線形代数Ⅱ演習 担当丹下基生: 研究室 (D506) mail(tange@math.tsukuba.ac.jp)

第 3 回('15 年 10 月 21 日:Keywords ··· ベクトル空間、部分ベクトル空間、基底)

まとめ.

3-1. ベクトル空間・・・ 加法とスカラー倍が定義されている集合で、教科書の定義 6.1 の性質を満た すもの \mathbb{R}^n 、 \mathbb{C}^n 、実数係数多項式全体 $\mathbb{R}[x]$ 、実数列全体 $s(\mathbb{R}) = \{(x_n) | x_n \in \mathbb{R}\}$ 、

3-2. 部分 (ベクトル)空間 $\cdots W \subset V$ が V の部分 (ベクトル)空間であるとは、 $W \neq \emptyset$ かつ、任 意の $\mathbf{v}, \mathbf{w} \in W, \alpha \in \mathbb{C}$ に対して V の加法とスカラー倍を使って、(1) $\mathbf{v} + \mathbf{w} \in W$ かつ (2) $\alpha \cdot \mathbf{v} \in W$ を 満たす集合のこと.

ベクトル空間の部分ベクトル空間はベクトル空間である.

3-3. 基底 \cdots $\{v_1, v_2, \cdots, v_n\}$ ベクトル空間 V の基底であるとは、 v_1, v_2, \cdots, v_n が一次独立で、任意の $v \in V$ がこれらの一次結合 $c_1v_2 + \cdots + c_nv_n$ として表されるということ v_1, v_2, \cdots, v_n が一次独立と は、 $c_1v_2 + \cdots + c_nv_n = 0$ ならば、 $c_1 = c_2 = \cdots = c_n = 0$ を意味する.

有限生成なベクトル空間の次元はその基底の数と定義する.

ベクトル空間が有限生成とは、ある有限個のベクトル $\{v_1, \cdots, v_n\}$ が存在して、任意の $v \in V$ がこ れらのベクトルの一次結合で書けることをいう.

3-4. $\mathbb{K}[x]$ ・・・ \mathbb{K} を係数とする多項式関数の集合 $\mathbb{K}[x]_n$ によって $\mathbb{K}[x]$ 内の n 次以下の多項式全体を 表す.

今日の課題。

1. 抽象ベクトル空間とは何か?計算しながら理解すること.

有界数列全体 $\{(x_n) \in s(\mathbb{R}) | \ ^{\exists}M \text{ s.t. } |x_n| < M, \ ^{\forall}n \in \mathbb{N}\} \subset s(\mathbb{R}), \ \mathbb{K}[x]_3 \subset \mathbb{K}[x]....$

2. 抽象ベクトル空間の基底とは何か?数ベクトル空間と一般のベクトル空間がどのように違うの か?

A-3-1. [ベクトル空間であること]

次の集合はベクトル空間であることを示せ.

(1)
$$V = \mathbb{C}^2$$

 $(2) V = \mathbb{R}[x]_3$ (高々2 次の \mathbb{R} 係数の多項式)

(3)
$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} | 2x_1 - x_2 = 0 \right\}$$

(4) C (ℝ上ベクトル空間として)

A-3-2. [ベクトル空間]

次の集合は(通常のベクトルの和とスカラー倍として)ベクトル空間にならないことを示せ。

(1)
$$V = \{ f(X) \in \mathbb{R}[x]_4 | f(0) = 0, f(1) = 1 \}$$

(2)
$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} | 2x_1 - x_2 = 1 \right\}$$

A-3-3. [基底]

次のベクトル空間の基底を一つ求めよ.

(1) $\mathbb{R}[x]_2$

(2)
$$\left\{ v = {}^{t}(x_1, x_2, x_3) \in \mathbb{R}^3 \middle| \begin{cases} 2x_1 + x_2 - x_3 = 0 \\ 3x_1 - x_2 = 0 \end{cases} \right\}$$

A-3-4. [基底]

次のベクトルはベクトル空間 V において基底であることを示せ.

- (1) $V = \mathbb{C}[x]_2, \{x, x^2 + 1, 2 x + x^2\}$
- (2) $V = \mathbb{C}[x]_3$, $\{1 + 2x, 2 + 3x x^3, 1 x + 2x^2, 1 + x + x^3\}$
- (3) $V = \{v \in \mathbb{C}^3 | x_1 + x_2 + x_3 = 0\}$ とする . $\{t^t(1, -1, 0), t^t(0, 1, -1)\}$

B-3-1. [ベクトル空間であること]

次の集合はベクトル空間になることを示せ.

(1) 有界数列全体.

(2) [0,1] 上の連続関数全体 C([0,1]).

B-3-2. [係数が±1となる多項式]

 $\mathbb{C}[x]_2$ において、 x^i の係数が ± 1 となるベクトルの中から、 $\mathbb{C}[x]_2$ 上で基底となるようなものが選ぶことができるか?

B-3-3. [連立一次方程式の解の空間の基底とその次元]

 2×4 行列 $A = \begin{pmatrix} 2 & 3 & 1 & 0 \\ 1 & 0 & 1 & -4 \end{pmatrix}$ を考える. $V = \{ \mathbf{v} \in \mathbb{C}^n | A\mathbf{v} = 0 \}$ と定義する.このとき、V の基底と、その次元を求めよ.

B-3-4. [正の実数上のベクトル空間]

教科書 p139 例 6.2 では、通常の演算では $\mathbb{R}_{>0}$ (正の実数全体)はベクトル空間にならないと書いてあるが、ベクトルとしての足し算、スカラー倍を通常ではないものを入れることによって、ベクトル空間が作れるか?

B-3-5. [基底]

次のベクトルは、 $\mathbb{R}[x]$ で基底となるか?

$$\{x^7, (x-1)^7, (x-2)^7, (x-3)^7, \cdots, (x-7)^7\}$$

B-3-6. [ベクトル空間としての第一象限]

平面上の第一象限 $\{(x,y) \in \mathbb{R}^2 | x,y > 0\}$ をベクトル空間とみなすことができるか?

B-3-7. [実数列]

以下の問題に答えよ.

- (1) 実数列全体 $s(\mathbb{R}) = \{(x_n) \in \mathbb{R}^{\mathbb{N}} | x_n \in \mathbb{R} \}$ が自然にベクトル空間となるには、加法、スカラー倍をどのように定義すればよいか?
- (2) $s(\mathbb{R})$ の中の部分集合 $s(\mathbb{R})_f$ を $s(\mathbb{R})_f = \{(x_n) \in s(\mathbb{R}) | 有限個の <math>n$ 以外全て $0\}$ とおく.このとき、V はベクトル空間であることを示せ.またその次元は有限次元ではないことを示せ.

(3) $s(\mathbb{R})_f$ の中の部分集合 $s(\mathbb{R})_{f,0}$ を $s(\mathbb{R})_{f,0} = \{(x_n) \in s(\mathbb{R}) | 有限個の n 以外全て 0 かつ <math>\sum_{n=1}^{\infty} x_n = 0\}$ とおく.このとき、 $s(\mathbb{R})_{f,0}$ はベクトル空間であることを示し、その基底は、 e_i , $(i = 1, 2, \cdots)$ であることを示せ.ただし、ベクトル e_i は、 $e_i = (x_n)$ としたときに、

$$x_n = \begin{cases} 1 & n = i \\ -1 & n = i+1 \\ 0 & その他 \end{cases}$$

として定義される.

B-3-8. [スカラー倍]

実平面 \mathbb{R}^2 上に、ベクトルの足し算を通常どおり、スカラー倍を以下のようにすると、ベクトル空間が出来上がるか?

- (1) $c \in \mathbb{R}$ に対して、c(x,y) = (cx, -cy) とする.
- (2) $c \in \mathbb{R}$ に対して、 $c(x,y) = (cx, c^2y)$ とする.

B-3-9. [有限生成ベクトル空間の一次独立なベクトルの最大]

V を有限生成なベクトル空間とする.このとき、あるn が存在して、V の中の任意のn+1 個のベクトルが一次従属であり、またn 個の一次独立なベクトルが存在することを示せ.

C-3-1. [ベクトル空間]

次の集合は ℂ上のベクトル空間になるか、もしなるなら証明を、そうでないなら、理由を付して説明せよ .

$$V = \{ f(x) \in \mathbb{C}[x]_3 || f(1) = f(2) = 0 \}$$

C-3-2. [基底]

次のベクトルは、 $\mathbb{R}[x]_2$ 上基底となるか、示せ.

$$\{1 + x - x^2, 2 + 2x + x^2, 1 - 3x + 2x^2\}$$

C-3-3. [ベクトル空間]

n次多項式の集合 $\mathbb{R}[x]_n$ について以下の問題に答えよ.ただし、 B_1, B_2 をそれぞれ、 $\{1, x, \dots, x^n\}$ および $\{1, x-1, \dots, (x-1)^n\}$ と定義する(もし一般のn で分からなければ、n=3 でやってみてもよい.)

- (1) B_1, B_2 は $V = \mathbb{C}[x]_n$ の基底であることを示せ.
- (2) 任意のk ($0 \le k \le n$) に対して、ベクトル x^k を $\{1, x-1, \cdots, (x-1)^n\}$ の一次結合で表せ.
- (3) V の部分ベクトル空間 W には、任意の $0 \le k \le n$ に対してある k 次式が存在するとする . このとき、W = V であることを示せ .

HP: http://www.math.tsukuba.ac.jp/~tange/jugyo/15/sen.html

blog : (http://motochans.blogspot.jp/)

相談、質問などいつでも承ります.アドレスはプリント1ページ目上部.