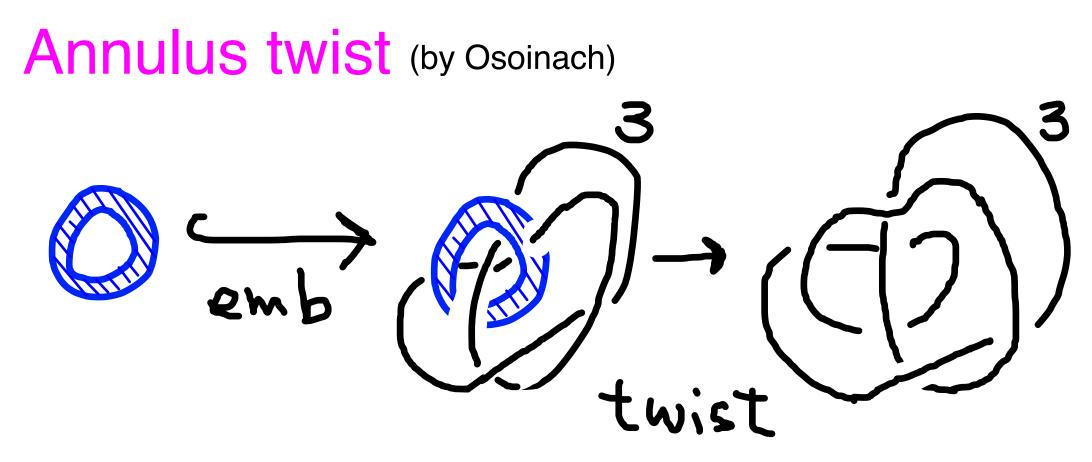
Annulus twist of a knot and log transform

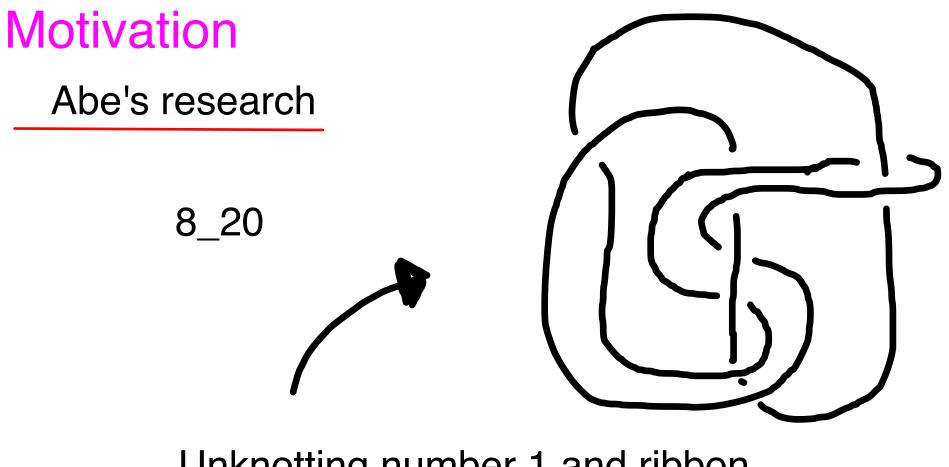
Tetsuya Abe RIMS, Kyoto University

Motoh Tange University of Tsukuba



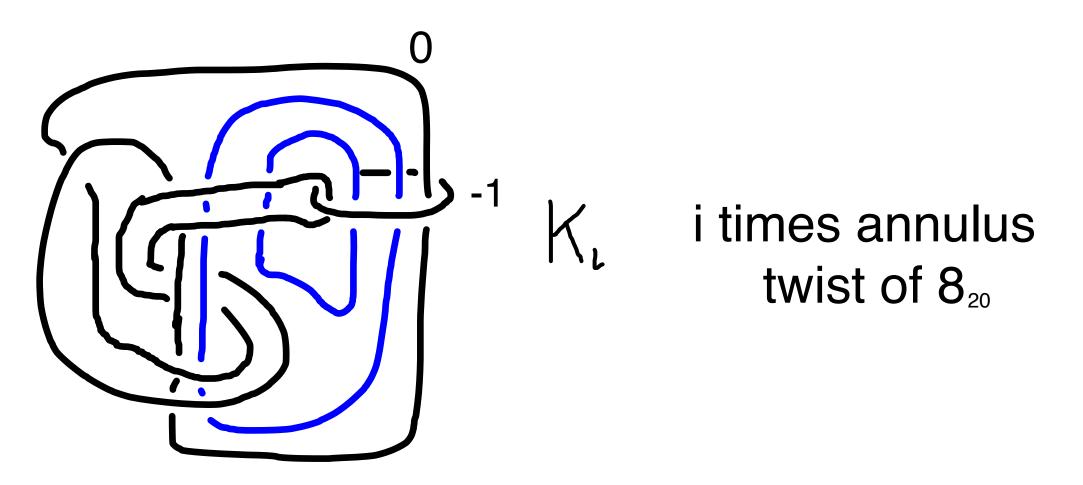
Osoinach constructed infinitely many surgery presentations for a manifold.

 $M(k_1,r) \cong M(k_2,r) \cong$ Surgery presentation,

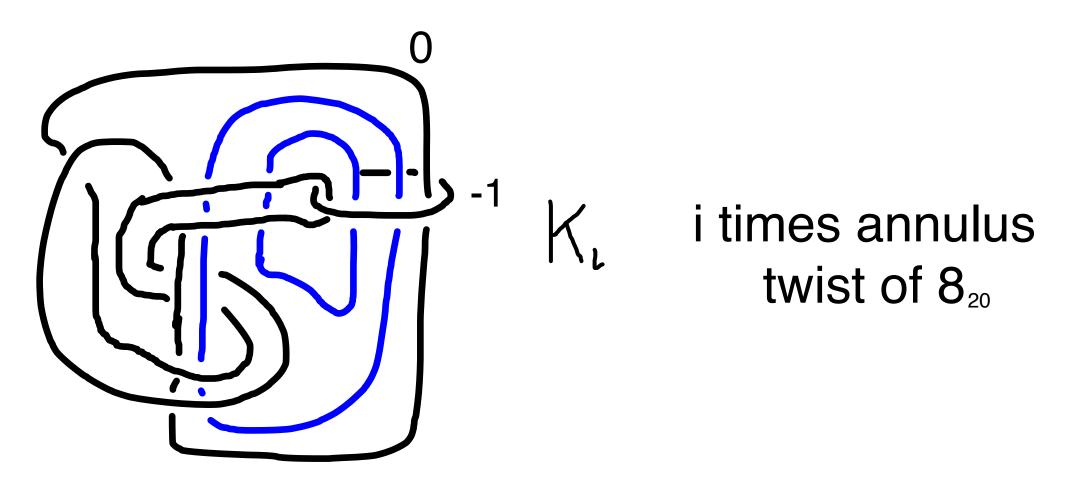


Unknotting number 1 and ribbon.

In particular, slice.

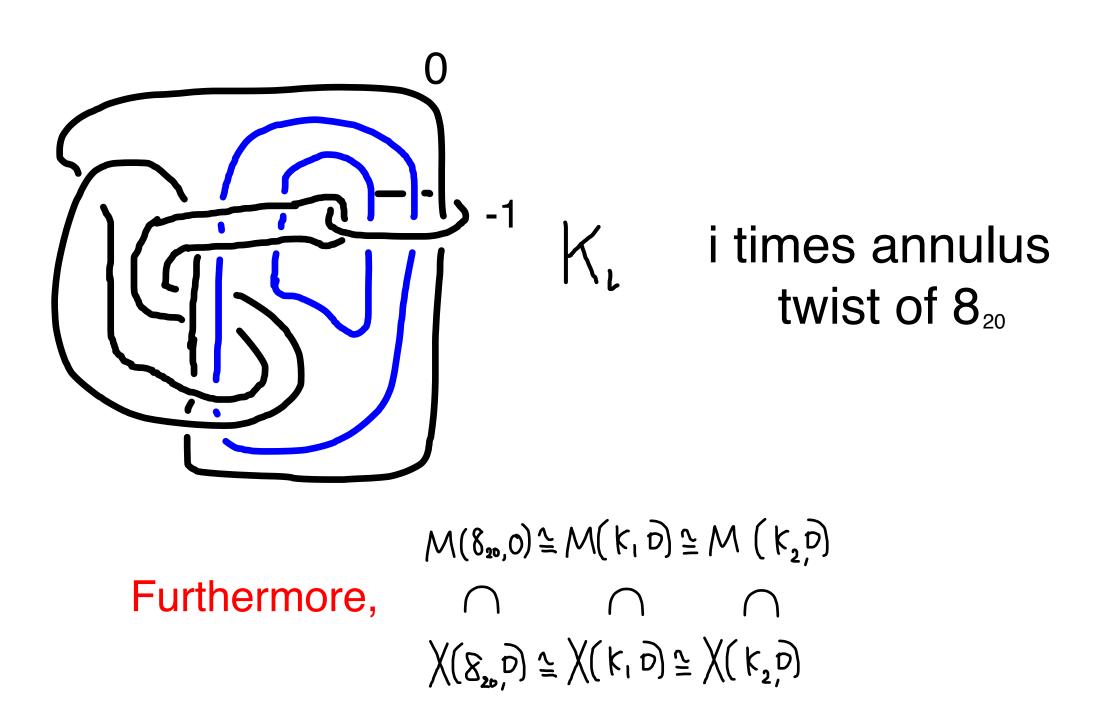


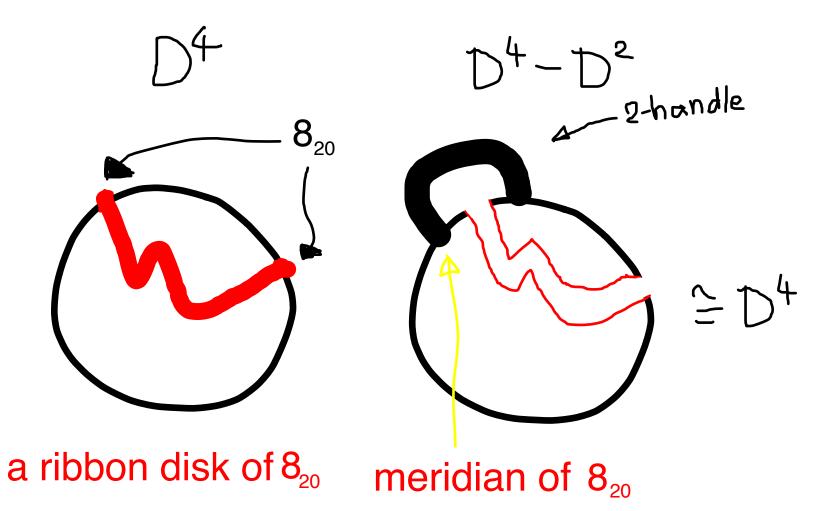
 $\mathcal{M}(\delta_{20}, 0) \cong \mathcal{M}(k_1 \overline{D}) \cong \mathcal{M}(k_2 \overline{D})$

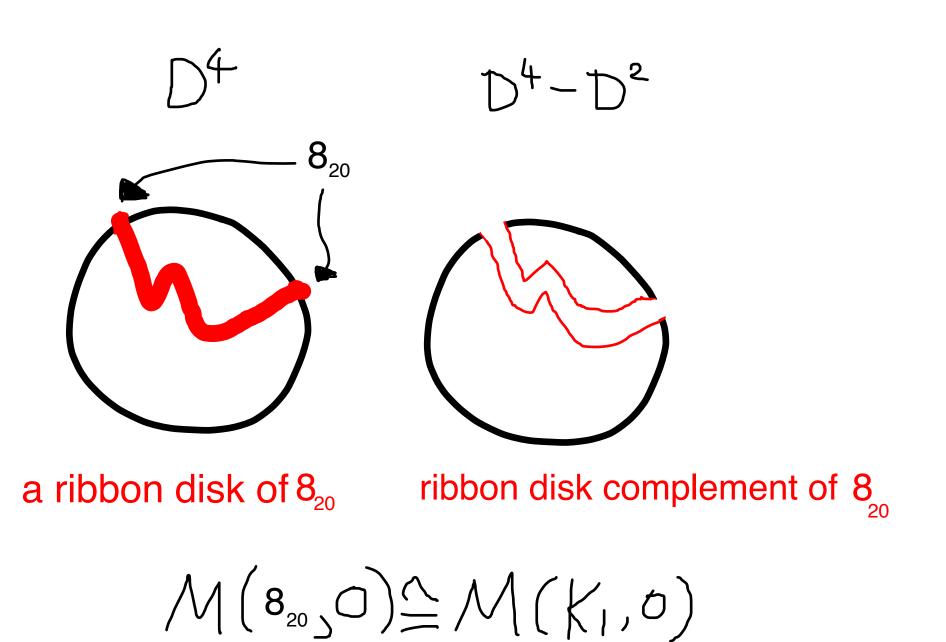


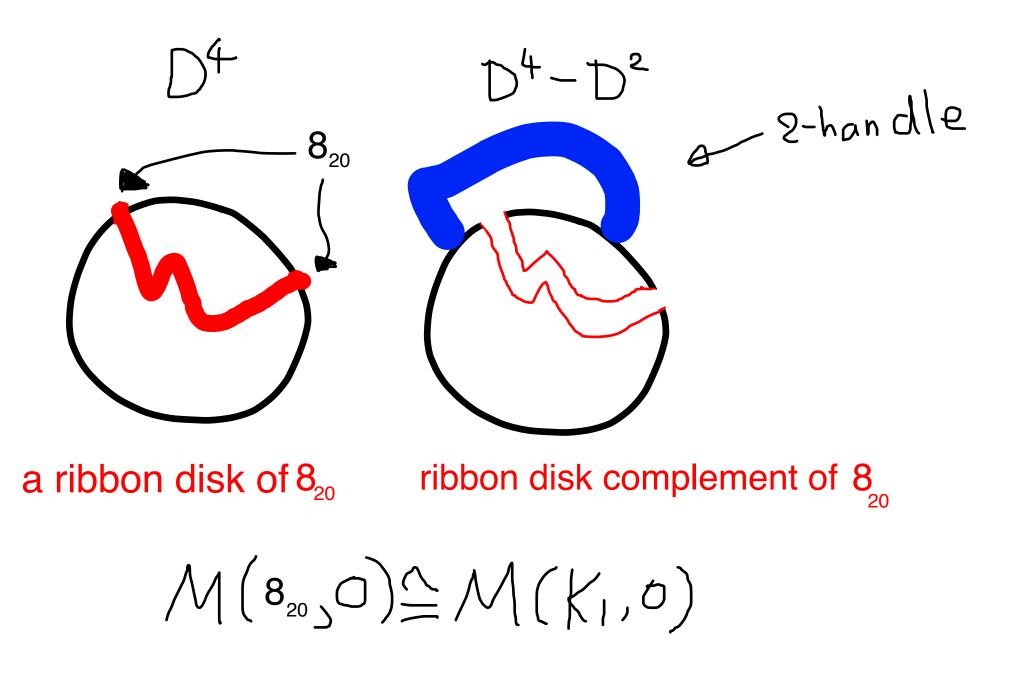
$$M(8_{20},0) \cong M(k_1,0) \cong M(k_2,0)$$

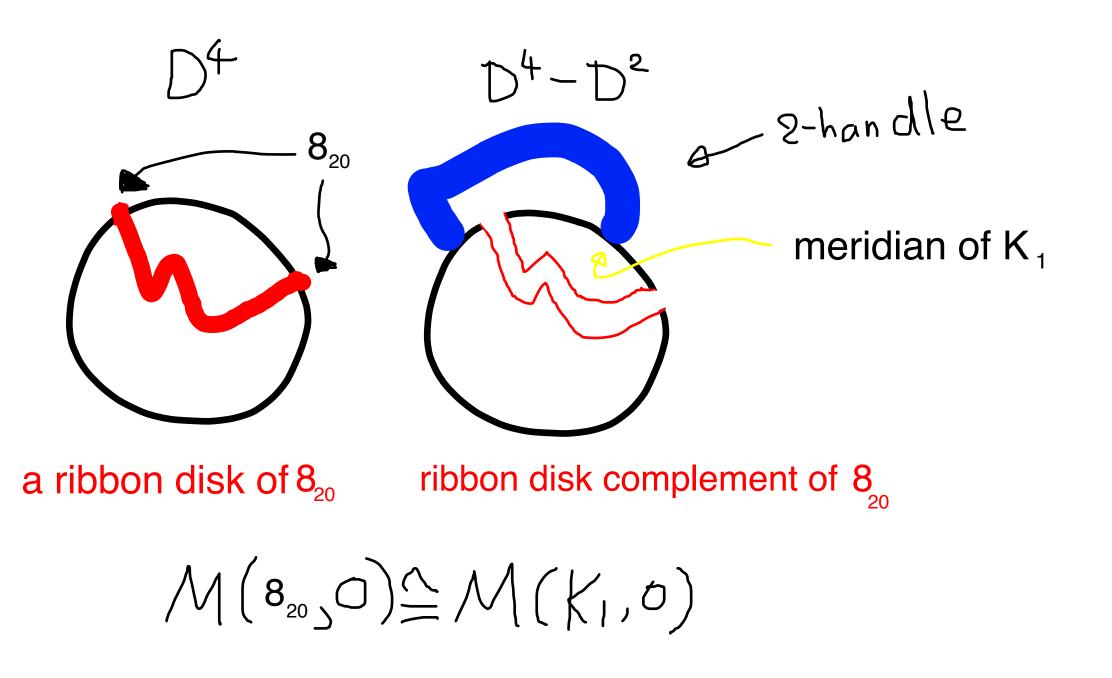
Furthermore,

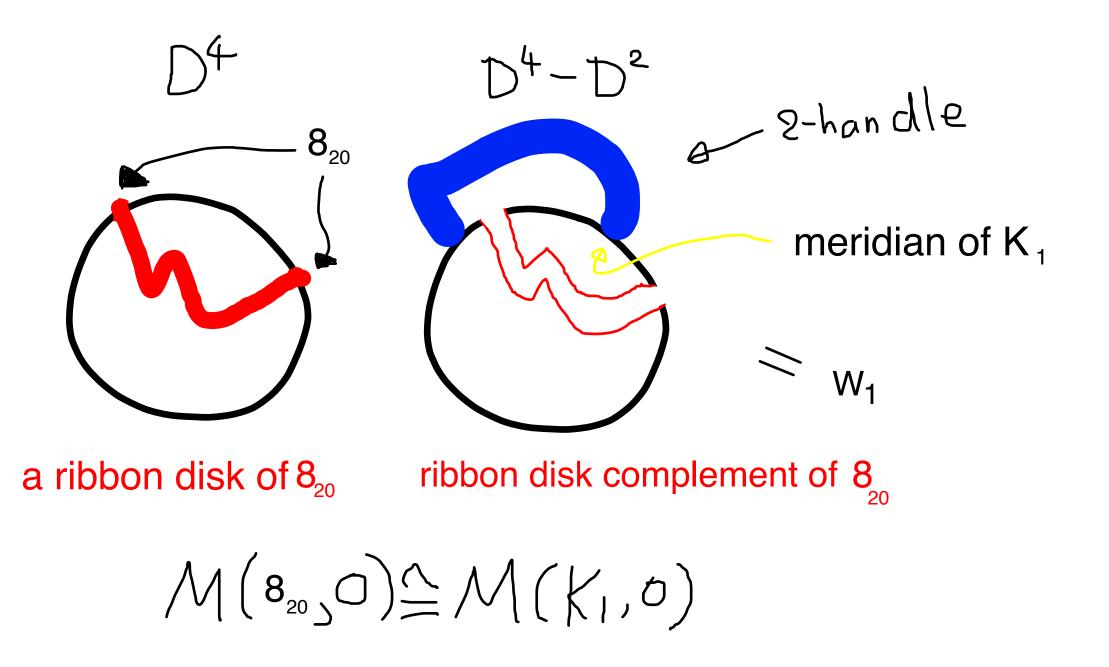


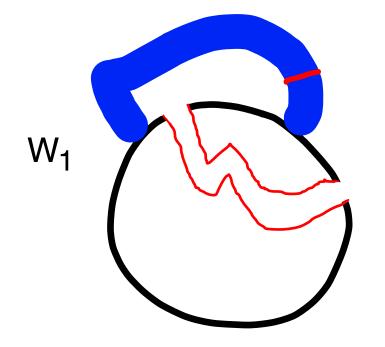




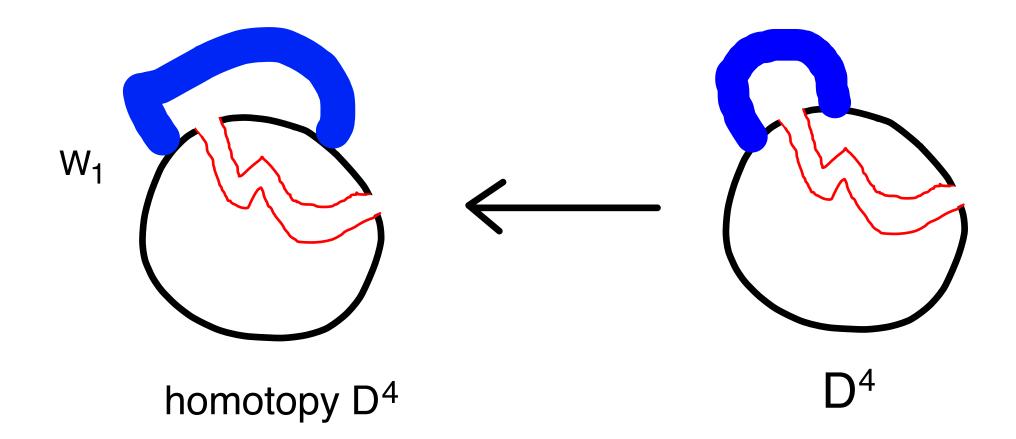


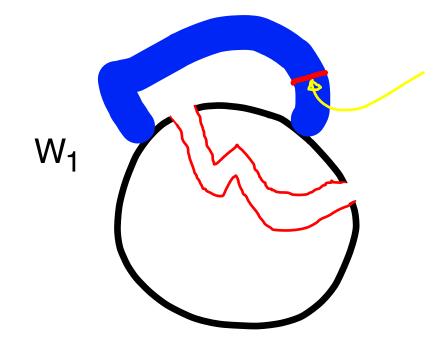






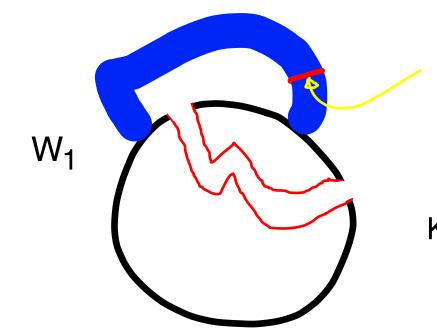
homotopy D⁴





slice disk of annulus twist of 8₂₀

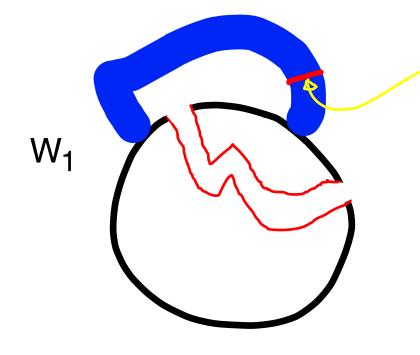
homotopy D⁴



slice disk of annulus twist of 8₂₀

 K_1 : the boundary is a knot in S³

homotopy D⁴



slice disk of annulus twist of 820

 K_1 : the boundary is a knot in S³

homotopy D⁴

The main problem of Abe's talk in the previous this workshop is

Problem Is K_1 a slice knot in S^3 ?

Theorem

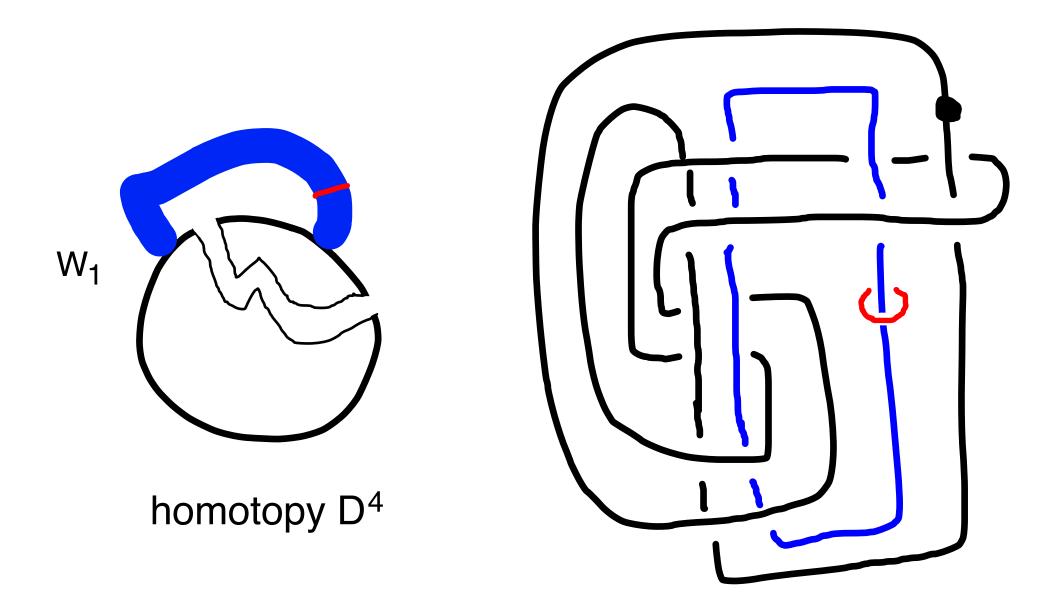
 W_n is diffeomorphic to the standard D^4 .

Corollary K_n is a slice knot in S³.

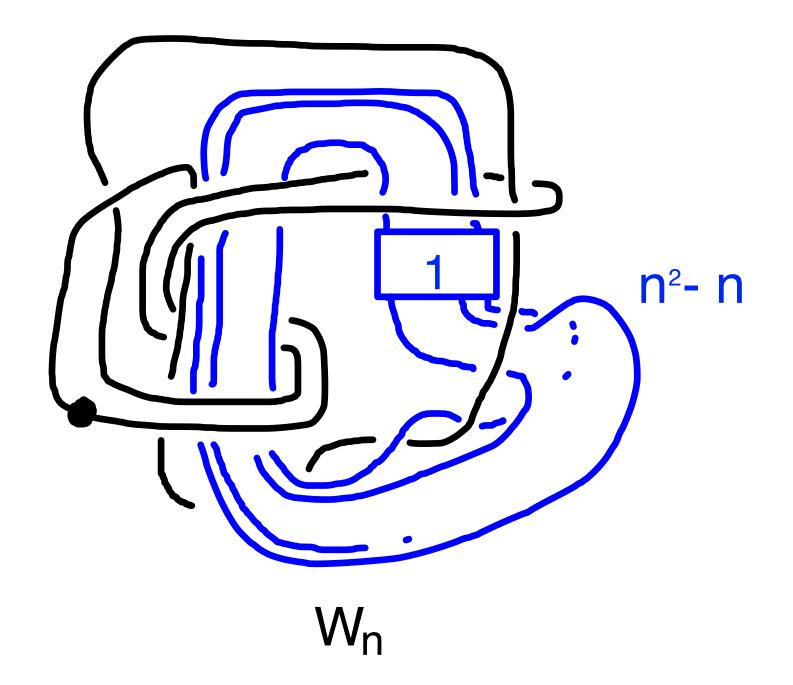
Theorem W_n is diffeomorphic to the standard D^4 .

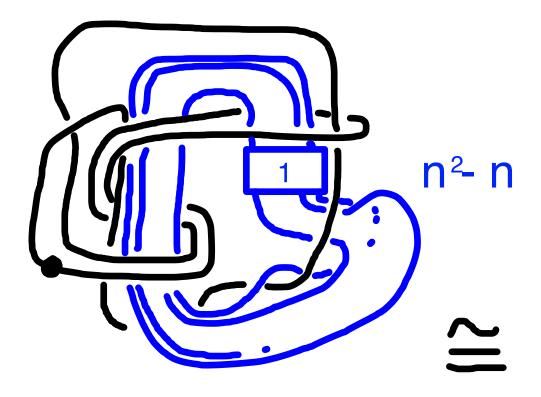
Corollary K_n is a slice knot in S³.

This is the answer of the main problem of Abe's talk "On the shake genus" in Hiroshima Topology Conference Four Dimensional Topology

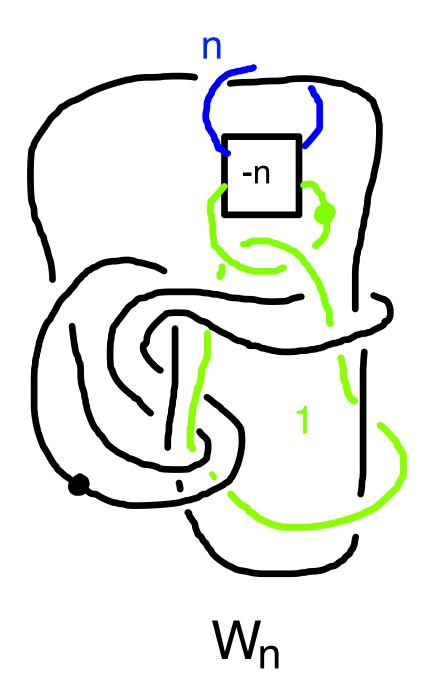


 W_1





Wn



Log transform T² ムズ triv normal ^b alle

Log transform T² X triv normal 6 dle $\left[X - \tau^2 \times D^2 \right] \cup T^2 \times D^2$

Log transform

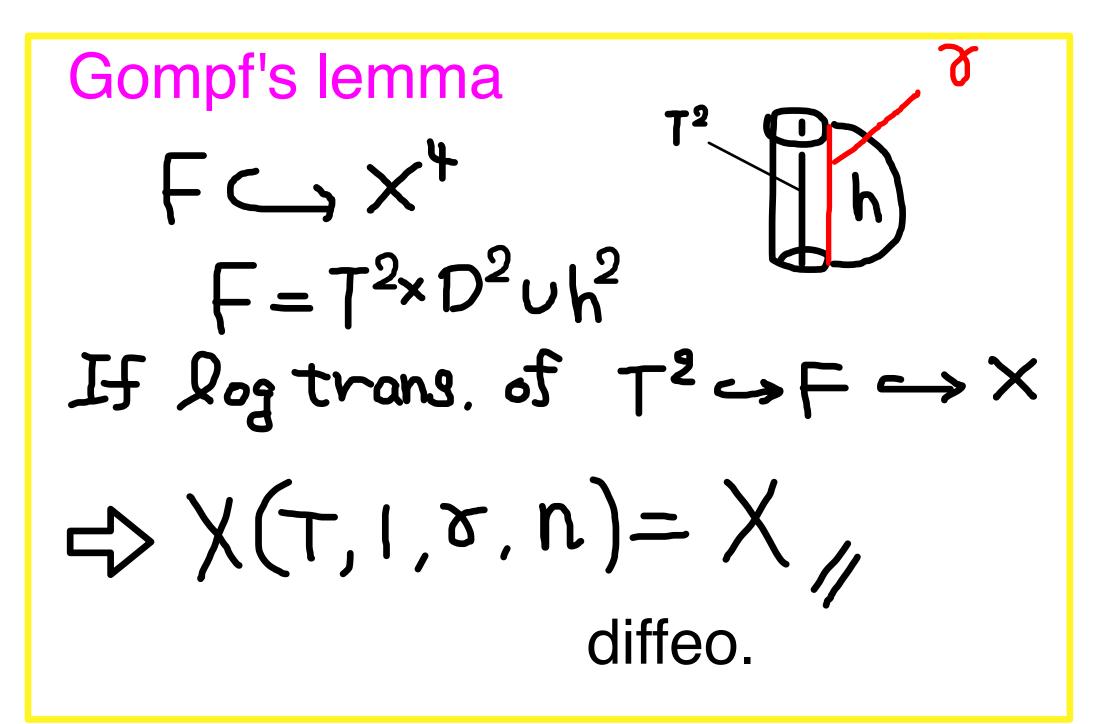
$$T^{2} \hookrightarrow X \quad \text{triv normal}$$

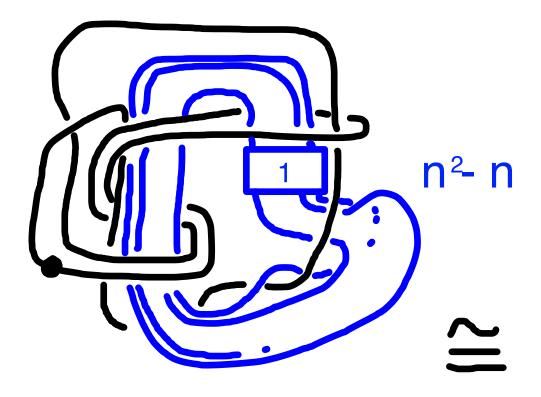
$$\stackrel{\text{b all e}{} \left[X - \tau^{2} \times D^{2} \right] \cup T^{2} \times D^{2}$$

Log transform T² X triv normal 6 dle $\left[X - \tau^2 \times D^2 \right] \cup T^2 \times D^2$ Log transform $(\varphi \cdot T^2 \times \Im D^2 \rightarrow T^2 \times \Im D^2)$

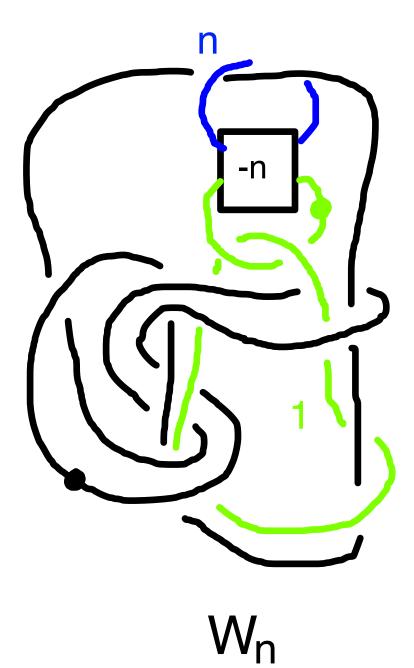
$$\begin{bmatrix} X - \tau^2 \times D^2 \end{bmatrix} \cup \begin{bmatrix} r^2 \times D^2 \\ 9 \cdot \tau^2 \times 3D^2 \rightarrow \tau^2 \times 3D^2 \\ 9(3D^2) = 2 & \tau + p & 2D^2 \\ 3 & \tau + p & 2D^2 \end{bmatrix}$$

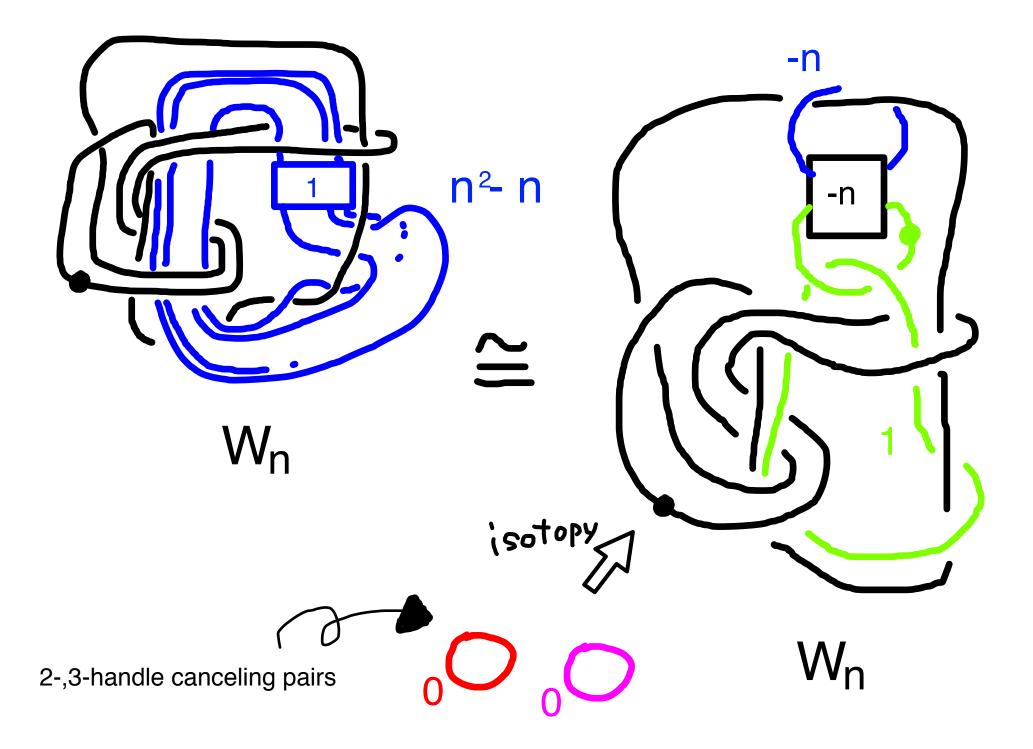
$$\begin{bmatrix} X - \tau^2 \times D^2 \end{bmatrix} \cup \begin{bmatrix} \tau^2 \times D^2 \\ \Im & \subset T^2 & \text{curve} \\ \forall & \text{direction} \\ X(T, P, \mathcal{F}, \mathcal{G}) \end{bmatrix}$$

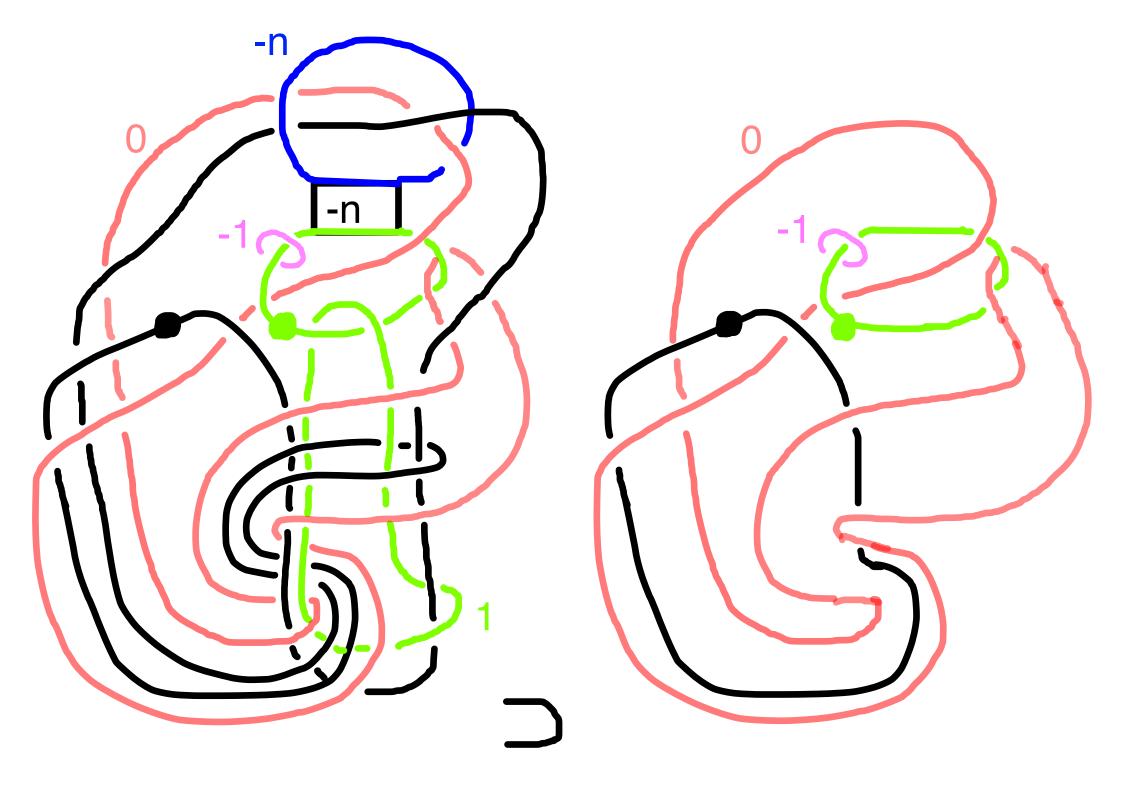


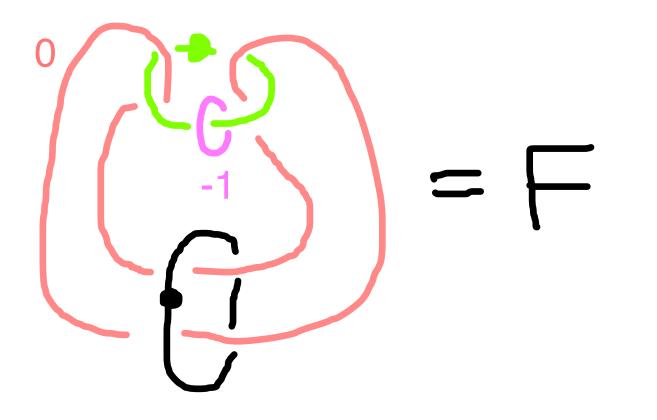


Wn

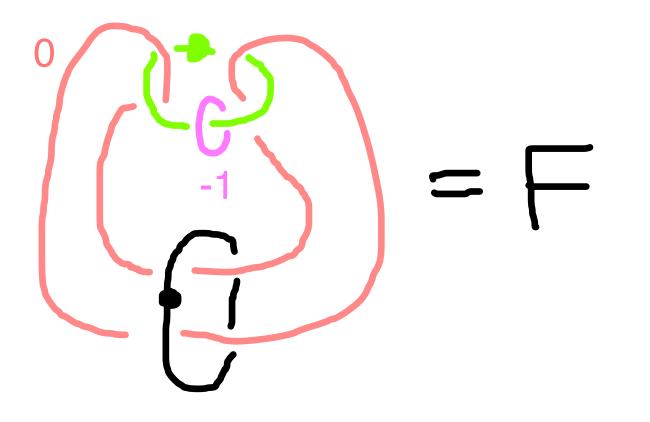




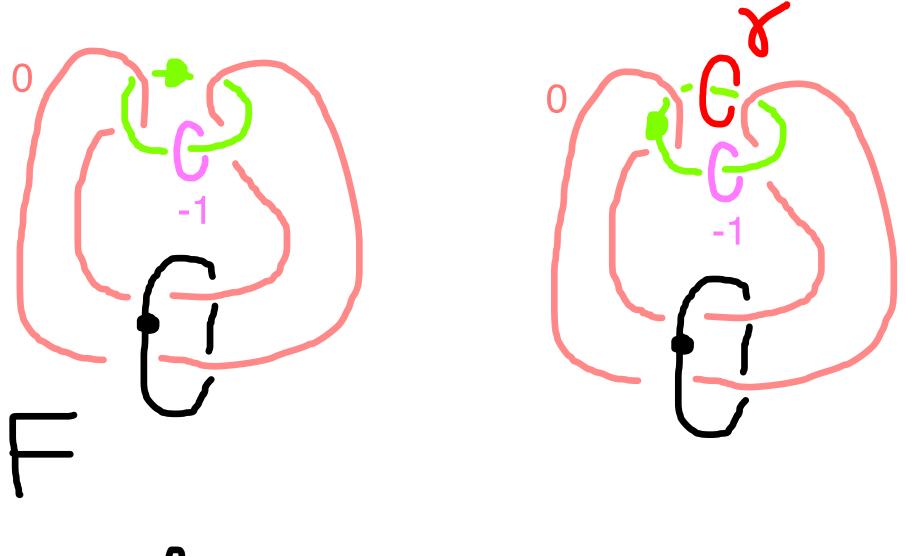




$T^{\varrho} \hookrightarrow F \hookrightarrow W_{n}$



$T^{\varrho} \hookrightarrow F \hookrightarrow W_{n}$ J = J = J



 $T^{\varrho} \hookrightarrow F \hookrightarrow W_{n}$

 $W_{n}(T_{1}, 1_{3}) = W_{n-1}$

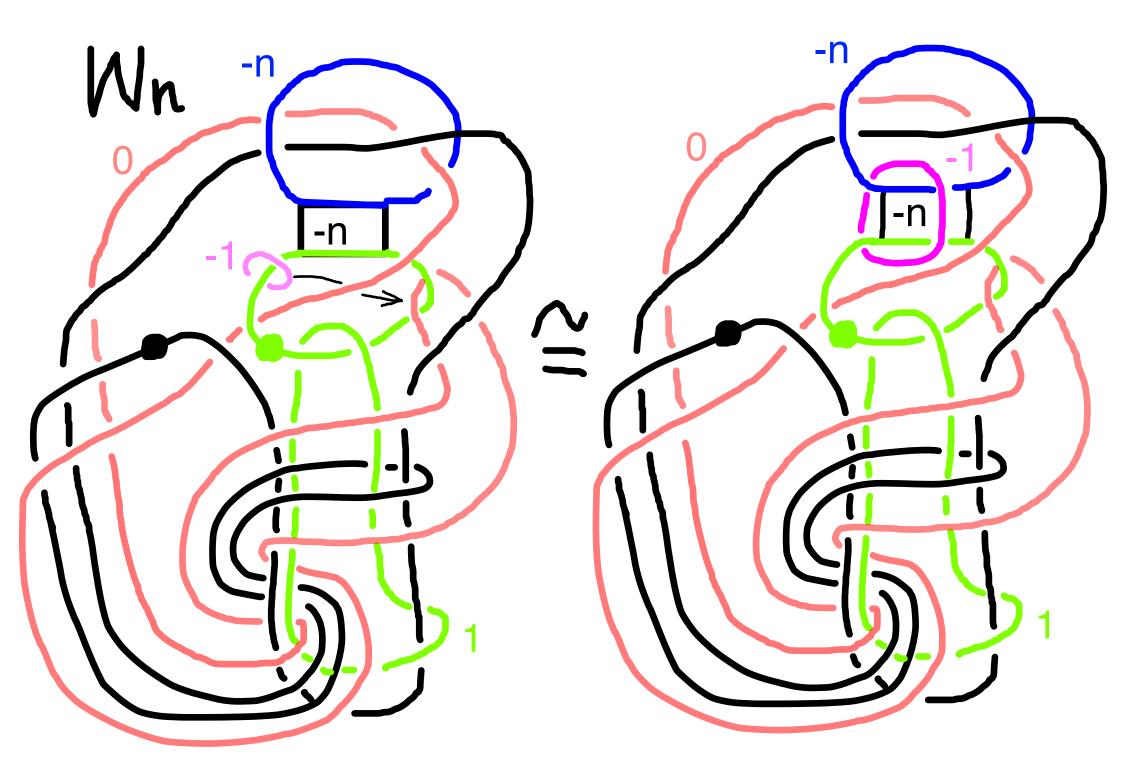
$W_{n}(T_{1}) = W_{n-1}$

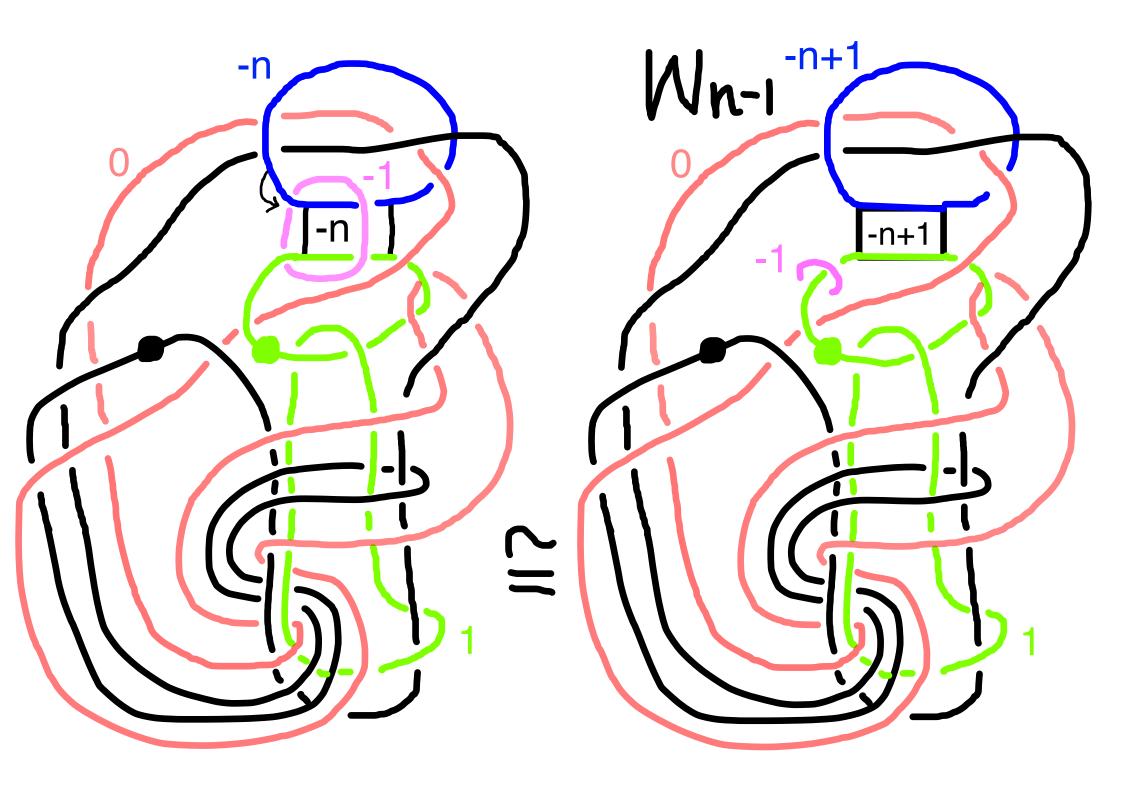
Gompf's lemma

$W_{n}(T, 1, \gamma, 1) = W_{n-1}$ || Gompf's lemma W_{n}

$W_{n}(T_{1}, 1, \gamma, 1) = W_{n-1}$ Gompf's lemma Wn. $W_n = W_{n-1} = W_{n-2} = \cdots = W_0 = 0^+$

$W_{n}(T, 1, \gamma, 1) = W_{n-1}$ Gompf's lemma Wn. $W_n = W_{n-1} = W_{n-2} = \cdots = W_0 = 0^+$. Wh is the std ball . Kn's are all slice.





Further,

Further, Akbulut proned. Capell-Shaneson spheres are standard S4

turther, Akbulut proned. Sm Capell-Shancson spheres are standard S4 He used 2,3 cancelling pain

Further, Akbulut proned. Sm Capell-Shaneson spheres are standard S4 He use 2,3 cancelling pain However, T² - F = Sin

 $T^2 \hookrightarrow F \xrightarrow{I} \Sigma_m$ $\sum_{m}(\tau_{j}) = \sum_{m-1}$ Gompf's lemma