \{r_1(i,j) \, | \, |i-j| > 1\} \cup \{r_2(i) \, | \, i = 1, \dots, 2g\} \cup \{r_3, r_4\}, \ \mathcal{S}_0 &:= \{\ell_0(i)^{\pm 1} \, | \, i = 1, \dots, 2g+1\} \cup \{\ell_h^{\pm 1} \, | \, h = 1, \dots, [g/2]\} \end{aligned}$$

$$egin{aligned} r_1(i,j) &:= \xi_i \xi_j \xi_i^{-1} \xi_j^{-1} \; (|i-j| > 1), \ r_2(i) &:= \xi_i \xi_{i+1} \xi_i \xi_{i+1}^{-1} \xi_i^{-1} \xi_{i+1}^{-1} \; (i=1,\ldots,2g), \ r_3 &:= \xi_1 \xi_2 \cdots \xi_{2g+1} \xi_{2g+1} \cdots \xi_2 \xi_1, \ r_4 &:= (\xi_1 \xi_2 \cdots \xi_{2g+1})^{2g+2}, \ \ell_0(i) &:= \xi_i \; (i=1,\ldots,2g+1), \ \ell_h &:= (\xi_1 \xi_2 \cdots \xi_{2h})^{4h+2} \; (h=1,\ldots,[g/2]). \end{aligned}$$

 $\star \mathcal{M}_{0,2g+2} = \langle \mathcal{X}_0 \, | \, \mathcal{R}_0 \rangle \quad \text{(Magnus)}$

• Vertices of types $\ell_0(i)^{\pm 1}, r_1(i,j), r_2(i)$

• Vertices of types r_3, r_4, ℓ_h

• Three explicit \mathcal{C} s — $\mathbf{\Theta} \ \mathcal{C}$ for $B_{2g+2}(S^2)$

 $G = B_{2q+2}(S^2)$: the braid group of S^2 with 2g + 2 strands $ilde{\mathcal{C}}:=(ilde{\mathcal{X}}, ilde{\mathcal{R}}, ilde{\mathcal{S}}),\ ilde{\mathcal{X}}:=\{x_1,x_2,\ldots,x_{2q+1}\},$ $ilde{\mathcal{R}} := \{ ilde{r}_1(i,j) \,|\, |i-j| > 1\} \cup \{ ilde{r}_2(i) \,|\, i = 1, \dots, 2g\} \cup \{ ilde{r}_3\},$ $\tilde{\mathcal{S}} := \{ \tilde{\ell}_0(i)^{\pm 1} | i = 1, \dots, 2g + 1 \} \cup \{ \tilde{\ell}_h^{\pm 1} | h = 1, \dots, [g/2] \}$ $\tilde{r}_1(i,j) := x_i x_j x_i^{-1} x_i^{-1} \ (|i-j| > 1),$ $\tilde{r}_2(i) := x_i x_{i+1} x_i x_{i+1}^{-1} x_i^{-1} x_{i+1}^{-1} \quad (i = 1, \dots, 2g),$ $\tilde{r}_3 := x_1 x_2 \cdots x_{2q+1} x_{2q+1} \cdots x_2 x_1,$ $\ell_0(i) := x_i \ (i = 1, \dots, 2g+1),$ $\ell_h := (x_1 x_2 \cdots x_{2h})^{4h+2} \ (h = 1, \dots, [q/2]).$ $\star B_{2a+2}(S^2) = \langle \tilde{\mathcal{X}} | \tilde{\mathcal{R}} \rangle$ (Fadell–Van Buskirk)

★ Vertices of types $\tilde{\ell}_0(i)^{\pm 1}, \tilde{r}_1(i,j), \tilde{r}_2(i), \tilde{r}_3, \tilde{\ell}_h$ in \tilde{C} -charts are similar to those of types $\ell_0(i)^{\pm 1}, r_1(i,j), r_2(i), r_3, \ell_h$ in C_0 -charts

• Three explicit $Cs - \Theta C$ for \mathcal{H}_g

 $G = \mathcal{H}_g$: the hyperelliptic mapping class group of Σ_g

$$egin{aligned} \hat{\mathcal{C}} &:= (\hat{\mathcal{X}}, \hat{\mathcal{R}}, \hat{\mathcal{S}}), \ \hat{\mathcal{X}} &:= \{\zeta_1, \zeta_2, \dots, \zeta_{2g+1}\}, \ \hat{\mathcal{R}} &:= \{\hat{r}_1(i,j) \,|\, |i-j| > 1\} \cup \{\hat{r}_2(i), \hat{r}_5(i) \,|\, i = 1, \dots, 2g\} \cup \{\hat{r}_3, \hat{r}_4\}, \ \hat{\mathcal{S}} &:= \{\hat{\ell}_0(i)^{\pm 1} \,|\, i = 1, \dots, 2g+1\} \cup \{\hat{\ell}_h^{\pm 1} \,|\, h = 1, \dots, [g/2]\} \end{aligned}$$

$$\begin{split} \hat{r}_{1}(i,j) &:= \zeta_{i}\zeta_{j}\zeta_{i}^{-1}\zeta_{j}^{-1} \ (|i-j| > 1), \\ \hat{r}_{2}(i) &:= \zeta_{i}\zeta_{i+1}\zeta_{i}\zeta_{i+1}^{-1}\zeta_{i}^{-1}\zeta_{i+1}^{-1} \ (i = 1, \dots, 2g), \\ \hat{r}_{3} &:= (\zeta_{1}\zeta_{2} \cdots \zeta_{2g+1}\zeta_{2g+1} \cdots \zeta_{2}\zeta_{1})^{2}, \\ \hat{r}_{4} &:= (\zeta_{1}\zeta_{2} \cdots \zeta_{2g+1})^{2g+2}, \\ \hat{r}_{5}(i) &:= [\zeta_{i}, \zeta_{1}\zeta_{2} \cdots \zeta_{2g+1}\zeta_{2g+1} \cdots \zeta_{2}\zeta_{1}] \ (i = 1, \dots, 2g + 1), \\ \hat{\ell}_{0}(i) &:= \zeta_{i} \ (i = 1, \dots, 2g + 1), \\ \hat{\ell}_{h} &:= (\zeta_{1}\zeta_{2} \cdots \zeta_{2h})^{4h+2} \ (h = 1, \dots, [g/2]). \end{split}$$

 $\bigstar \mathcal{H}_g = \langle \hat{\mathcal{X}} \, | \, \hat{\mathcal{R}} \rangle \quad \text{(Birman-Hilden)}$

• Vertices of types $\hat{r}_3, \hat{r}_5(i)$

★ Vertices of types $\hat{\ell}_0(i)^{\pm 1}, \hat{r}_1(i,j), \hat{r}_2(i), \hat{r}_4, \hat{\ell}_h$ in \hat{C} -charts are similar to those of types $\ell_0(i)^{\pm 1}, r_1(i,j), r_2(i), r_4, \ell_h$ in \mathcal{C}_0 -charts

 $\bigstar 1 \to \mathbb{Z}_2 \longrightarrow B_{2g+2}(S^2) \longrightarrow \mathcal{M}_{0,2g+2} \to 1 : \text{ central extension}$ $\bigstar 1 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathcal{H}_g \xrightarrow{\pi} \mathcal{M}_{0,2g+2} \longrightarrow 1 : \text{ central extension}$

• Charts and Hyperelliptic Lefschetz fibrations

 Γ : a \hat{C} -chart in B with base point b_0 Δ_{Γ} : the set of black vertices of Γ ρ_{Γ} : $\pi_1(B - \Delta_{\Gamma}, b_0) \rightarrow \mathcal{H}_g$: the homomorphism determined by Γ

Propositon (Kamada–E.) :

 (f, Φ) : hyperelliptic LF of genus g over $B, g \ge 2$ $\rho: \pi_1(B - \Delta, b_0) \to \mathcal{H}_g$: a monodromy representation of (f, Φ) \implies there exists a $\hat{\mathcal{C}}$ -chart Γ which satisfies $\rho_{\Gamma} = \rho$.

Theorem (Kamada–E.) : $g \ge 2$ { hyperelliptic LFs (f, Φ) of genus g over B}/ \cong_H $\stackrel{1:1}{\longleftrightarrow}$ { monodromies $\rho : \pi_1(B - \Delta) \to \mathcal{H}_g$ }/ equivalence for \mathcal{H}_g $\stackrel{1:1}{\longleftrightarrow}$ { $\hat{\mathcal{C}}$ -charts Γ }/ chart moves

• An invariant w

 (f, Φ) : hyperelliptic LF of genus g over B $\rho: \pi_1(B - \Delta, b_0) \rightarrow \mathcal{H}_g$: a monodromy representation of f $\hat{\Gamma}$: a \hat{C} -chart in B which satisfies $\rho_{\hat{\Gamma}} = \rho$.

Def. : $w(\hat{\Gamma})$: # of white vertices of type $\hat{r}_4^{\pm 1}$ included in $\hat{\Gamma}$ mod 2 $w(f, \Phi) := w(\hat{\Gamma})$

Theorem (Kamada–E.): w is invariant under chart moves for odd g

 Γ : a \mathcal{C}_0 -chart in B with base point b_0

Def. : $w(\Gamma)$: # of white vertices of type $r_4^{\pm 1}$ included in Γ mod 2

 $(f,\Phi),
ho,\hat{\Gamma}$: as above \rightsquigarrow We can construct a \mathcal{C}_0 -chart Γ by changing $\hat{\Gamma}$ locally

- Γ corresponds to $ho_0:=\pi\circ
 ho:\pi_1(B-\Delta,b_0) o\mathcal{M}_{0,2g+2}$
- $ullet w(\Gamma) = w(\hat{\Gamma}) ext{ in } \mathbb{Z}_2$

• Examples

Hurwitz system (for odd g) $W := (\zeta_1, \dots, \zeta_{2g+1}, \zeta_{2g+1}, \dots, \zeta_1)^{g+1}$ $W' := (\zeta_1, \dots, \zeta_{2g+1})^{2g+2}$ \rightsquigarrow We obtain hyperelliptic LFs f, f' of genus g over S^2

Both f and f' have 2(g+1)(2g+1) non-separating fibers, and they do not have separating fibers \rightsquigarrow they have the same Euler characteristic and the same signature Drawing \hat{C} -charts corresponding to f and f',

we obtain
$$w(f) = 0$$
 and $w(f') = 1$

 \rightsquigarrow **f** and **f'** are not isomorphic.

 \star By a theorem of Usher, the total spaces of f and f' are homeomorphic but not diffeomorphic to each other.

5 Proof of invariance

We will show the invariance of w for C_0 -charts.

- \rightsquigarrow It is obvious that w is invariant under chart moves of conjugacy and orientation preserving diffeomorphisms
- → It suffices to show the invariance under chart moves of type W and chart moves of transition
 - Invariance under chart move of type W
- **Prop.** : w is invariant under chart moves of type W We need a lemma.

Lem. : For a C_0 -chart below, the box labeled T_k can be filled only with edges and white vertices of types $r_1(i,j)^{\pm 1}, r_2(i)^{\pm 1}, r_3^{\pm 1}$.

Proof : The Dirac braid $\Delta:=(x_1x_2\cdots x_{2g+1})^{2g+2}$ is included in the center of of $B_{2g+2}(S^2)$

 \rightsquigarrow We can fill the box labeled T_k with C-chart \rightsquigarrow Change all labels x_i of edges into ξ_i to obtain a C_0 -chart **Proof of Prop.** : It suffices to show that $w(\Gamma) = 0$ for every C_0 -chart Γ in S^2 without black vertices.

~> Consider the chart move of type W below

 \rightsquigarrow By Lemma, the box labeled T_k can be filled only with edges and white vertices of types $r_1(i,j)^{\pm 1}, r_2(i)^{\pm 1}, r_3^{\pm 1}$.

 \rightsquigarrow Use this move repeatedly to obtain Γ_1 below from Γ

 \rightsquigarrow Cancel pairs of white vertices of type $r_4^{\pm 1}$ to obtain Γ_2 from Γ_1

n:=# of white vertices of type $r_4^arepsilon$ in Γ_2

 \rightsquigarrow Replace all white vertices of type r_4^{ϵ} with black vertices of type $\ell_0(i)^{-\epsilon}$ to obtain Γ_3 from Γ_2

★ the box labeled Θ_1 , Θ_2 is filled only with edges and white vertices of types $r_1(i,j)^{\pm 1}$, $r_2(i)^{\pm 1}$, $r_3^{\pm 1}$.

- \rightsquigarrow Change all labels ξ_i of edges into x_i to obtain a $ilde{\mathcal{C}}$ -chart $ilde{\Gamma}_3$
- \rightsquigarrow The intersection word w is $\Delta^{\varepsilon n} = (x_1 x_2 \cdots x_{2g+1})^{\varepsilon(2g+2)n}$, which represents 1 of $B_{2g+2}(S^2)$
- $\rightsquigarrow n$ must be even because Δ represents an element of order two Thus we have

$$w(\Gamma) = w(\Gamma_1) = w(\Gamma_2) = n = 0$$

and this completes the proof. $\hfill\square$

Invariance under chart move of transition

Prop. : w is invariant under chart moves of transition if g is odd

We divide chart moves of transition for C_0 -charts into two cases.

1 $s, s' \in \{\ell_0(i)^{\pm 1} | i = 1, \dots, 2g + 1\}$ $(\ell_0(i) := \xi_i)$ **2** $s, s' \in \{\ell_h^{\pm 1} | h = 1, \dots, [g/2]\}$ $(\ell_h := (\xi_1 \xi_2 \cdots \xi_{2h})^{4h+2})$

We will give a proof of Prop. only for Case **2**. The proof for Case **0** is omitted. **Proof for Case 2 : Assume** $s = s' = (\xi_1 \xi_2 \cdots \xi_{2h})^{4h+2}$.

$$arphi := [w], \ au_h := [(\xi_1 \xi_2 \cdots \xi_{2h})^{4h+2}] \in \mathcal{M}_{0,2g+2}$$

 \rightsquigarrow a relation $arphi au_h arphi^{-1} = au_h$ in $\mathcal{M}_{0,2g+2}$ from the chart above

$$\begin{array}{l} \operatorname{pr}: \Sigma_g \longrightarrow \Sigma_g / I = S^2 : \text{ the projection} \\ a_i := \operatorname{pr}(C_i), \ b_h := \operatorname{pr}(S_h) \\ F: S^2 \rightarrow S^2 : \text{ an orientation preserving diffeo. representing } \varphi \\ \rightsquigarrow (b_h) F \text{ is isotopic to } b_h \end{array}$$

 \rightsquigarrow We can assume **F** fixes b_h pointwise because g is odd

 $\rightsquigarrow \varphi$ is represented by a word w' in $\xi_1^{\pm 1}, \ldots, \xi_{2h}^{\pm 1}, \xi_{2h+2}^{\pm 1}, \ldots, \xi_{2g+1}^{\pm 1}$

We divide the box labeled T into three boxes labeled T', Θ , Θ^*

★ The box labeled Θ is filled only with edges and white vertices ★ The box labeled Θ^* is the mirror image of Θ ★ Since w' is a word in $\xi_1^{\pm 1}, \ldots, \xi_{2h}^{\pm 1}, \xi_{2h+2}^{\pm 1}, \ldots, \xi_{2g+1}^{\pm 1},$ the box labeled T' is filled with copies of (a) and (b) below

 \star (a) corresponds to ξ_i $(i = 1, \dots, 2h)$

 \star (b) corresponds to ξ_j $(j=2h+2,\ldots,2g+1)$

 $\bigstar \Omega_k$ for $k=2,\ldots,2h$ is depicted above

 $\star \Omega_1$ is depicted below

 \rightsquigarrow The box labeled T' is filled only with edges and white vertices of types $r_1(i,j)^{\pm 1}$ and $r_2(i)^{\pm 1}$

- $\rightsquigarrow \#$ of white vertices of type $r_4^{\pm 1}$ included in the box labeled Θ^* is equal to that for the box labeled Θ
- \rightsquigarrow The box labeled T is filled with edges, white vertices of types $r_1(i, j)^{\pm 1}, r_2(i)^{\pm 1}, r_3^{\pm 1}$, and an even number of white vertices of types $r_4^{\pm 1}$

By virtue of the invariance under chart moves of type W, any subchart filling the box labeled T has this property \Box

We thus proved our main theorem.

– Owari –

The speaker and his collaborator were partially supported by JSPS KAKENHI: Grant Numbers 21540079, 25400082 for H. Endo Grant Numbers 21340015, 26287013 for S. Kamada