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Abstract. In this paper we construct families of homology spheres
which bound 4-manifolds with intersection forms isomorphic to −E8.
We show that these families have arbitrary large correction terms. This
result says that among homology spheres, the difference of the maximal
rank of minimal sub-lattice of definite filling and the maximal rank of
even definite filling is arbitrarily large.

1. Introduction

1.1. Definite fillings and homology cobordism invariants. If a 3-
manifold Y bounds X, then we call X filling of Y . If a filling of Y has
a definite (even, or spin) intersection form, then the filling is called definite
filling (even filling or spin filling respectively). Under the assumption that
the homology of a filling has no 2-torsions, an even filling is equivalent to
spin filling. If a definite filling has a positive (or negative) definite inter-
section, then we call the filling positive-definite filling (or negative-definite
filling respectively).

Let Y be an integer homology sphere. Rohlin invariant µ(Y ) is defined
to be σ(W )/8 ∈ Z/2Z for a spin filling W of Y . We can assume that the
spin filling W is H1(W,Z) = {0} (we say homologically 1-connected). In this
article we mainly consider homologically 1-connected definite fillings.

Ozsváth and Szabó defined a homology cobordism invariant d in [9]. If a
3-manifold has a negative-definite filling of Y , then the d-invariant has the
following restriction.

Theorem 1.1 ([9]). Let Y be an integral homology three-sphere, then for
each negative-definite four-manifold X which bounds Y , we have the inequal-
ity

ξ2 + rk(H2(X,Z)) ≤ 4d(Y )

for each characteristic vector ξ.
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Furthermore, if a homology sphere Y has an even negative-definite filling
W , then b2(W ) ≤ 4d(Y ) is satisfied. For example Σ(2, 3, 5) is the boundary
of the −E8-plumbing. Here −E8 is the unique unimodular, even, negative-
definite, rank 8 quadratic form. The computation d(Σ(2, 3, 5)) = 2 means
that b2 of any even negative-definite filling is at most 8. The plumbing
realized a filling with b2 = 8. If Y has a definite filling with intersection
form nE8 for some integer n, then the filling is called nE8-filling.

On the other hand, the d-invariant of Σ(2, 3, 7) is 0. Thus, if there exists
an even negative-definite filling, then the b2 has to be 0. Hence, the b2 of
any positive-definite filling is also zero. Since µ(Σ(2, 3, 7)) = 1, it has no
homology 1-connected even definite filling. The plumbing of Σ(2, 3, 7) with
all weights −2 can give an even filling with even intersection form (−E8)⊕H,
where H is the hyperbolic intersection form. This filling is a homologically
1-connected even (equivalently spin) indefinite filling.

In [14] the author defined the following invariants. If Y has an nE8-filling,
then we define g8 (or g8) to be

g8(Y ) = max{b2(W )/8|W : nE8-filling of Y ,H1(W ) = {0}},

g8(Y ) = min{b2(W )/8|W : nE8-filling of Y ,H1(W ) = {0}}.

If Y has no nE8-fillings, then g8(Y ) = −∞.
We call the invariant g8 E8-genus. If Y has an nE8-filling, then we can

immediately see the following bound

(1) 2g8(Y ) ≤ |d(Y )|.

For example, for any integer n, d(Σ(2, 3, 12n + 5)) = 2 holds. The author
in [14] showed g8(Σ(2, 3, 12n + 5)) = 1 when 0 ≤ n ≤ 13 or n = 15. In
[14] we gave the examples with 2g8(Y ) = |d(Y )|. The simple question is the
following:

Question 1.2. Among homology spheres Y with non-negative E8-genus is
|d(Y )| − 2g8(Y ) bounded?

We give families of Brieskorn homology spheres to obtain negative answers
for this question.

1.2. Main results. Here we give the main result:

Theorem 1.3. For any integer n, Brieskorn homology spheres Σ(|p|, |q|, |r|)
for a pairwise coprime positive integer triple (p, q, r) below have homologi-
cally 1-connected −E8-fillings with g8 = −µ̄ = 1.

• (i) (2, 8n− 3, 14n− 5), (ii) (2, 14n+ 3, 24n+ 5)
• (iii) (2, 16n+ 3, 26n+ 5), (iv) (2, 10n− 3, 16n− 5)
• (v) (5, 35n− 2, 50n− 3), (vi) (5, 25n− 2, 40n− 3)
• (vii) (3, 15n− 2, 36n− 5), (viii) (3, 9n− 2, 24n− 5)
• (ix) (3, 21n− 4, 36n− 7), (x) (3, 27n− 4, 48n− 7)
• (xi) (4, 28n− 3, 64n− 7), (xii) (4, 32n− 3, 76n− 7)
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The invariant µ̄ is the Neumann-Siebenmann invariant, which will be
defined in Section 2.3. These examples can be useful for realizing desired
filling restricted by gauge theory. For example, see recent Scaduto’s study
[12].

Theorem 1.4. For positive integer n the correction terms of Brieskorn
homology spheres (i), (ii) (iii) and (iv) in Theorem 1.3 have the following
inequalities:

2
⌈
n
2

⌉
≤ d(Σ(2, 8n− 3, 14n− 5)), 2

⌈
n+1
2

⌉
≤ d(Σ(2, 14n+3, 24n+5)),

2
⌈
n+1
2

⌉
≤ d(Σ(2, 16n+3, 26n+5)), 2

⌈
n
2

⌉
≤ Σ(2, 10n− 3, 16n− 5).

These theorems say that for any positive integer n, the Brieskorn homol-
ogy spheres (i), (ii), (iii), and (iv) have −E8-fillings and d(Y ) − 2g8(Y ) =
d(Y ) + 2µ̄(Y ) are arbitrarily large.

Remark 1.5. Let (Y, c) be a pair of Seifert rational homology sphere Y
and a spin structure c. According to [18] the µ̄(Y, c) is the equivalent to the
Fukumoto-Furuta invariant w(Y, c).

Manolescu in [6] defined homology cobordism invariants α, β, and γ in
the framework of Pin(2) Seiberg-Witten Floer homology. A result in [13]
says that for any Brieskorn homology sphere Y (with usual orientation)
β(Y ) = γ(Y ) = −µ̄(Y ) and α(Y ) = d(Y )/2 or d(Y )/2 + 1. Hence, our
result means the existence of homology spheres that β(Y ) = 1 and α(Y ) is
arbitrarily large.

Remark 1.6. As a conjecture, the inequalities in Theorem 1.4 would be-
come the equalities actually for any positive integer n. The evidence is due
to Karakurt’s program [5]. Similarly, for positive integer n we predict the
following equalities for other Brieskorn homology spheres in Theorem 1.3.

• For (p, q, r) = (5, 35n− 2, 50n− 3), (5, 25n− 2, 40n− 3), we have

d(Σ(p, q, r)) = 6n.

• For (p, q, r) = (3, 15n − 2, 36n − 5), (3, 9n − 2, 24n − 5), (3, 21n −
4, 36n− 7), (3, 27n− 4, 48n− 7), we have

d(Σ(p, q, r)) = 2n.

• For (p, q, r) = (4, 28n− 3, 64n− 7), (4, 32n− 3, 76n− 7), we have

d(Σ(p, q, r)) = 4
(n
2
+

⌈n
2

⌉)
.

For non-positive integer n we conjecture that for any homology sphere above
d(Σ(|p|, |q|, |r|)) are all 2.

Here we compare the following result by Ue [17] with the result above.

Theorem 1.7 ([17]). Let (S, c) be a pair of a spherical 3-manifold and a
spin structure on it. Then d(S, c) = −2µ̄(S, c).
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In fact, in [17] it is shown that the general correction term d(S, t) of spinc

spherical 3-manifold coincides with the Fukumoto-Furuta invariant, which
is defined by using the index of the Dirac operator of a line bundle over a
4-orbifold.

We remark µ̄ here is defined to be the µ̄ divided by 8 in [17]. The examples
in Theorem 1.3 are homology spheres that d(Σ)+2µ̄(Σ) are arbitrarily large.
The relationship between correction term d and Neumann-Siebenmann in-
variant µ̄ for non-spherical 3-manifolds is known not so many things even in
the case of Seifert 3-manifolds.

1.3. Other invariants related definite fillings.

1.3.1. Homologically 1-connected fillings. In [14] homology cobordism in-
variant ds(Y ) is defined to be

the maximal b2(W )/8 among homologically 1-connected,
even definite fillings W

of Y . A homologically 1-connected even filling gives a spin filling. Any
invariant related to a kind of filling is defined to be −∞, if there exists no
such a kind of fillings. We define o(Y ) to be

the maximal rank of the minimal definite lattice L that L⊕ ⟨±1⟩n is the
intersection form of a homologically 1-connected definite filling W

of Y . Here ‘minimal’ means that any square ±1 element is not included in
the lattice and n is some non-negative integer. By the definition, we have

(2) 8g8(Y ) ≤ 8ds(Y ) ≤ o(Y ).

For example, in the case of Y = Σ(2, 5, 9), according to Corollary 1.2 in [12],
g8(Y ) = ds(Y ) = 1 and o(Y ) = 12 holds. We have the following question.

Question 1.8. Differences of these invariants are bounded or unbounded?

We can show that homology spheres in Theorem 1.4 satisfy the following
unbounded property.

Corollary 1.9. Among homology spheres Y , o(Y )− 8ds(Y ) is unbounded.

These integer homology spheres satisfy ds(Y ) = g8(Y ). It is not known
whether for some integer homology spheres Y the differences ds(Y )− g8(Y )
are positive or unbounded.

1.3.2. General definite fillings. Define E(Y ) to be

the maximal among b2(W )/8 even definite filling W

of Y . Note the filling is possibly non-spin. In the same way, we define O(Y )
to be

the maximal rank of minimal sub-lattice of definite fillings W

of Y and G8(Y ) to be

the maximal |n| among nE8-fillings
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of Y . Since fillings for invariants G8(Y ), E(Y ), O(Y ) do not assume ho-
mologically 1-connected, we have g8(Y ) ≤ G8(Y ), ds(Y ) ≤ E(Y ), and
o(Y ) ≤ O(Y ). We have the similar inequality to (2):

(3) 8G8(Y ) ≤ 8E(Y ) ≤ O(Y ).

For example, consider the case of Y = Σ(2, 3, 7). As we mentioned
above Y has no even definite fillings with homologically 1-connected, i.e.,
g8(Y ) = ds(Y ) = −∞. On the other hand, Fintushel and Stern constructed
a rational ball that bounds Y in [2], i.e., E(Y ) = G8(Y ) = 0. Let W be
a negative-definite filling of Y and Ξ the set of characteristic elements in
H2(W ). d(Y ) = 0 means max

c∈Ξ
(c2 + b2(W )) ≤ 0. The Elkies theorem in [1]

concludes the inequality means the equality and the negative-definite lattice
must be diagonalized. For the positive-definite filling of Y one has only
to consider negative-definite fillings of −Y . In fact the plumbing lattice of
Σ(2, 3, 7) is diagonalized, therefore, O(Y ) = o(Y ) = 0.
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2. Notations and preliminaries

2.1. Plumbing diagram. For i = 1, 2 let Vi → S2 be two D2-bundles over
S2 or let V → S2 be a D2-bundle. For the D2-bundles V1 and V2 we take
sub-D2-bundles over each disk in two base spaces S2. For V → S2 we take
sub-D2-bundles over two disjoint disks in S2. Plumbing process is a surgery
obtained by identifying two D2-bundles in such a way that one exchanges
the roles of their sections and fibers. We call the plumbing of V → S2 self-
plumbing. Actually, to define the plumbing process we need choose one of
the two possibilities of the orientation of the identification as in p.201 in [4].
Since we deal with the tree-type graph only later, then we do not explain
the choices.

We define a plumbing diagram (or graph) as explained in [11]. Let V be
the set of vertices with a weight function m : V → Z. We assign for v ∈ V
the D2-bundle over S2 with the Euler number m(v). Let E be the set of
edges. Each edge {v, w} ∈ E of a plumbing diagram means the plumbing
process between the D2-bundles over S2. If v = w, then the edge means
the self-plumbing. Hence, if Z-weighted graph (V,E,m) is called plumbing
graph or plumbing diagram.

Let (V,E,m) be a plumbing diagram. The plumbing process along a
plumbing graph Γ = (V,E,m) gives a 4-manifold P (Γ) and we call P (Γ)
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a plumbed 4-manifold. The boundary ∂P (Γ) of P (Γ) is called a plumbed
3-manifold. Here [v] is the class represented by the core sphere of the
D2-bundle corresponding to the vertex v. The intersection form (·, ·) :
H2(P (Γ)) × H2(P (Γ)) → Z on P (Γ) is computed from the linear exten-
sion of the following definition.

([v], [w]) =


m(v) v = w

1 v ̸= w and {v, w} ∈ E,

0 otherwise.

A tree-type graph with at most one vertex of degree larger than two is
called a star-shaped graph. A plumbed 3-manifold with a star-shaped graph

is called a Seifert manifold. For i = 1, 2, · · · , n, let (α
(i)
1 , α

(i)
2 , · · · , a(i)ri ) be

a sequence of weights of vertices of the i-th branch of a star-shaped graph.
We compute the continued fraction for the sequence as follows:

(4) ai/bi = [α
(i)
1 , α

(i)
2 , · · · , α(i)

ri ],

where α
(i)
j is some integer and (ai, bi) are coprime integers. Here the con-

tinued fraction is defined to be

[c1, c2, · · · , cm] = c1 −
1

c2 − · · · − 1
cm

.

The Seifert manifold with the rational numbers ai/bi(i = 1, 2, · · · , n) and
the central weight e. We present such a Seifert manifold as

S(e; (a1, b1), (a2, b2), · · · , (an, bn)).

We call these integers the Seifert invariant. Instead of (ai, bi), we also

present it as α
(i)
1 · α(i)

2 · · ·α(i)
ri . Thus, we denote the plumbing process by

dot ·. We present several consecutive integers by the power as follows:

· · ·
m︷ ︸︸ ︷

2 · 2 · · · 2 · · · = · · · 2[m] · · · .

Brieskorn homology sphere Σ(p, q, r) is defined to be

{(z1, z2, z3) ∈ C3|zp1 + zq2 + zr3 = 0} ∩ S5,

where p, q, and r are pairwise coprime positive integers. The manifold is a
plumbed 3-manifold with a branch number three star-shaped graph. The
Seifert invariant is

S(e; (p, p′), (q, q′), (r, r′)),

where e−(p′/p+q′/q+r′/r) = −1/pqr. For example, the plumbing diagram
of Σ(2, 3, 5) is described as follows:

S(−2; (−2)[4], (−2)[2],−2).

In [14], the author showed that the Briesrkorn homology sphere Σ(p, q, r)
whose intersection matrix of minimal plumbed 4-manifold is isomorphic to
−E8 is Σ(2, 3, 5) or Σ(3, 4, 7).
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2.2. Notations. We explain two new notations as below. The first notation
is the following:

(5) L(a1 · a2 · · · an ·(k) bm · bm−1 · · · b1),

It presents the plumbing as in Figure 1. Here the integers ai, bj and k are
integers. A dot with (k) means the two components with framing an and bm

Figure 1. A surgery description of (5)
.

geometrically link k-times. Here, the box with the k means the full k-twist.
We call the notation a linear diagram.

As an example, we consider a linear diagram of Σ(2, 3, 5). Sliding the

first branch of S(−2; (−2)[4], (−2)[2],−2) to the third branch, we have the
following linear diagram:

S(−2; (−2)[4], (−2)[2],−2) = L((−2)[2] · (−2) · (−2) ·(−2) (−4) · (−2)[3])

= L((−2)[4] ·(−2) (−4) · (−2)[3]).

The 4-manifold having the framed link as in Figure 1 is called 4-manifold
having linear diagram (5).

The second notation is a linear diagram with torus knot component. Con-
sider a linear diagram that the framing of the nearest component to (k) is
zero. Then, the surgery diagram can be deformed as in Figure 2. We
present the deformation of the linear diagram as follows:

Y = L(· · · q · n · 0 ·(k) p · · · ) = L(· · · q ·(k) p+ nk2
(k,nk+1)

· · · ).

The component with the underline having index (k, nk + 1) stands for the
(k, nk + 1)-torus knot with framing p + nk2. The last surgery diagram
gives a 4-manifold X bounded by Y . Clearly, the intersection form of X
is isomorphic to the intersection form of the 4-manifold having the linear
diagram as follows:

L(· · · q ·(k) (p+ nk2) · · · ).

2.3. An estimate of µ̄-invariant. Neumann-Siebenmann’s µ̄-invariant in
[7] is defined for any plumbed 3-manifoldM = ∂P (Γ). We set Γ = (V,E,m).
We assume that the plumbing graph is tree and ∂P (Γ) is a homology sphere.
We define the Wu class w(Γ) ∈ H2(P (Γ),Z) as follows:

(1) The class w(Γ) is written by w(Γ) =
∑

v∈V ϵv[v] for ϵv = 0 or 1.
(2) For any v ∈ V we have (w(Γ), [v]) ≡ ([v], [v]) mod 2.
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Figure 2. A formula of n-twisting

Let σ(Γ) be the signature of the intersection form (·, ·) associated with Γ.
Then we define the µ̄-invariant of M to be

µ̄(M) =
σ(Γ)− w(Γ)2

8
.

The invariant µ̄ can be extended to any rational plumbed spin 3-manifold
(M, c) naturally as in [7].

Theorem 2.1 ([17]). Suppose that a Seifert rational homology 3-sphere M
with spin structure c bounds a negative-definite spin 4-manifold Y with spin
structure cY . Then

b2(Y ) ≡ −8µ̄(M, c) mod 16

µ̄(M, c) =
σ(Γ)− w(Γ, c)2

8

−8µ̄(M, c)

9
≤ b2(Y ) ≤ −8µ̄(M, c).

In particular, if a Seifert homology sphere M has a spin negative-definite
filling Y , then b2(Y ) ≤ −8µ̄(M) holds.

3. The families of Brieskorn homology spheres in Theorem 1.1.

3.1. Proof of Theorem 1.3. We prove Theorem1.3.
Proof. The Seifert invariants of

• Σ(2, 14n− 5, 8n− 3),Σ(2, 24n+ 5, 14n+ 3)
• Σ(2, 26n+ 5, 16n+ 3),Σ(2, 10n− 3, 16n− 5)
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• Σ(5, 35n− 2, 50n− 3),Σ(5, 25n− 2, 40n− 3)
• Σ(3, 15n− 2, 36n− 5),Σ(3, 9n− 2, 24n− 5)
• Σ(2, 14n− 5, 8n− 3),Σ(2, 16n− 5, 10n− 3)
• Σ(3, 21n− 4, 36n− 7),Σ(3, 27n− 4, 48n− 7)
• Σ(4, 28n− 3, 64n− 7),Σ(4, 32n− 3, 76n− 7)

with reverse orientation are as follows: S(1; (p1, 1), (p2, q2), (p3, q3)).

p1 (p2, q2) (p3, q3) p1 (p2, q2) (p3, q3)
2 (14n− 5, 7n− 6) (8n− 3, 2) 2 (14n+ 3, 7n− 2) (24n+ 5, 6)
2 (26n+ 5, 13n− 4) (16n+ 3, 4) 2 (10n− 3, 5n− 4) (16n− 5, 4)
5 (35n− 2, 28n− 3) (50n− 3, 2) 5 (40n− 3, 32n− 4) (25n− 2, 1)
3 (15n− 2, 10n− 3) (36n− 5, 4) 3 (24n− 5, 16n− 6) (9n− 2, 1)
3 (21n− 4, 14n− 5) (36n− 7, 4) 3 (48n− 7, 32n− 10) (27n− 4, 3)
4 (28n− 3, 21n− 4) (64n− 7, 4) 4 (76n− 7, 57n− 10) (32n− 3, 2)

We deform the presentation as follows. The notation ∼ stands for a
deformation of presentation preserving the intersection form.

S(1; 2, 2 · (n+ 1) · 2[6], (2− 4n) · 2) = S(0, 2, (−2) · n · 2[6], (2− 4n) · 2)
= L(2[6] · n · 0 ·(2) (4− 4n) · 2) = L(2[6] ·(2) 4(2,2n+1) · 2) ∼ L(2[6] ·(2) 4 · 2)

S(1; 2, 2 · (n+ 1) · 4 · 2, (−4n) · 2[5]) = S(0; 2, (−2) · n · 4 · 2, (−4n) · 2[5])
= L(2[5] · (2− 4n) ·(2) ·0 · n · 4 · 2) = L(2[5] · 2(2,2n+1) ·(2) 4 · 2)

∼ L(2[6] ·(2) 4 · 2)

S(1; 2, 2 · (n+ 1) · 4 · 2[3], (−4n) · 2[3]) = S(0; 2, (−2) · n · 4 · 2[3], (−4n) · 2[3])
= L(2[3] · 4 · n · 0 ·(2) (2− 4n) · 2[3]) = L(2[3] · 4 ·(2) 2(2,2n+1) · 2[3])

∼ L(2[3] · 4 ·(2) ·2[4])

S(1; 2, 2 · (n+ 1) · 2[4], (2− 4n) · 2[3]) = S(0; 2, (−2) · n · 2[4], (2− 4n) · 2[3])
= L(2[4] · n · 0 ·(2) (4− 4n) · 2[3]) = L(2[4] ·(2) 4(2,2n+1) · 2[3]) ∼ L(2[4] ·(2) 4 · 2[3])

S(0;−5, 5 · n · (−7), (2− 25n) · 2) = L((−7) · n · 0 ·(−5) (−3− 25n) · 2)
= L((−7) ·(−5) −3(−5,−5n+1) · 2) = L(2 · 1 · (−5) ·(−5) −3(−5,−5n+1) · 2)

Here we slide the −3-framed (−5,−5n + 1)-torus knot component to the
component with (−5)-framed component. Then we have a 4-manifold with

intersection form of the plumbed 4-manifold for S(1; 2, 2[2],−5). By doing
four blow-ups and one blow-down, we have the intersection E8.

In the same way, the 4-manifolds that the last diagrams in the following
equalities present can be deformed into 4-manifolds with intersection form



10 MOTOO TANGE

E8. The results of the latter four equalities are a plumbed 4-manifold that
reduces to the Seifert invariant S(2; 2[2], 2[4], 2 · 4) = −Σ(3, 4, 7).

S(0;−5, 5 · n · (−8), (2− 25n)) = L((−3− 25n) ·(−5) 0 · n · (−5) · 1 · 2[2])
= L(−3(−5,−5n+1) ·

(−5) (−5) · 1 · 2[2])

S(0;−3, 3 · n · (−5), (2− 9n) · 2[3]) = L((−5) · n · 0 ·(−3) (−1− 9n) · 2[3])
= L(2 · 1 · (−3) ·(−3) (−1)

(−3,−3n+1)
· 2[3])

S(0;−3, 3 · n · (−8), (2− 9n)) = L(2[4] · 1 · (−3) · n · 0 ·(−3) (−1− 9n))

= L(2[4] · 1 · (−3) ·(−3) (−1)
(−3,−3n+1)

)

S(1; 2, 2 · n · (−7), (2− 4n) · 2[2]) = S(0;−2, 2 · n · (−7), (2− 4n) · 2[2])
= L(2[4] · 1 · (−2) · n · 0 ·(−2) (2− 4n) · 2[2])
= L(2[4] · 1 · (−2) ·(−2) 2(−2,−2n+1) · 2[2])

S(1; 2, 2 · n · (−6), (2− 4n) · 2[3]) = S(0;−2, 2 · n · (−6), (2− 4n) · 2[3])
= L(2[3] · 1 · (−2) · n · 0 ·(−2) (−4n) · 2[3])
= L(2[3] · 1 · (−2) ·(−2) 0(−2,−2n+1) · 2[3])

S(0;−3, 3 · n · (−7), (2− 9n) · 4) = L(2[3] · 1 · (−3) · n · 0 ·(−3) (−1− 9n) · 4)
= L(2[3] · 1 · (−3) ·(−3) (−1)

(−3,−3n+1)
· 4)

S(0;−3, 3 · n · (−5) · 3, (2− 9n) · 2[2])
= L(2[2] · (−1− 9n) ·(−3) 0 · n · (−3) · 1 · 2 · 4)
= L(2[2] · (−1)

(−3,−3n+1)
·(−3) (−3) · 1 · 2 · 4)

S(0;−4, 4 · n · (−7), (2− 16n) · 4)
= L(4 · (−2− 16n) ·(−4) 0 · n · (−4) · 1 · 2[2])
= L(4 · (−2)

(−4,−4n+1)
·(−4) (−4) · 1 · 2[2])

S(0;−4, 4 · n · (−6) · 3, (−2− 16n) · 2)
= L(2 · (−2− 16n) ·(−4) 0 · n · (−4) · 1 · 2 · 4)
= L(2 · (−2)

(−4,−4n+1)
·(−4) (−4) · 1 · 2 · 4)

According to the definition of µ̄ as above, computing the µ̄-invariants for
these Brieskorn homology spheres, we can see µ̄ = −1 easily. From the
description under Theorem 2.1 we obtain g8 ≤ 1. Namely, the homology
spheres have all g8 = 1.

2
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4. Brieskorn homology spheres with E8-filling and arbitrarily
large correction terms.

4.1. Heegaard Floer homology and one preparation. In [9] for any
spinc rational homology sphere (Y, s) the Heegaard Floer homologyHF+(Y, s)
has the following exact sequence:

0 → T+
d(Y,s) → HF+(Y, s) → HFred(Y, s) → 0.

T+
s is isomorphic to T+ := F[U,U−1]/U · F[U ] with the minimal degree s.

HFred(Y, s) is a finite dimensional torsion F[U ]-module. d(Y, s) is called the
correction term of (Y, s). We call the submodule T+

d(Y,s) in HF+(Y, s) the

T+-part of HF+(Y, s).
Here we prepare a lemma to prove Theorem 1.4. We abbreviate d(L(p, q), i)

by d(p, q, i). Here we define the lens space L(p, q) to be the p/q-surgery of
the unknot. The identification of spinc structures with Z/pZ is due to Fig.2
in [9]. Here the p-Dehn surgery of a knot K in a homology sphere Y is the
surgery (Y \S1×D2)∪V , where V ∼= S1×D2. Here the attaching meridian
of the new solid torus V is mapped to p · [m] + [l] ∈ H1(∂(S

1 ×D2)) where
m is the meridian of K and l is the homologically trivial longitude of K.
We denote the p-Dehn surgery of a knot in Σ by Σ(p).

Lemma 4.1. Let Σ be a homology sphere and K ⊂ Σ a knot. For some
positive integer p, if Σ(p− 1) is an L-space and Σ(p) is a lens space L(p, q),
then the correction term d(Σ) is computed as follows.

(6) d(Σ) = max {d (p, q, ki+ c)− d(p, 1, i)|0 ≤ i < p} ,

where k is the dual class of [K̃] ∈ H1(L(p, q),Z) and c = (k+1+p)(k−1)/2,

where K̃ is the surgery dual of the lens space surgery.

Let C be a core circle of the genus one Heegaard decomposition. Then
the dual class k is defined k[C] = [K̃] ∈ H1(L(p, q),Z). The dual class is
used in the situation of the integral lens space surgery of a homology sphere
in [16].

Proof. We use the following surgery exact sequence (Corollary 9.13 in
[9]):

· · · → HF+(Σ) → HF+(Σ(p− 1))
G+

→ HF+(Σ(p))
F+

→ HF+(Σ) → · · · .

Since Σ(p − 1) and Σ(p) are L-spaces and the corresponding map F∞ on
HF∞ is surjective, F+ is also surjective onto the T+-part in HF+(Σ). The
map F+ is induced from the cobordism Σ(p) to Σ obtained by attaching a

0-framed 2-handle along the meridian of K̃. The spinc structures on Σ(p)
are identified with Z/pZ due to the description in p.213 in [9]. For any
integer j with 0 ≤ j < p consider the surgery exact sequence in Theorem
9.19 in [8]:

· · · → HF+(Σ) → HF+(Σ(0), [j]) → HF+(Σ(p), j)
F+
j→ HF+(Σ) → · · · .
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F+
j is a component of F+ restricted to the spinc structure j. It is also a sum

of homogeneous maps f+
i with respect to the spinc cobordism from (Σ(p), j)

to the unique spinc manifold on Σ. Namely, F+
j is described by the sum

F+
j =

∑
j≡i mod p f

+
i . The degree shift of f+

i is (4p−(2i−p)2)/(4p) due to [9].

The maximal degree shift among {f+
i |j ≡ i mod p} is (4p−(2j−p)2)/(4p) =

−d(p, 1, j). Since F+
j is a surjective U -equivariant map, for 0 ≤ j < p we

have
d(Σ) ≥ d(p, q, kj + c)− d(p, 1, j).

The 1-1 correspondence Z/pZ → Spinc(L(p, q)) in Corollary 7.5 in [9] is
described by ki+ c. See [15].

Suppose that d(Σ) > d(p, q, kj + c) − d(p, 1, j) for any integer j with
0 ≤ j < p. Then any element with the minimal degree in HF+(Σ(p)) is
included in the kernel of F+ =

∑
0≤j<p F

+
j . Thus the kernel of F+ includes

at least p components. On the other hand, for a sufficient large number
N , ker(F+)/(UN = 0) is (p − 1)-fold direct sum of T+ from the exact
sequence of the version of HF∞. Hence, this implies that in the image of
G+ there is a torsion F[U ]-module by at least one component. However,
since Σ(p − 1) is an L-space, the image of G+ has no torsion F[U ]-module.
This is a contradiction. Therefore for some j, d(Σ) = d(p, q, kj+c)−d(p, 1, j)
holds. 2

4.2. The d-invariants for the four families of Brieskorn homology
spheres. We prove Theorem 1.4.

Proof. The Seifert presentations of Brieskorn homology spheres from
(i) to (iv) in Theorem 1.3 are the below:

(i) S(1; 2, 2 · (−n+ 1) · 7, (4n− 1) · 2)
(ii) S(1; 2, 2 · (−n) · (−3) · 2, (4n+ 1) · 6)
(iii) S(1; 2, 2 · (−n) · (−3) · 4, (4n+ 1) · 4)
(iv) S(1; 2, 2 · (−n+ 1) · 5, (4n− 1) · 4)

Let Σn be one of Brieskorn homology spheres parametrized by n in the
list above. We do 0-surgery and +1-surgery of the homology sphere along
the meridian of the singular fiber of multiplicity 2. We call the meridian
Kn. Note the coefficients 0 and 1 are the framing of the unknot Kn in
the diagram. The 0-surgery and 1-surgery give lens spaces L(rn, sn) and
L(pn, qn). The results are the lens spaces in the list below.

0-surgery (rn, sn) 1-surgery (pn, qn)
(i) (56n2 − 41n+ 7, 8n2 − 7n+ 2) (56n2 − 41n+ 8, 8n2 − 7n+ 1)
(ii) (168n2 + 71n+ 7, 72n2 + 27n+ 4) (168n2 + 71n+ 8, 72n2 + 27n+ 1)
(iii) (208n2 + 79n+ 7, 48n2 + 17n+ 2) (208n2 + 79n+ 8, 48n2 + 17n+ 1)
(iv) (80n2 − 49n+ 7, 16n2 − 13n+ 4) (80n2 − 49n+ 8, 16n2 − 13n+ 1)

These examples satisfy pn = rn + 1. As a result, the 0-surgery means a
positive rn-Dehn surgery along Kn.

We set dn := d(Σn). Here using Lemma 4.1, we compute the lower bound
of dn. We argue the case of (i) only. Other cases are able to be proven by
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similar arguments. Let Σn be the Brieskorn homology sphere in the type
(i). We set pn = 56n2 − 41n + 8, qn = 8n2 − 7n + 1, kn = 14n − 5 and
cn ≡ 42n2 − 29n + 4 mod pn. The kn is the dual class in the lens space
L(pn, qn) which presents Kn.

Here we set i = ⌊ qn+1
2 ⌋ − n. Then by modulo pn we have

kni+ cn ≡

{
7n−5

2 n: odd

−7n
2 n: even.

If n is an odd number, then by using the reciprocity formula in [9], we
have

d

(
L(pn, qn),

7n− 5

2

)
=

224n3 + 8n2 − 95n+ 25

4pn

and

d(L(pn, 1), i) = −52n2 − 37n+ 7

4pn
Thus we have

d(L(pn, qn), kni+ cn)− d(L(pn, 1), i) = n+ 1.

If n is an even number, then we have

d

(
L(pn, qn),−

7n

2

)
=

224n3 − 216n2 + 73n− 8

4pn

d(L(pn, 1), i) = −52n2 − 41n+ 8

4pn
.

Thus we have

d(L(pn, qn), kni+ cn)− d(L(pn, 1), i) = n.

Therefore we have dn ≥ 2⌈n2 ⌉. 2

4.3. Proof of Corollary 1.9. Here we prove Corollary 1.9.
Proof. Let {Σn} be one family of homology spheres in Theorem 1.4.

Since the correction term is positive, Σn is no even positive-definite filling
of Σn. A Seifert homology sphere Σn has a negative-definite plumbing Σn =
∂P (Γn). Due to Corollary 1.5 in [10], 4d(Σn) = max

c∈Ξ
(c2 + rank(Γn)) holds,

where Ξn is the set of characteristic classes in Γn. If for a non-negative
integer N , Γn = Γ′

n⊕⟨−1⟩N and Γ′
n is a minimal sub-lattice, then max

c∈Ξ
(c2+

rank(Γn)) is decomposed into the sum of the two maximal values according
to the direct sum. Thus, we have

max
c∈Ξ

(c2 + rank(Γn)) = max
c∈Ξ′

(c2 + rank(Γ′
n)) ≤ rank(Γ′

n),

where Ξ′ is the set of characteristic elements of L′. Since d(Σn) has no upper
bound, the maximal of the rank of minimal lattice Γ′

n is also unbounded.
On the other hands, µ̄(Yn) = 1 and our construction of filling of Σn implies
that ds(Yn) = 1. Therefore o(Σn)− ds(Yn) is unbounded. 2
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[15] M. Tange, Ozsváth-Szabó’s correction term and lens surgery, Math. Proc. Cambridge
Philos. Soc. 146 (2009), no. 1, 119–134.

[16] M. Tange, Homology spheres yielding lens lens spaces, Proceedings of 24th Gökova
Geometry-Topology Conference pp.73–121.

[17] M. Ue, The Fukumoto-Furuta and the Ozsváth-Szabó invariants for spherical 3-
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