Dehn surgery on knots : survey

Kimihiko Motegi (Nihon University)

Differential Topology 22 19 March 2022

デーン手術の地図を描く!

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Differential Topology 22 19 March 2022

1904 : Poincaré described a remarkable 3-manifold which has a *trivial homology*, but whose *fundamental group is nontrivial*. This 3-manifold is now called the Poincaré homology 3-sphere, and it clarifies the difference between "homology" and "homotopy".

Poincaré conjecture

A closed 3-manifold with trivial fundamental group is homeomorphic to S^3

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

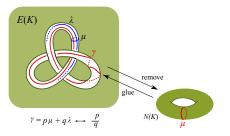
Differential Topology 22 19 March 2022

1907 : Dehn tried to construct a homology 3-sphere which is not S^3 by identifying boundaries of two knot exteriors suitably.

However, he was not able to show the resultant 3-manifold is not S^3 .

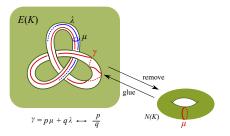
1910 : Dehn introduced a new idea what we call "Dehn surgery".

K: a knot in the 3-sphere S^3



 $K(\frac{p}{q})$: a 3-manifold obtained from S^3 by $\frac{p}{q}$ -Dehn surgery on K

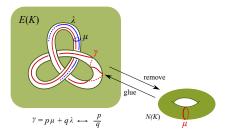
 $K\!\!:$ a knot in the 3-sphere S^3



 $K(\frac{p}{q})$: a 3-manifold obtained from S^3 by $\frac{p}{q}$ -Dehn surgery on K

The result of Dehn surgery is uniquely determined by the image of the meridian of the glued solid torus (independent of the image of the longitude)!

 $K\!\!:$ a knot in the 3-sphere S^3

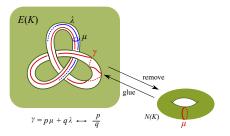


 $K(\frac{p}{q})$: a 3-manifold obtained from S^3 by $\frac{p}{q}$ -Dehn surgery on K

The result of Dehn surgery is uniquely determined by the image of the meridian of the glued solid torus (independent of the image of the longitude)!

We call $\frac{p}{q}$ a surgery slope. The gluing solid torus is often called $\frac{p}{q}$ -Dehn filling.

 $K\!\!:$ a knot in the 3-sphere S^3



 $K(\frac{p}{q})$: a 3-manifold obtained from S^3 by $\frac{p}{q}$ -Dehn surgery on K

The result of Dehn surgery is uniquely determined by the image of the meridian of the glued solid torus (independent of the image of the longitude)!

We call $\frac{p}{q}$ a surgery slope. The gluing solid torus is often called $\frac{p}{q}$ -Dehn filling.

In the following, we consider nontrivial surgery $\frac{p}{q} \neq \frac{1}{0}$

Kimihiko Motegi (Nihon University)

A little bit about group theory

 $G(K) = \pi_1(E(K))$ $\pi_1(\mathbf{K}(\mathbf{p}/\mathbf{q})) = \mathbf{G}(\mathbf{K}) \left\langle \left\langle \mu^p \lambda^q \right\rangle \right\rangle$ $G(K) \underset{\langle \langle \mu \rangle \rangle}{\cong} \pi_1(K(1/0)) = \pi_1(S^3) = \{1\}$ $G(K) = \langle \langle \mu \rangle \rangle \xrightarrow{\varphi} \pi_1(K(p/q)) = \langle \langle \varphi(\mu) \rangle \rangle$ weight 1 $H_1(E(K)) = \mathbf{Z} = \langle \mu \rangle$ $H_1(K(p/q)) = \mathbb{Z}_p \mathbb{Z}$

Examples

Lens space

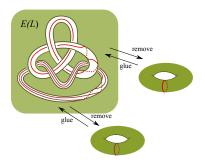
Let K be the trivial knot O. Then O(p/q) is a lens space L(p,q). In particular, O(1/n) is the 3-sphere for any integer n.

Homology 3–spheres

For any knot K, K(1/n) is a homology 3-sphere for any integer n.

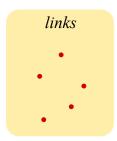
If K is a trefoil knot $T_{3,2}$, then $T_{3,2}(1)$ is the Poincaré homology 3-sphere.

One may easily generalize Dehn surgery on "knots" to Dehn surgery on "links".



Theorem (Lickorish 1962, Wallace 1960)

Any orientable closed 3–manifold can be obtained from S^3 by Dehn surgery on a "link".



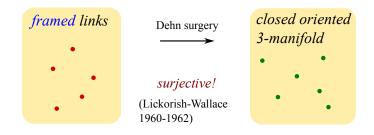
integral Dehn surgery framed surgery

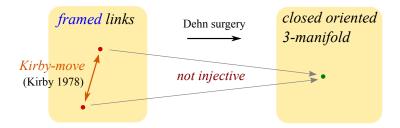
surjective!

(Lickorish-Wallace)

closed oriented 3-manifold

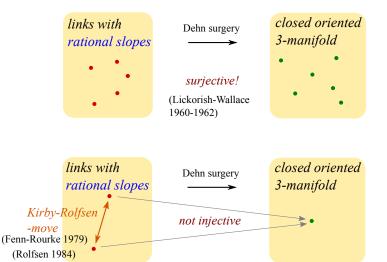
Lickorish-Wallace + Kirby



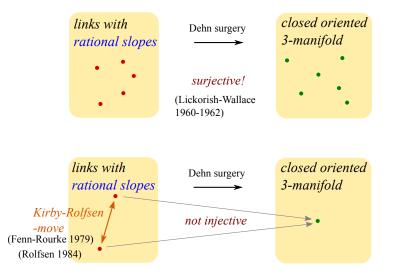


Kimihiko Motegi (Nihon University)

Lickorish-Wallace + Kirby-Fenn-Rourke-Rolfsen



Lickorish-Wallace + Kirby-Fenn-Rourke-Rolfsen



We will focus on Dehn surgery on knots in S^3 .

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Given a knot $K\subset S^3$ and $r\in \mathbb{Q},$ we obtain a closed oriented 3–manifold K(r).

More explicitly we may regard Dehn surgery as a map:

 $\mathcal{D}: \{$ knots in $S^3 \} \times \mathbb{Q} \to \{$ oriented closed 3–manifolds $\}$ $\mathcal{D}(K, r) = K(r)$

Exceptional surgery problem

 $\mathcal{D}: \{$ knots in $S^3 \} \times \mathbb{Q} \to \{$ oriented closed 3–manifolds $\}$ $\mathcal{D}(K, r) = K(r)$

Consider a class

$$\mathcal{C}_* \subset \{ \text{oriented closed 3-manifolds} \}$$

with "property *".

Describe K and/or r such that $\mathcal{D}(K,r) \in \mathcal{C}_*$.

In general, we take a "property *" as an exceptional one which describe a kind of "degeneration" happens, so we call a problem of this type an exceptional surgery problem.

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Surjectivity (realization) problem

 $\mathcal{D}: \{$ knots in $S^3 \} \times \mathbb{Q} \to \{$ oriented closed 3–manifolds $\}$ $\mathcal{D}(K, r) = K(r)$

Recall first that any 3–manifold obtained by a Dehn surgery on a knot in S^3 has the fundamental group with weight one.

So we focus on

 $\mathcal{W}_1 = \{ {\rm closed, \, orientable \, 3-manifolds \, with \, weight \, one \, {\rm fundamental \, group} \}$ and ask

Is $\mathcal{D}: \{\text{knots in } S^3\} \times \mathbb{Q} \to \mathcal{W}_1 \text{ surjective} \}$

Kimihiko Motegi (Nihon University)

Injectivity problem

 $\mathcal{D}: \{$ knots in $S^3 \} \times \mathbb{Q} \to \{$ oriented closed 3–manifolds $\}$ $\mathcal{D}(K, r) = K(r)$

We may ask:

Is the map $\mathcal{D}: \{\text{knots in } S^3\} \times \mathbb{Q} \to \{\text{oriented closed 3-manifolds}\}$ injective.

As we will discuss later, the injectivity problem may be divided into two more specific problems according as we fix a knot K or a surgery slope r.

In the exceptional surgery problem, let us consider

 $C_* = {\text{simply connected, closed 3-manifolds}}$

We imagine that there were some "trials to find counterexamples to the Poincare Conjecture" via Dehn surgery on knots.

Later Bing and Martin propose:

Property P conjecture (Bing-Martin 1960)

Let K be a nontrivial knot.

$$\pi_1(K(r)) = \{1\} \iff r = \infty$$

S^3 –Surgery Theorem

Take $\mathcal{C}_* = \{S^3\}$, Gordon and Luecke prove:

Theorem (Gordon-Luecke 1989)

Let K be a nontrivial knot.

$$K(r) = S^3 \iff r = \infty$$

Corollary (Knot complement conjecture : Tietze 1908 – Gordon-Luecke 1989)

Let K_1 and K_2 be knots in S^3 .

$$S^3 - K_1 \cong S^3 - K_2 \iff K_1 \cong K_2$$

Proof (\Leftarrow) is obvious.

 (\Rightarrow) Assume that we have an orientation preserving homeomorphism $S^3 - K_1 \rightarrow S^3 - K_2$.

By concentricity theorem we have an orientation preserving homeomorphism $E(K_1) \rightarrow E(K_2)$.

• If K_1 is itrivial, then $E(K_2) \cong E(K_1) \cong S^1 \times D^2$, and hence K_2 is also trivial.

• Assume K_1 and K_2 are nontrivial. If h sends μ_1 to μ_2 , then extending h to an orientation preserving homeomorphism $\overline{h} \colon S^3 \to S^3$ such that $\overline{h}(K_1) = K_2$.

Suppose for a contradiction that $h(\mu_1) = \gamma_2 \neq \mu_2$. Then extend h to obtain $S^3 \cong K_1(\mu_1) \rightarrow K_2(\gamma_2)$. Since $\gamma_2 \neq \mu_2$, Gordon-Luecke Theorem says $K_2(\gamma_2) \not\cong S^3$, a contradiction!

Two branches of Gordon-Luecke's S^3 -Surgery Theorem

Reformulation of Gordon-Luecke theorem.

Theorem (reformulation 1)	
Let K be a nontrivial knot.	
$K(\mathbf{r}) \cong K(\infty) \Leftrightarrow \mathbf{r} = \infty$	

 \Rightarrow cosmetic surgery slopes (discuss later)

Theorem (reformulation 2)

Let K be a knot and O a trivial knot. $K(1/n) \cong O(1/n) = S^3 \ (n \neq 0) \Leftrightarrow K \cong O$

 \Rightarrow characterizing slopes (discuss later)

Theorem (Culler-Gordon-Luecke-Shalen 1987)

Let K be a knot in S^3 other than a torus knot. Assume that both $K(p_1/q_1)$ and $K(p_2/q_2)$ have cyclic fundamental groups. Then the distance $\Delta(p_1/q_1, p_2/q_2) = |p_1q_2 - p_2q_1| \le 1$.

Hence, there are at most three such slopes.

Since $K(1/0) = S^3$ has the trivial, and hence cyclic fundamental group, as a consequence of this theorem we have the following:

• If K is not a torus knot, then K(p/q) has a cyclic fundamental group only when |q| = 1, i.e. cyclic surgery is integral.

For torus knots the Property P conjecture is known to be true. Thus noting $H_1(K(p/q)) \cong \mathbb{Z}_{|p|}$, the Cyclic Surgery Theorem implies that

•
$$\pi_1(K(r)) = 1 \Rightarrow r = \pm 1.$$

The proof of the Cyclic Surgery Theorem requires

"Culler-Shalen theory" + "Analysis of intersection graphs" (Culler-Shalen) (Gordon-Luecke)

 $\begin{array}{l} \mbox{Culler-Shalen theory (Varieties of group representations and splittings of 3-manifolds 1983)} \\ \Rightarrow \mbox{Kabaya's talk} \end{array}$

Analysis of intersection graphs \Rightarrow Litherland, Gordon-Litherland, Gordon-Litherland, Gordon-Luccke

Property P Conjecture and essential lamination

Essential lamination is a generalization of

"incompressible surface" and "taut foliation".

³3-manifolds that contain essential laminations but do *not* contain incompressible surfaces. (Gabai)

Gabai-Oertel 1989

If a compact orientable 3-manifold contains an essential lamination, then its universal cover is homeomorphic to \mathbb{R}^3 .

Application to Dehn surgery.

• If K(r) has an essential lamination, then $|\pi_1(K(r))| = \infty$

(strong Property P).

This leads to study of persistent lamination of knot exteriors (1990's). (Brittenham, Delman, Roberts, Wu....)

 \Rightarrow Ito's talk

Property P "Theorem"

Theorem (Kronheimer-Mrowka 2004)

Let K be a nontrivial knot.

$$\pi_1(K(r)) = \{1\} \Leftrightarrow r = \infty.$$

Theorem (reformulation)

Let K be a nontrivial knot and $r \in \mathbb{Q} \cup \{\infty\}$ a slope.

$$\langle\!\langle r \rangle\!\rangle = G(K) = \langle\!\langle \infty
angle\!\rangle \iff r = \infty$$

Theorem (Ito-M-Teragaito 2021)

Let K be a nontrivial knot and $r, r' \in \mathbb{Q} \cup \{\infty\}$ slopes.

$$\langle\!\langle r \rangle\!\rangle = \langle\!\langle r' \rangle\!\rangle \iff r = r'$$

Kimihiko Motegi (Nihon University)

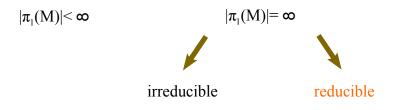
Classification of 3–manifolds with $\partial M = \emptyset$ or tori

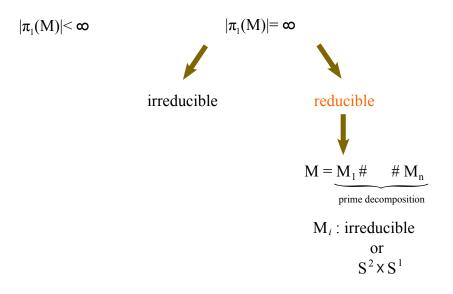
 $|\pi_1(M)| < \infty \qquad \qquad |\pi_1(M)| = \infty$

Some terminologies

A 3-manifold M is

reducible if it contains a 2-sphere which does not bound a 3-ball in M; otherwise it is irreducible.

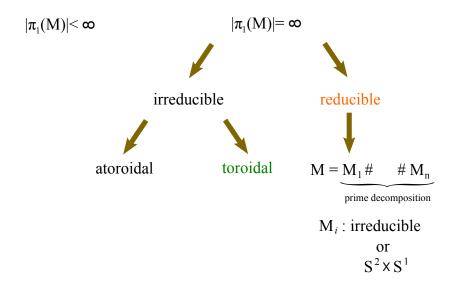




A 3-manifold M is

reducible if it contains a 2-sphere which does not bound a 3-ball in M; otherwise it is irreducible.

toroidal if it contains a torus T such that $i_* \colon \pi_1(T) \to \pi_1(M)$ is injective. otherwise it is atoroidal.

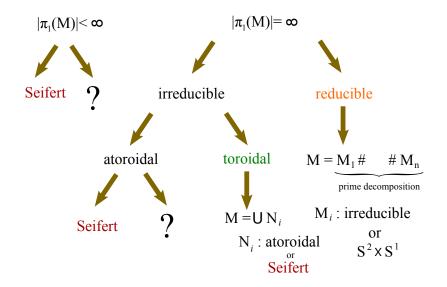


A 3-manifold M is

reducible if it contains a 2-sphere which does not bound a 3-ball in M; otherwise it is irreducible.

toroidal if it contains a torus T such that $i_* \colon \pi_1(T) \to \pi_1(M)$ is injective. otherwise it is atoroidal.

Seifert fibered if it consists of pairwise disjoint circles (fibers) in which each fiber has a fibered solid torus neighborhood.



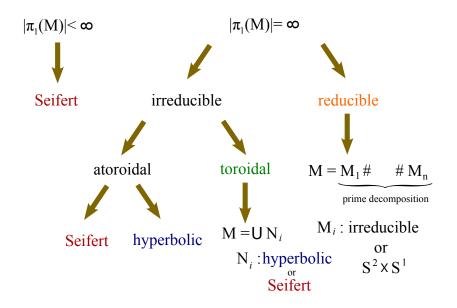
A 3-manifold M is

hyperbolic if it admits a complete hyperbolic metric of finite volume.

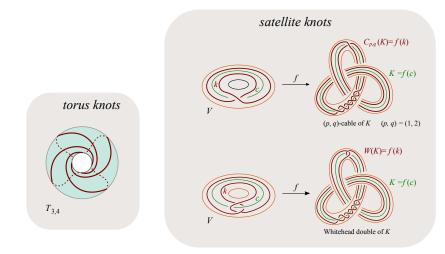
Theorem (Thurston-Perelman)

Let M be an irreducible 3-manifold with $\partial M = \emptyset$ or tori. If M is atoroidal, then it is either Seifert fibered or hyperbolic.

Classification of 3-manifolds



Classification of knots

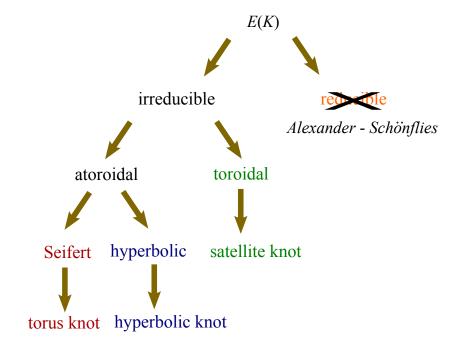


and others

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Differential Topology 22 19 March 2022



Thurston's hyperbolic Dehn surgery

Let K be a hyperbolic knot in S^3 ,

i.e. S^3-K admits a complete hyperbolic metric of finite volume.

 $\mathbb{Q}\cup\{\infty\}=\mathcal{H}_K\cup\mathcal{E}_K$

Thurston's hyperbolic Dehn surgery

Let K be a hyperbolic knot in S^3 ,

i.e. $S^3 - K$ admits a complete hyperbolic metric of finite volume.

 $\mathbb{Q}\cup\{\infty\}=\mathcal{H}_K\cup\mathcal{E}_K$

 $\mathcal{H}_{K} = \{r \mid K(r) \text{ is hyperbolic}\}, \text{ the set of hyperbolic surgery slopes}$ $\mathcal{E}_{K} = \{r \mid K(r) \text{ is not hyperbolic}\}, \text{ the set of "exceptional "surgery slopes}$

Thurston's hyperbolic Dehn surgery

Let K be a hyperbolic knot in S^3 ,

i.e. $S^3 - K$ admits a complete hyperbolic metric of finite volume.

 $\mathbb{Q}\cup\{\infty\}=\mathcal{H}_K\cup\mathcal{E}_K$

 $\mathcal{H}_{K} = \{r \mid K(r) \text{ is hyperbolic}\}, \text{ the set of hyperbolic surgery slopes}$ $\mathcal{E}_{K} = \{r \mid K(r) \text{ is not hyperbolic}\}, \text{ the set of "exceptional "surgery slopes}$

Theorem (Thurston's hyperbolic Dehn surgery)

For any hyperbolic knot K, $|\mathcal{E}_K| < \infty$.

K : figure-eight knot

(b)

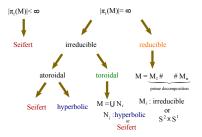
$\mathcal{E}_{K} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, \infty\}$ [Thurston]

Two directions of studies of "exceptional" surgeries on hyperbolic knots

A Refine the hyperbolic Dehn surgery theory.

 \Rightarrow Ichihara's talk

A Take a closer look at each exceptional surgery.



- Reducible surgery
- Seifert surgery
- Toroidal surgery,
- and put some restrictions.

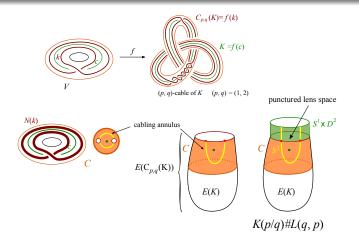
Kimihiko Motegi (Nihon University)

Differential Topology 22 19 March 2022

Open problems

Cabling Conjecture (González-Acuña-Short 1986)

If K(r) is reducible, then K is a (p,q)-cable of a knot and r = pq



Conjecture (Gordon et al.)

If K(r) is a Seifert fiber space, then $r \in \mathbb{Z}$, or K is a torus knot or a cable of a torus knot.

Conjecture (Gordon-Wu 2008)

A hyperbolic knot K has at most three toroidal surgeries.

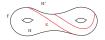
Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Differential Topology 22 19 March 2022

$\{\text{Lens space surgeries}\} \subset \{\text{Seifert fibered surgery}\}$

Let K be a knot contained in a genus 2 Heegaard surface F which splits S^3 into two genus 2 handlebodies H and H', i.e. $S^3 = H \cup_F H'$.



Performing Dehn surgery on K along the surface slope m,

we obtain a 3-manifold

 $K(m) = H[K] \cup H'[K]$

$\{\text{Lens space surgeries}\} \subset \{\text{Seifert fibered surgery}\}$

Let K be a knot contained in a genus 2 Heegaard surface F which splits S^3 into two genus 2 handlebodies H and H', i.e. $S^3 = H \cup_F H'$.

Performing Dehn surgery on K along the surface slope m,

we obtain a 3-manifold

$$K(m) = H[K] \cup H'[K] = (S^1 \times D^2) \cup (S^1 \times D^2),$$

which is a lens spaces. This construction is called Berge's primitive/primitive construction.

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Berge introduced "Berge's lens space surgeries" = 12 classes of primitive/primitive knots (positions)

Berge's Conjecture

Every lens space surgery is a Berge's lens space surgery.

(i) Every lens space surgery arises from primitive/primitive construction,

(ii) all primitive/primitive knots belong to Berge's list. (Greene 2010)

 \Rightarrow Teragaito's talk & Tange's talk & Yamada's talk

Then by performing Dehn surgery on K along the surface slope m, we obtain a 3-manifold

$$K(m) = H[K] \cup H'[K] = (S^1 \times D^2) \cup (S^1 \times D^2),$$

which is a lens spaces.

This construction is called Berge's primitive/primitive construction.

Berge introduced "Berge's lens space surgeries" = 12 classes of primitive/primitive knots (positions)

Berge's Conjecture

Every lens space surgery is a Berge's lens space surgery.

(i) Every lens space surgery arises from primitive/primitive construction,(ii) all primitive/primitive knots belong to Berge's list. (Greene 2010)

\Rightarrow Teragaito's talk & Tange's talk & Yamada's talk

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

What comes next?

Reducible surgeries, toroidal surgeries and Seifert surgeries are "exceptional" with respect to *Thurston' hyperbolic Dehn surgery*.

L-space surgeries, generalization of lens space surgeries, are "exceptional" with respect to in *Heegaard Floer homology theory*.

M : rational homology 3–sphere

M : rational homology 3–sphere

 $\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2

L–spaces

M : rational homology 3–sphere

 $\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2

$\dim_{\mathbb{Z}_2} \widehat{HF}(M) \ge |H_1(M;\mathbb{Z})|$

L–spaces

M : rational homology 3–sphere

 $\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2 $\dim_{\mathbb{Z}_2} \widehat{HF}(M) \ge |H_1(M;\mathbb{Z})|$

M is an *L*-space if "=" holds, i.e. $\dim_{\mathbb{Z}_2} \widehat{HF}(M) = |H_1(M;\mathbb{Z})|$.

L–spaces

M : rational homology 3–sphere

 $\widehat{HF}(M)$: Heegaard Floer homology with coefficients in \mathbb{Z}_2 $\dim_{\mathbb{Z}_2} \widehat{HF}(M) \ge |H_1(M;\mathbb{Z})|$

M is an *L*-space if "=" holds, i.e. $\dim_{\mathbb{Z}_2} \widehat{HF}(M) = |H_1(M;\mathbb{Z})|$.

Example

Lens spaces ($\neq S^2 \times S^1$), more generally, 3–manifolds with S^3 –geometry are L–spaces.

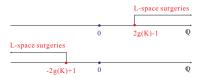
A knot K is called an L-space knot if it admits a nontrivial, L-space surgery.

A knot K is called an L-space knot if it admits a nontrivial, L-space surgery.

• K: a nontrivial L-space knot

A knot K is called an L-space knot if it admits a nontrivial, L-space surgery.

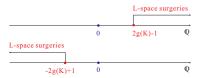
• K: a nontrivial L-space knot K(r) is an L-space $\Leftrightarrow r \ge 2g(K) - 1$ or $r \le -2g(K) + 1$. (Ozsváth-Szabó 2011)



Knot Floer homology, surgery formula \Rightarrow Sato's talk

A knot K is called an L-space knot if it admits a nontrivial, L-space surgery.

• K: a nontrivial L-space knot K(r) is an L-space $\Leftrightarrow r \ge 2g(K) - 1$ or $r \le -2g(K) + 1$. (Ozsváth-Szabó 2011)



Knot Floer homology, surgery formula \Rightarrow Sato's talk

• If K is hyperbolic L-space knot, it produces infinitely many hyperbolic *L*-spaces by Dehn surgery. (Thurston's hyperbolic Dehn surgery theorem) • For any *L*-space knot *K*,

the non-zero coefficients of the Alexander polynomial of K are ± 1 and alternate in sign. (Ozsváth-Szabó 2005)

 \Rightarrow Teragaito's talk

- For any L-space knot K, the non-zero coefficients of the Alexander polynomial of K are ± 1 and alternate in sign. (Ozsváth-Szabó 2005)
- \Rightarrow Teragaito's talk
- An L-space knot is a fibered knot,
 - i.e. its exterior is a surface bundle over S^1 . (Ni 2007)

Corollary (Ni)

A knot with lens space surgery, more generally finite surgery is fibered.

• L-space knot is prime (1-string prime). (Krcarovich 2015)

(It should be compare with: Connected sum of L-spaces is an L-space!)

• An L-space knot has no essential Conway sphere, i.e. 2-string prime. (Lidman-Moore-Zibrowius 2020)

[Hanselman-Rasmussen-Watson; Bordered Floer homology for manifolds with torus boundary via immersed curves] (Ito's talk)

enables us to prove:

Any satellite L-space knot has an
 L-space knot companion and L-space pattern knot (Hom 2016) and
 braided pattern. (Baker-M 2019)

Is $\mathcal{D}: \{\text{knots in } S^3\} \to \{\text{closed 3-manifolds with weight one } \pi_1\}$ surjective?

Boyer-Lines (1990) found (first) examples of weight one 3-manifolds which cannot be obtained by Dehn surgery on knots. These 3-manifolds are Seifert fiber spaces.

Auckly (1993) gave an example of a hyperbolic homology 3-sphere M which is not obtained by Dehn surgery on a knot, but it is not known that $\pi_1(M)$ has weight one.

Hoffman and Walsh (2015) give infinite family of hyperbolic 3-manifolds with weight one fundamental group none of which cannot be obtained by surgery on a knot in S^3 .

Hom, Karakurt and Lidman (2016) have given an infinite family of Seifert homology 3-spheres each of which has weight one, but not obtained by Dehn surgery on a knot in S^3 .

 $\mathcal{D}: \{$ knots in $S^3 \} \times \mathbb{Q} \to \{$ oriented closed 3–manifolds $\}$ $\mathcal{D}(K, r) = K(r)$

Then fixing a knot $K \subset S^3$ or a surgery slope $r \in \mathbb{Q}$, we may consider two kinds of injectivity of \mathcal{D} .

• Fix a knot K in S^3 . Then is the map

 $\mathcal{D}_K : \mathbb{Q} \to \{ \text{oriented closed 3-manifolds} \}$

injective? In other words, if K(r) = K(r'), then r = r'?

• Fix a rational number $r \in \mathbb{Q}$. Then is the map

 $\mathcal{D}_r: \{\text{knots in } S^3\} \to \{\text{oriented closed 3-manifolds}\}$

injective? In other words, if K(r) = K'(r), then K = K'?

Injectivity of the map \mathcal{D}_K

Is the map

$$\mathcal{D}_K : \mathbb{Q} \to \{ \text{oriented closed 3-manifolds} \}$$

 $\mathcal{D}_K(r) = K(r)$

injective?

Cosmetic surgery slope

For a given knot K we say that $r \in \mathbb{Q}$ is a cosmetic surgery slope for K if $\exists r' \neq r$ s.t. $K(r') \cong K(r)$.

Since $H_1(K(p/q)) \cong \mathbb{Z}_p$ $(p \ge 0)$, if $K(p/q) \cong K(p'/q')$, then p = p'.

Let O be the trivial knot in S^3 . Then $O(1/n) \cong S^3$ for any integer n, and thus \mathcal{D}_O is not injective. 1/n is a cosmetic surgery slope for "trivial knot". (Actually there is an orientation preserving homeomorphism of $E(O) = S^1 \times D^2$ sending 1/n to 1/0.)

Theorem (Gordon-Luecke: reformulation 1)

Let K be a nontrivial knot.

 ∞ is not a cosmetic surgery slope for K, i.e. $K(r) \cong K(\infty) \Leftrightarrow r = \infty$.

Cosmetic surgery conjecture

Any nontrivial knot in S^3 does not have a cosmetic surgery slope, i.e.

 $\mathcal{D}_K : \mathbb{Q} \to \{ \text{oriented closed 3-manifolds} \}$

$$\mathcal{D}_K(r) = K(r)$$

is injective.

If $M = K(r_1) \cong K(r_2)$, then some nontrivial surgery on $K_{r_1}^* \subset M = K(r_1)$ converts $M = K(r_1)$ into $M = K(r_2) = K(r_1)$. This is the original meaning of "cosmetic" surgery. $\mathcal{D}_K : \mathbb{Q} \to \{\text{unorineted closed 3-manifolds}\} \text{ is not injective.}$

Indeed, Mathieu observed $T_{3,2}(9) \cong -T_{3,2}(9/2)$, where -M denotes M with the opposite orientation.

Theorem (Ni-Wu 2015)

Assume that K is nontrivial and $K(p/q) \cong K(p/q')$ for distinct slopes $p/q, p/q' \in \mathbb{Q} \cup \{\infty\}$. Then q = -q' and $q^2 \equiv -1 \pmod{p}$.

Theorem (Hanselman 2019)

Assume that $K(r) \cong K(r')$ for distinct slopes $r, r' \in \mathbb{Q}$. Then

1 $\{r, r'\} = \{\pm 2\}$ or $\{\pm 1/q\}$

If {r, r'} = {±1/q}, then there are at most finitely many q; the number of q is depending on q and decidable.

\Rightarrow Ito's talk

Injectivity of the map \mathcal{D}_r

Is the map

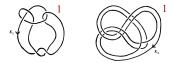
$$\mathcal{D}_r: \mathbb{K} \to \{ \text{oriented closed 3-manifolds} \}$$

 $\mathcal{D}_r(K) = K(r)$

injective?

Example

Lickorish provided the first example of distinct knots K_1 and K_2 which satisfy $K_1(1) \cong K_2(1)$, answering Kirby's question (1976).



Characterizing slope

A slope $r \in \mathbb{Q}$ is a characterizing slope for a knot K if whenever $K'(r) \cong K(r)$, then K' is isotopic to K.

Theorem (Gordon-Luecke: reformulation 2)

Let K be a knot and O a trivial knot.

$$K(1/n) \cong O(1/n) \ (n \neq 0) \Leftrightarrow K \cong O$$

This means that

 $1/n \ (n \neq 0)$ is a characterizing slope for the trivial knot.

• Gordon had conjectured that

every $r \in \mathbb{Q}$ is a characterizing slope for the trivial knot.

about ten years before he proved knot complement conjecture with Luecke.

Kimihiko Motegi (Nihon University)

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó 2007)

For the trivial knot every $r \in \mathbb{Q}$ is a characterizing slope.

This answers Gordon's conjecture affirmatively.

Apply this theorem to prove "projective space conjecture".

Theorem (projective space conjecture)

If K(r) is the projective space $\mathbb{R}P^3$, then K is the trivial knot.

Proof. Assume that $K(m/n) \cong \mathbb{R}P^3$. Then m = 2 for homological reason. If K is a nontrivial torus knot $T_{p,q}$, then we must have |pqn - 2| = 1, which is impossible because $|pq| \ge 6$. So K is not a torus knot, and Cyclic Surgery Theorem shows that |n| = 1. $K(2) \cong \mathbb{R}P^3 \cong O(2)$ implies $K \cong O$ by the above theorem. \Box

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó 2007)

For the trivial knot every $r \in \mathbb{Q}$ is a characterizing slope.

This theorem is generalized to

Theorem (Ozsváth-Szabó 2019)

Let K be a trefoil knot or the figure-eight knot. Then every $r \in \mathbb{Q}$ is a characterizing slope for K.

Theorem (Ni-Zhang 2014)

Let K be a torus knot $T_{p,q}$ $(p > q \ge 2)$. If $r > 30(p^2 - 1)(q^2 - 1)/67$, then r is a characterizing slope for K.

Question (Ni-Zhang 2014) Let K be a hyperbolic knot. Then is p/q a characterizing slope for K if |p| + |q| is sufficiently large?

On the other hand,

• For given integer m,

^{\exists}hyperbolic knots K, K' s.t. $K(m) \cong K'(m)$.

(Kawauchi)

Theorem (Baker-M 2018)

- There exists a hyperbolic knot for which every integer is a non-characterizing slope.
- Prove a given nontrivial knot k, there exists a satellite knot with companion knot k for which every integer is a non-characterizing slope.

This is based on Gompf-Miyazaki's "surgery dual" (1995).

Theorem (Lackenby 2019, McCoy 2019)

• Every hyperbolic knot has a characterizing slope.

- 2 Any torus knot $T_{r,s}$ with r, s > 1 has only finitely many non-characterizing slopes which are not negative integers. (McCoy)
- Solution Any hyperbolic knot can have only finitely many non-characterizing slopes with $q \ge 3$ (McCoy)

Conjecture (Universal characterizing slope)

There exist a universal characterizing slope r, i,e, the map

 $\mathcal{D}_r : \mathbb{K} \to \{ \text{oriented closed 3-manifolds} \}$

$$\mathcal{D}_{\boldsymbol{r}}(K) = K(r)$$

injective. In other words, r is a characterizing slope for all knots.

Kimihiko Motegi (Nihon University)

(Lackenby)

Let $m \in \mathbb{Z}$ be a non-characterizing slope for a knot K. Then by definition, there is a knot K' which is not isotopic to K and $K'(m) \cong K(m)$.

It is interesting to ask if there are infinitely knots K_i (i = 1, 2, ...) such that

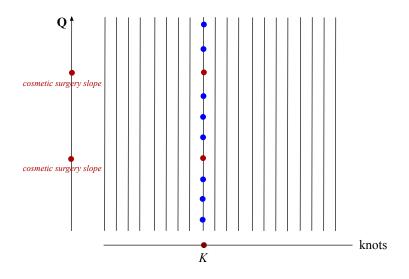
$$K_1(m) \cong K_2(m) \cong \cdots \cong K_n(m) \cong \cdots$$

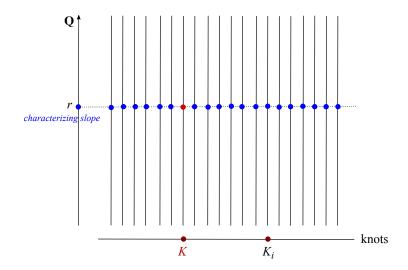
(Kirby)

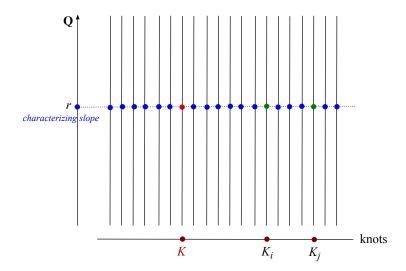
Osoinach answered this question in the positive when m = 0. Some extensions were given by Teragaito, Kouno.

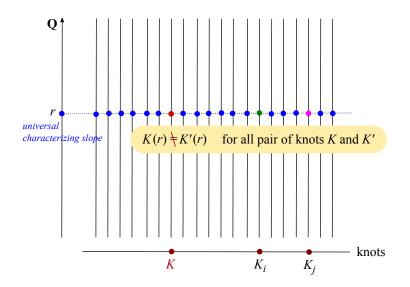
Theorem (Abe, Jong, Luecke and Osoinach 2015)

For every integer n, there exist infinitely many knots $K_1, K_2 \dots$ such that $K_1(n) \cong K_2(n) \cong \dots$.









Left orderable

A nontrivial group G is said to be left-orderable if there exists a strict total ordering < that is invariant under multiplication from the left, i.e. if g < h, then fg < fh for any $f, g, h \in G$.

• A left-orderable group has no torsion.

Let G be an left-orderable group and g a nontrivial element. Assume that 1 < g. Then $1 < g = g \cdot 1 < g \cdot g = g^2 < g^3 < \cdots < g^n$ for any $n \ge 2$.

So if K(r) is a lens space, $\pi_1(K(r))$ is not left-orderable.

L-space conjecture (Boyer, Gordon and Watson 2013)

```
M: irreducible, rational homology 3–sphere

M is an L-space

\Leftrightarrow

\pi_1(M) is not left-orderable.
```

A 3-manifold with geometric structure other than hyperbolic structure satisfies the L-space conjecture.

Furthermore, many hyperbolic 3–manifolds are known to satisfy the conjecture. (Boyer, Gordon and Watson 2013)

For any knot $K \subset S^3$, since $G(K) = \pi_1(E(K))$ admits an epimorphism onto the infinite cyclic group \mathbb{Z} via its abelianization, G(K) is left-orderable. (Howie-Short 1985, Boyer-Rolfsen-Wiest 2005)

However, the fundamental group of K(r) may not be left-orderable.

$$S_L(K) = \{ r \in \mathbb{Q} \mid K(r) \text{ is an L-space} \}$$
$$S_{LO}(K) = \{ r \in \mathbb{Q} \mid \pi_1(K(r)) \text{ is left-orderable} \}$$

Conjecture

Let K be a knot in S^3 . Assume that K is not a cable of a nontrivial knot. Then $S_L(K) \cup S_{LO}(K) = \mathbb{Q}$ and $S_L(K) \cap S_{LO}(K) = \emptyset$.

Kimihiko Motegi (Nihon University)

Dehn surgery on knots : survey

Torus knot

For
$$(p,q)$$
-torus knot $T_{p,q}$ $(p > q \ge 2)$,
 $\mathcal{S}_{LO}(T_{p,q}) = (-\infty, pq - p - q) \cap \mathbb{Q}$, and
 $\mathcal{S}_L(T_{p,q}) = [pq - p - q, \infty) \cap \mathbb{Q}$.

• There exist infinitely many hyperbolic knots K such that $S_{LO}(K) = \mathbb{Q}$ and $S_L(K) = \emptyset$. (M-Teragaito 2014)