Homework

May 2024

1 Manifolds

Exercise 1.1. Construct an canonical isomorphism $H^2(X,\mathbb{Z}) = [X,K(\mathbb{Z},2)]$, where $K(\mathbb{Z},2)$ is the Eilenberg-MacLane space.

Here [X,Y] is the homotopy set of continuous maps $f:X\to Y$

Exercise 1.2. For a group G prove that any principal G-bundle $P \to X$ is isomorphic to the pull-back bundle $f^*\pi_G$ of π_G by $f: X \to BG$. Here $\pi_G: EG \to BG$ is the universal G-bundle.

Exercise 1.3. Prove $BU(1) = K(\mathbb{Z}, 2)$ and it is homotopy equivalent to infinite dimension complex projective space.

Exercise 1.4. Construct for any group G the classifying space BG and the universal principal G-bundle $\pi_G : EG \to BG$.

Exercise 1.5. Let X be a closed 4-manifold. Prove for $\alpha, \beta \in H_2(X, \mathbb{Z})$, $\alpha \cdot \beta = Q(PD(\alpha), PD(\beta)) = \int_X \eta_A \wedge \eta_B$. Here η_A and η_B are closed 2-forms corresponding to the integral classes for the natural isomorphism $H_2(X, \mathbb{R}) \cong H^2_{dR}(X, \mathbb{R})$

Exercise 1.6. For any element $\alpha \in H_2(X^4)$ is equivalent to the homology class of the zero set of a generic section $s: X \to \mathcal{L}$ of a line bundle \mathcal{L} .

2 Knot theory

Exercise 2.1. Prove any knot in S^3 has a Seifert surface. Use the Seifert Algorithm.

Exercise 2.2. Prove that Hopf link has a Seifert surface homeomorphic to annulus.

3 Quantum invariant

3.1 The trace function

Let $\{e_i\}_{i=1}^n$ be a basis in V. Then since we have $\operatorname{trace}(A) = \sum_{j=1}^m \langle e_j, Ae_j \rangle$. Here we identify e_i with the standard basis in \mathbb{C}^n by the isomorphism $V \cong \mathbb{C}^n$ by the basis. We can have its dual basis $\{e_i^*\}_{i=1}^n$ in its dual basis in V^* . Naturally we obtain an inner product $\langle \cdot, \cdot \rangle$ over V by inducing the standard inner product on \mathbb{C}^n . In general $\operatorname{End}(V)$ and $M(n,\mathbb{C})$ is identified as following

$$\operatorname{End}(V) \ni f \mapsto (e_i^*(f(e_i))) \in M(n, \mathbb{C}).$$

Thus the values the trace function for $f \in \text{End}(V)$ is as follows:

$$\operatorname{trace}(f) = \operatorname{trace}\left(\left(e_{j}^{*}(f(e_{i}))\right)\right) = \sum_{k=1}^{n} \langle e_{k}, \left(\left(e_{i}^{*}(f(e_{j}))\right)\right) \langle e_{k} \rangle \rangle$$
$$= \sum_{k=1}^{n} \langle e_{k}, f(e_{k}) \rangle = \sum_{k=1}^{n} e_{k}^{*}(f(e_{k}))$$

The identification $\operatorname{End}(V) = V^* \otimes V$ can be seen that for $f \in \operatorname{End}(V)$ we have

$$\operatorname{End}(V) \ni f \mapsto \sum_{i,j=1}^{n} e_{j}^{*}(f(e_{i}))e_{j}^{*} \otimes e_{i} \in V^{*} \otimes V.$$

Therefore the trace function on $V^* \otimes V$

$$\operatorname{trace}: V^* \otimes V \to \mathbb{C}$$

means

trace
$$\left(\sum_{i,j=1}^{n} e_{j}^{*}(f(e_{i}))e_{j}^{*} \otimes e_{j}\right) = \sum_{k=1}^{n} e_{k}^{*}(f(e_{k})).$$

This is the linear expansion of $e_j^* \otimes e_i \mapsto e_j^*(e_i) = \delta_{i,j}$, where $\delta_{i,j}$ is the Kronecker's delta. In particular for a linear function $g \in V^*$ and $x \in V$, we have $\operatorname{trace}(g \otimes x) = g(x)$. This is also called the *contraction* in general. Note that the trace function is independent of the choice of the basis on V.

3.2 The trace₂ function

Let V be a k-dimensional vector space with the basis $\{e_l\}_{l=1}^k$. We put $e_{i_1,\cdots,i_n}=e_{i_1}\otimes e_{i_2}\otimes\cdots\otimes e_{i_n}$. The the trace function on $\operatorname{End}(V^{\otimes n})$ is

trace:
$$f \mapsto \sum_{i_1, \dots, i_n, j_1, \dots, j_n = 1}^{k} e_{i_1, \dots, i_n}^*(f(e_{j_1 \dots j_n}))$$

Then the trace₂ is a function:

$$\operatorname{trace}_2 : \operatorname{End}(V^{\otimes (n+1)}) = \operatorname{End}(V^{\otimes n} \otimes V) \to \operatorname{End}(V^{\otimes n})$$

is the linear expansion of $\operatorname{trace}_2(g_1 \otimes \cdots \otimes g_{n+1} \otimes x_1 \otimes \cdots \otimes x_{n+1}) = g_{n+1}(x_{n+1})g_1 \otimes \cdots \otimes g_n \otimes x_1 \otimes \cdots \otimes x_n$, where $g_i \in V^*$ and $x_j \in V$.

This is equivalent to the map that for $f \in \text{End}(V^{\otimes n+1})$ we move it to the linear expansion $\text{trace}_2(f)$ of

$$e_{i_1,\dots,i_n} \mapsto \sum_{l=1}^k (id^{\otimes n} \otimes e_l^*)(f(e_{i_1\dots e_{i_n}} \otimes e_l)).$$

Exercise 3.1. Show that $trace \circ trace_2 = trace$.

Proof. trace
$$(\operatorname{trace}_2(f_1 \otimes \cdots \otimes f_n \otimes x_1 \otimes \cdots \otimes x_n)) = f_n(x_n)\operatorname{trace}(f_1 \otimes \cdots \otimes f_{n-1} \otimes x_1 \otimes \cdots \otimes x_{n-1}) = f_n(x_n)f_1(x_1) \cdots f_{n-1}(x_{n-1}) = \operatorname{trace}(f_1 \otimes \cdots \otimes f_n \otimes x_1 \otimes \cdots \otimes x_n).$$

We redecompose the map $h^{\otimes n+1} \cdot \psi_{n+1}(b\sigma_n)$ as follows:

$$h^{\otimes n+1} \cdot \psi_{n+1}(b\sigma_n)$$

$$= h^{\otimes n+1} \cdot \psi_{n+1}(b) \cdot \psi_{n+1}(\sigma_n)$$

$$= h^{\otimes n+1} \cdot \psi_{n+1}(b) \cdot (id^{\otimes n-1} \otimes R)$$

$$= (h^{\otimes n} \otimes h) \cdot \psi_{n+1}(b) \cdot (id^{\otimes n-1} \otimes R)$$

$$= (h^{\otimes n} \otimes id) \cdot \psi_{n+1}(b) \cdot (id^{\otimes n} \otimes h) \cdot (id^{\otimes n-1} \otimes R)$$

$$= ((h^{\otimes n} \otimes id) \cdot (\psi_n(b) \otimes id)) \cdot (id^{\otimes n} \otimes h) \cdot (id^{\otimes n-1} \otimes R)$$

$$= ((h^{\otimes n} \cdot \psi_n(b)) \otimes id) \cdot (id^{\otimes n} \otimes h) \cdot (id^{\otimes n-1} \otimes R)$$

$$= ((h^{\otimes n} \cdot \psi_n(b)) \otimes id) \cdot (id^{\otimes n-1} \otimes ((id \otimes h) \cdot R))$$

trace₂ is as follows for $f = h^{\otimes n+1} \cdot \psi_{n+1}(b\sigma_n)$:

$$\begin{aligned} e_{i_{1},\cdots,i_{n}} & \mapsto & \sum_{l=1}^{k} (id^{\otimes n} \otimes e_{l}^{*})(f(e_{i_{1},\cdots,i_{n}} \otimes e_{l})) \\ & = & \sum_{l=1}^{k} (id^{\otimes n} \otimes e_{l}^{*})((h^{\otimes n} \cdot \psi_{n}(b)) \otimes id)(e_{i_{1},\cdots,i_{n-1}} \otimes ((id \otimes h) \cdot R)(e_{i_{n},i_{l}})) \\ & = & \sum_{l=1}^{k} (h^{\otimes n} \cdot \psi_{n}(b)) \otimes e_{l}^{*})(e_{i_{1},\cdots,i_{n-1}} \otimes ((id \otimes h) \cdot R)(e_{i_{n},i_{l}})) \\ & = & \sum_{l=1}^{k} (h^{\otimes n} \cdot \psi_{n}(b))(id^{\otimes n} \otimes e_{l}^{*})(e_{i_{1},\cdots,i_{n-1}} \otimes ((id \otimes h) \cdot R)(e_{i_{n},i_{l}})) \\ & = & \sum_{l=1}^{k} (h^{\otimes n} \cdot \psi_{n}(b))(e_{i_{1},\cdots,i_{n-1}} \otimes ((id \otimes e_{l}^{*})((id \otimes h) \cdot R)(e_{i_{n},i_{l}}))) \\ & = & (h^{\otimes n} \cdot \psi_{n}(b))(e_{i_{1},\cdots,i_{n-1}} \otimes (\operatorname{trace}_{2}((id \otimes h) \cdot R)(e_{i_{n}}))) \\ & = & (h^{\otimes n} \cdot \psi_{n}(b))(e_{i_{1},\cdots,i_{n-1}} \otimes e_{i_{n}}) = (h^{\otimes n} \cdot \psi_{n}(b))(e_{i_{1},\cdots,i_{n-1}}) \end{aligned}$$

Thus ${\rm trace}_2(h^{\otimes n+1}\cdot\psi_{n+1}(b\sigma_n))=h^{\otimes n}\psi_n(b).$ By applying Exercise 3.1, we obtain

 $\operatorname{trace}(h^{\otimes n+1} \cdot \psi_{n+1}(b\sigma_n))) = \operatorname{trace}(\operatorname{trace}_2(h^{\otimes n+1} \cdot \psi_{n+1}(b\sigma_n))) = \operatorname{trace}(h^{\otimes n} \cdot \psi_n(b)).$