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Abstract. We define topological invariants of homology 3-sphere, ds
and ds, which are the maximal and minimal second Betti number di-
vided by 8 among definite spin boundings of the homology sphere. We
also define similar invariants g8 and g8 by the maximal (or minimal)
product sum of the quadratic form E8 of bounding 4-manifolds. The
aim of these invariants is to measure the size of bounding definite spin
4-manifold. We give several ways to construct definite spin boundings.
In particular, we construct uncommon E8-boundings for Σ(2, 3, 12n+5)
by using handle decomposition. As a by-product of this construction,
we show that some negative 2nd homology classes k[f ]− [s] in E(1) are
represented by a sphere, where f and s are a fiber and sectional class of
E(1).

1. Introduction

1.1. The spin definite bounding and related invariants. It is well-
known that any closed 3-manifold Y is the boundary of a spin 4-manifold X.
Furthermore, if we set some conditions of the intersection form of X, it be-
comes unclear whether there exists the bounding with those conditions. The
Rokhlin theorem says that homology sphere Y with the Rokhlin invariant
µ(Y ) = 1 cannot bound any smooth spin 4-manifold with σ(X) ≡ 0 mod 16.

Let X be a spin bounding of a homology sphere Y . We can construct a
new spin bounding increasing the one positive and negative eigenvalues of
the intersection form by taking connected-sum X#S2 × S2. In this paper
we focus on the construction of spin boundings without positive or negative
eigenvalues of the intersection matrix, i.e., b2(X) = |σ(X)|. Such boundings
of homology spheres are called spin negative- (or positive-) definite bound-
ings.

Ozsváth and Szabó in [17] defined the integer-valued homology cobordism
invariant d(Y ) for any homology sphere Y . It is called the correction term
or d-invariant. By using this homology cobordism invariant they obtained
the following:
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Theorem 1.1 ([17]). Let Y be an integral homology 3-sphere. Then any
negative-definite bounding X of Y satisfies the inequality

(1) ξ2 + rk(H2(X;Z)) ≤ 4d(Y )

for each characteristic vector ξ ∈ H2(X,Z).

Furthermore, if Y has a spin negative-definite bounding X, then the in-
equality (1) implies

(2) b2(X) ≤ 4d(Y ).

Here, Elkies’ result in [4] guarantees that for an n-dimensional negative-
definite unimodular quadratic form (V,Q), the inequality

max
ξ∈Ξ(V )

Q(ξ, ξ) + n ≥ 0

holds, where Ξ(V ) is the set of the characteristic vectors in the from (V,Q).
Hence, the condition d(Y ) ≥ 0 is a necessary condition for the integral

homology 3-sphere Y to have a negative-definite bounding.
We introduce another condition for spin negative-definite bounding. Let

µ be the Neumann-Siebenmann invariant defined in [15]. In [18], Ue shows
the following:

Theorem 1.2 ([18]). Suppose that a Seifert rational homology 3-sphere
Y with spin structure c bounds a negative-definite 4-manifold X with spin
structure cX . Then

b2(X) ≡ −8µ̄(Y, c) mod 16,

−8µ̄(Y, c)

9
≤ b2(X) ≤ −8µ̄(Y, c).

Hence, µ(Y, c) ≤ 0 is a necessary condition for a Seifert spin rational
homology 3-sphere to have a spin negative-definite bounding. On the other
hand, the inequality does not guarantee the existence of such bounding X.

A topological space X is said to be homologically 1-connected, if it is con-
nected and H1(X,Z) = {0}. In this article, we assume that the bounding
4-manifolds are homologically 1-connected. If a 4-manifold X is homologi-
cally 1-connected, then what X is a spin manifold is equivalent to what X
has an even intersection form. There exists a non homologically 1-connected
4-manifold which is non-spin and has an even intersection form.

We define the following invariants.

Definition 1.1. Let Y be a homology 3-sphere. If Y has a definite spin
bounding, then we define ϵ(Y ) as follows:

ϵ(Y ) =


1 Y has a positive-definite spin bounding X with b2(X) > 0

−1 Y has a negative-definite spin bounding X with b2(X) > 0

0 Y has a bounding X with b2(X) = 0.

If Y does not have any definite spin bounding, then we define ϵ(Y ) = ∞.
Here, the boundings are all assumed homologically 1-connected.
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The invariant ϵ is well-defined. In fact, if a homology 3-sphere Y has
two boundings X1, X2 for two among {1,−1, 0}, then X = X1 ∪ (−X2) is a
definite spin closed 4-manifold with b2(X) > 0. Donaldson’s diagonalization
theorem in [3] denies the existence of X.

Definition 1.2. Let Y be a homology 3-sphere. We define invariants ds, ds
on homology 3-spheres as follows:

ds(Y ) = ds(Y ) = ∞ ⇔ ϵ(Y ) = ∞.

and otherwise,

ds(Y ) = max

{
b2(X)

8
|∂X = Y , b2(X) = |σ(X)|, w2(X) = 0

}
ds(Y ) = min

{
b2(X)

8
|∂X = Y , b2(X) = |σ(X)|, w2(X) = 0

}
.

We assume the spin boundings are all homologically 1-connected.

These invariants ds and ds measure the size of definite spin bounding 4-
manifolds. The rank of unimodular definite quadratic forms with even type
is divisible by 8. Even type means that the square for any element is even.
Thus, the values of these invariants are in N ∪ {0,∞}. By the defintion
0 ≤ ds(Y ) ≤ ds(Y ) holds. We do not know whether there exists a homology
3-sphere with ds(Y ) ̸= ds(Y ). The property (14) in Theorem 2.1 in Section 2
proves that the difference is bounded by ds.

The invariants ds can be taken arbitrarily large. The examples below will
be computed in Section 3.2.

For positive integer n, Brieskorn homology 3-spheres

Σ(4n− 2, 4n− 1, 8n− 3), Σ(4n− 1, 4n, 8n− 1)

Σ(4n− 2, 4n− 1, 8n2 − 4n+ 1), Σ(4n− 1, 4n, 8n2 − 1)

have ds = n. This will be proven in Theorem 1.3.
Suppose that a homology 3-sphere Y has a homologically 1-connected

bounding X satisfying
∂X = Y, QX = nE8,

where n is a negative integer, then nE8 is a direct product of (−n)-copies
of the negative-definite quadratic form with E8-type. Then, we call the
spin bounding X (homologically 1-connected) E8-bounding. If the bounding
is positive-definite, we call the bounding positive E8-bounding, and if the
bounding is negative-definite, the bounding negative E8-bounding.

Definition 1.3 (E8-genera). Let Y be a homology 3-sphere with finite ϵ(Y ).
If Y has an E8-bounding, then we define the E8-genera as follows:

g8(Y ) = max{|n||Y = ∂X,w2(X) = 0,H1(X) = {0}, and QX = nE8}

g8(Y ) = min{|n||Y = ∂X,w2(X) = 0,H1(X) = {0}, and QX = nE8},
If Y does not have any E8-bounding, then we define g8(Y ) to be

g8(Y ) = +∞.
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Even if a homology 3-sphere Y has finite ϵ(Y ), it is not known whether
Y has an E8-bounding or not.

These invariants, g8, g8 are different from ds, ds in terms of the classifica-
tion of the quadratic unimodular form, because there are tremendous varia-
tions of even definite unimodular forms, unlikely even indefinite unimodular
forms, which are classified as aE8 ⊕ bH for some integers a, b. In the 8, 16,
and 24-dimensions, there are 1, 2 and 24 isomorphism types respectively.
However, for example in 32-dimension, the number of isomorphism types of
even, definite, unimodular forms are more than 8 × 107. It is non-trivial
whether Y has a bounding with QX

∼= nE8. That is the reason why we
define two types of invariants that measures the dimension of even definite
4-manifolds bounding a homology sphere.

We introduce other related invariants due to the definition by Y. Mat-
sumoto.

Definition 1.4 (Matsumoto,[13]). Let Y be a homology 3-sphere. Then the
bounding genus |Y | of Y is defined to be

|Y | :=

{
min{n|∂X = Y,QX = nH} µ(Y ) = 0,

∞ µ(Y ) = 1,

where the bounding 4-manifold X is restricted to homologically 1-connected

4-manifold and H is the quadratic form represented by

(
0 1
1 0

)
.

This invariant is considered as an homology cobordism invariant

| · | : Θ3
Z → N ∪ {0,∞}.

Even when we impose to being simply-connected, we can give a homol-
ogy cobordism invariant. That is, we define |Y |π to be the minimal n
which QX = nH and X is simply-connected. If we have a homologically
1-connected bounding with QX = nH, by a surgery of X, we can give a
simply-connected bounding X ′ with the intersection form several direct sum
of H. However, in general b2(X) may not be different from b2(X

′). Since by
the surgery we may have to increase the H-component of the intersection
form of the bounding 4-manifold, in general the following is satisfied:

|Y | ≤ |Y |π.

In [12] the ξ-invariant for any homology sphere Y is defined as follows:

ξ(Y ) = max{p−q|p, q ∈ Z, q > 0, p(−E8)⊕qH = QX and w2(X) = 0, ∂X = Y }.

Bohr and Lee’s m in [2] and m are defined as follows:

m(Y ) = max

{
5

4
σ(X)− b2(X)|∂X = Y, and w2(X) = 0

}

m(Y ) = min

{
5

4
σ(X) + b2(X)|∂X = Y, and w2(X) = 0

}
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Here, the relationship between m and ξ are as follows:

m(−Y )/2 = max

{
b2(N)

8
− q|q ∈ Z, ∂X = Y,QX

∼= N ⊕ qH,w2(X) = 0

and N : even negative-definite form} .
Thus we have

m(−Y )/2 ≤ ξ(Y ) + 1,

as seen in [12].

1.2. Some connection to (11/8)-conjecture. We state the (11/8)-conjecture
by Y. Matsumoto and a similar conjecture in terms of ds and bounding
genus.

Conjecture 1.1 (Y. Matsumoto ((11/8)-conjecture)). If X is a closed,
oriented, smooth, spin 4-manifold and QX is equivalent to 2k(−E8) ⊕ lH,
then l ≥ 3|k| holds.

Conjecture 1.2. Suppose that Y is a homology 3-sphere with µ(Y ) = 0 and
ds(Y ) < ∞. Then the following is satisfied:

|Y | ≥ 3

2
ds(Y ).

Proposition 1.1. Suppose that Y is a homology 3-sphere with µ(Y ) = 0
and ds(Y ) < ∞. If (11/8)-conjecture is true, then the following is satisfied:

|Y | ≥ 3

2
ds(Y ).

Under the same condition of Y as above, if Conjecture 1.2 is true, then
for any simply-connected 4-manifolds (11/8)-conjecture holds.

These invariants ds, ds, g8 and g8 might be useful to construct coun-
terexamples for (11/8)-conjecture, by finding an example not satisfying the
above inequality. Conversely, for the (11/8)-conjecture to be true, homology
3-spheres with bounded bounding genus must have at least bounded ds, or
ds = ∞ (Proposition 1.1).

1.3. Examples of negative-definite spin boundings. The aim of this
paper is to find negative-definite spin boundings or E8-boundings for some
types of Brieskorn homology 3-spheres Σ(a1, a2, · · · , an). In this section we
list the several results below which are proven later. The ds-invariants of all
the examples are 0 ≤ ds < ∞.

In the subsection 3.1 we obtain examples of spin definite boundings by
the Milnor-fiber construction, we get the following:

Theorem 1.3. For any integer n, we set Mn = Σ(2, 3, 6n−1)#(−Σ(2, 3, 6n−
5)) then ϵ(Mn) = −1 and g8(Mn) = 1.

The minimal resolutions of Brieskorn singularities give definite boundings
for the homology 3-spheres. We will classify all the minimal resolutions of
Brieskorn singularities with boundings with g8 = 1 and ϵ = −1.
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Theorem 1.4. If the minimal resolution of Brieskorn singularity gives a
bounding with g8 = 1 and ϵ = −1, then the homology 3-sphere is one of
Σ(2, 3, 5), Σ(3, 4, 7), Σ(2, 3, 7, 11), Σ(2, 3, 7, 23) or Σ(3, 4, 7, 43).

We give some examples of minimal resolutions of the Brieskorn singularity
with large ds:

Theorem 1.5. For any integer n, we have

ds(Σ(4n− 2, 4n− 1, 8n− 3)) = ds(Σ(4n− 1, 4n, 8n− 1)) = n

ds(Σ(4n− 2, 4n− 1, 8n2 − 4n+ 1)) = ds(Σ(4n− 1, 4n, 8n2 − 1)) = n.

In the last section we will post a question (Question 5.5) related to the
(11/8)-conjecture and the bounding genus.

Even if the minimal resolution itself of a Brieskorn singularity does not
give a spin 4-manifold, in some cases the additional blow-downs of the 4-
manifold can give a spin manifold.

Let (G, a, b, c) be a 1-cycled weighted graph G as in the left of Figure 9.
The labels on two edges on G are given by 3 integers labeled by a, b with
gcd(a, b) = 1 as drawn in the figure and the other (unlabeled) edges are
labeled by 1. The weight on the vertex intersected by the two edges with a
and b is −2c and the other (unweighted) vertices are weighted by −2. Such
a graph can give a smooth 4-manifold with a boundary. This description by
a weighted graph is just a short hand to describe a bounding 4-manifold.
It is similar to the plumbing graph with cycles, however, they are different
objects each other.

The handle diagram of the manifold is drawn in Figure 9. The component
weighted by −2c is the (a, b)-torus knot.

Theorem 1.6. A quadruple (G; a, b, c) in Table 1 with gcd(a, b) = 1 gives
a Brieskorn homology 3-sphere Σ with g8(Σ) = 1 and ϵ(Σ) = −1. Here G
(from (1) to (8)) is one of graphs in Figure 1.

In the case of ((1); 1, b, c), for some non-negative integer m the homology
3-spheres Σ(p, q, r) with the pairs p, q, r in Table 2 have boundings with
g8 = 1 and ϵ = −1.

Hence, any Brieskorn 3-sphere above satisfies g8(Σ) = 1.

These E8-boundings are constructed by blow-downs of minimal, negative-
definite resolutions of Brieskorn singularities.

1.4. Other examples. Let Y −
n denote Σ(2, 3, 6n−1). Then the Neumann-

Siebenmann invariant µ̄ is computed as follows:

(3) µ̄(Y −
n ) =

{
−1 n ≡ 1 mod 2

0 n ≡ 0 mod 2.

As a corollary of Theorem 1.2 [18], if ds(Y −
n ) < ∞, then g8(Y

−
2k+1) = 1 and

g8(Y
−
2k) = 0 hold. In this paper we show the existence of negative-definite

spin boundings of Y −
2k+1 for some of k.
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G a b c
(1) 3k − 2ℓ± 2 −2k + 3ℓ∓ 2 3k2 − 4kℓ+ 3ℓ2 ± 2(2k − 2ℓ) + 2
(2) 4k − ℓ± 2 −3k + 2ℓ∓ 2 6k2 − 3kℓ+ ℓ2 ± 2(3k − ℓ) + 2
(3) 4k − 3ℓ± 2 −3k + 4ℓ∓ 2 6k2 − 9kℓ+ 6ℓ2 ± 2(3k − 3ℓ) + 2
(4) 5k − 2ℓ± 2 −4k + 3ℓ∓ 2 10k2 − 8kℓ+ 3ℓ2 ± 2(4k − 2ℓ) + 2
(5) 6k − ℓ± 2 −5k + 2ℓ∓ 2 15k2 − 5kℓ+ ℓ2 ± 2(5k − ℓ) + 2
(6) 12k − 4ℓ± 3 −10k + 6ℓ∓ 3 60k2 − 40kℓ+ 12ℓ2 ± 6(5k − 2ℓ) + 4
(6) 12k − 4ℓ± 5 −10k + 6ℓ∓ 5 60k2 − 40kℓ+ 12ℓ2 ± 10(5k − 2ℓ) + 11
(6) 12k − 4ℓ± 1 −10k + 6ℓ 60k2 − 40kℓ+ 12ℓ2 ± 10k + 1
(6) 12k − 4ℓ± 3 −10k + 6ℓ∓ 2 60k2 − 40kℓ+ 12ℓ2 ± 2(15k − 4ℓ) + 4
(7) 14k − 2ℓ± 3 −12k + 4ℓ∓ 3 84k2 − 24kℓ+ 4ℓ2 ± 6(6k − ℓ) + 4
(7) 14k − 2ℓ± 5 −12k + 4ℓ∓ 5 84k2 − 24kℓ+ 4ℓ2 ± 10(6k − ℓ) + 11
(7) 14k − 2ℓ± 2 −12k + 4ℓ∓ 1 84k2 − 24kℓ+ 4ℓ2 ± 2(12k − ℓ) + 2
(7) 14k − 2ℓ± 4 −12k + 4ℓ∓ 3 84k2 − 24kℓ+ 4ℓ2 ± 6(8k − ℓ) + 7
(8) 4k − 3ℓ 4ℓ± 1 16k2 + 6ℓ2 ± 3(2k + ℓ) + 1
(8) 4k − 3ℓ± 1 4ℓ± 3 16k2 + 6ℓ2 ± (26k + 9ℓ) + 14

Table 1. The negative-definite E8-boundings for (G; a, b, c)
in Figure 1

p q r
10i+ 7 15i+ 8 120i2 + 148i+ 45
10i+ 3 15i+ 2 120i2 + 52i+ 5
20i− 8 30i− 17 480i2 − 464i+ 109
20i+ 8 30i+ 7 480i2 + 304i+ 45
30i− 13 45i− 27 1080i2 − 1116i+ 281
30i− 7 45i− 18 1080i2 − 684i+ 101
30i+ 7 45i+ 3 1080i2 + 324i+ 17
30i+ 13 45i+ 12 1080i2 + 756i+ 125
20i+ 2 30i− 7 480i2 − 64i− 11
20i− 2 30i− 23 480i2 − 256i+ 21
10i+ 7 15i− 2 120i2 + 68i− 365
10i+ 13 15i+ 7 120i2 + 212i+ 73
60i− 28 90i− 57 4320i2 − 4752i+ 1277
60i− 8 90i− 27 4320i2 − 1872i+ 173
60i+ 8 90i− 3 4320i2 + 432i− 19
60i+ 28 90i+ 27 4320i2 + 3312i+ 605

Table 2. Brieskorn homology 3-spheres Σ(p, q, r) from the
blow-downs of the minimal resolution of negative-definite
plumbings.

Theorem 1.7. For 0 ≤ k ≤ 12 or k = 14, we have ds(Y −
2k+1) < ∞. In

particular, for these integers k we have g8(Y
−
2k+1) = 1.
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(1)

ab
−2c −2c

ab

−2c
ab

−2c
ab

−2c
ab

−2c
ab

−2c
ab

(2)

(3)

(4)

(5)

(6)
(7)

b a
−2c

(8)
Figure 1. The 8 possible configurations with −E8-
intersection form. All the unweighted components are −2
and all the labels with unlabeled is +1.

The boundings cannot be obtained by the minimal resolution or blow-
downs of minimal resolutions. Actually, these boundings can be embedded
in E(1) and the complements are Gompf’s nuclei N2k+1.

1.5. Embedded spheres in E(1). Let E(1) be an elliptic fibration diffeo-

morphic to CP 2#9CP 2. According to Li and Li’s result in [7], the spherical
realization of the following negative classes in E(1) has been studied:

Theorem 1.8 (Li-Li [7]). In H∗(CP 2#nCP 2) with 1 ≤ n ≤ 9 all classes ξ
with 0 > ξ2 > −(n+ 7), have minimal genus 0.

As a by-product of Theorem 1.7 we can obtain the following theorem:

Theorem 1.9. Let f and s be the general fiber and a section of elliptic
fibration in E(1). We put ak := k[f ]− [s] ∈ H2(E(1)). For any 0 ≤ k ≤ 12
or k = 14, the class ak represents an embedded sphere in E(1).

This intersection number of ak is −2k − 1. Theorem 1.9 can be also
compared with following Finashin and Mikhalkin’s theorem:

Theorem 1.10 (Finashin-Mikhalkin[9]). There exists a smooth embedding
of S2 into an E(2) with the normal Euler number equal to n for any negative
even n ≥ −86.

In particular, for the general fiber f and a section s in the K3-surface,
the class k[f ] − [s] ∈ H2(E(2)) can be represented by an embedded S2 for
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k ≤ 42. We will post a question (Question 5.7) on the sphere class of ak in
E(n) in the last section.

Acknowledgements. The results in this article are partially done when I
visited in Michigan State University in 2013 spring. I am grateful for useful
comments by S. Akbulut and the hospitality of the institute.

2. Basic properties of invariants ds and g8.

We will prove the basic properties on ds and g8. Let Θ
3
Z denote the group

of the homology 3-spheres up to homology cobordism.

Theorem 2.1. Let ds′ be one of ds, ds and g′8 denote g8, or g8. Then the
following properties are satisfied:

(1) The ds′ and g′8 are homology cobordism invariants i.e., ds′ : Θ3
Z →

N ∪ {0,∞}.
(2) ds(Y ) = 0 or g8(Y ) = 0, if and only if [Y ] = 0 in Θ3

Z.

(3) If ds(Y ), g8(Y ) < ∞, then µ(Y ) ≡ ds′(Y ) ≡ g′8(Y ) ≡ 0 mod 2
(4) If ϵ(Y1)ϵ(Y2) = 1, then ds(Y1) + ds(Y2) ≤ ds(Y1 + Y2).
(5) If ϵ(Y1)ϵ(Y2) = 1, then ds(Y1 + Y2) ≤ ds(Y1) + ds(Y2).
(6) If ds(Y ) = 1, then g8(Y ) = 1.
(7) ds(−Y ) = ds(Y ) and ds(−Y ) = ds(Y ).
(8) g8(−Y ) = g8(Y ) and g8(−Y ) = g8(Y ).
(9) If 0 < ds(Y ) < ∞, then ϵ(Y )d(Y ) < 0 and ds(Y ) ≤ |d(Y )|/2.
(10) If ds′(Y ) or g′8(Y ) is odd, then |Y | = ∞.
(11) If ds(Y ) is even, then we have ds(Y ) + 1 ≤ |Y |.
(12) If |Y | = 1, 2, then ds(Y ) = ∞.
(13) If ϵ(Y ) ̸= ∞, then 2ds(Y ) ≤ m(ϵ(Y )Y ) ≤ m(ϵ(Y )Y ) ≤ 18ds(Y ).
(14) If ϵ(Y ) is finite and ds(Y ) < ds(Y ), then ds(Y )−ds(Y ) ≤ 8(ds(Y )+

1) holds.
(15) Suppose that Y is a Seifert homology 3-sphere. If ds(Y ) < ∞, then

µ̄(Y )ϵ(Y ) > 0 and ds(Y ) ≤ |µ̄(Y )|.

Proof. (1) Suppose that Y, Y ′ are homology cobordant homology 3-
spheres. If ds′(Y ) < ∞, then there exists a definite spin bounding W of
Y with maximal (or minimal) b2. Connecting between Y and Y ′ by the
cobordism, we get bounding W ′ of Y ′ with a maximal (or minimal) b2. If
ds′(Y ) = ∞ and ds′(Y ′) is finite, then we get a definite spin bounding of Y .
This is contradiction. Thus, if ds′(Y ) = ∞, then ds′(Y ′) = ∞

(2) Suppose Y is a homology 3-sphere with ds(Y ) = 0. Then Y bounds a
homology 4-ball W . Puncturing W , we get a homology cobordism between
Y and S3.

(3) Suppose that W is any definite spin bounding of Y . Then by the
definition of µ we have b2(W )/8 ≡ µ(Y ) mod 2.

(4,5) From the properties of maximal and minimal, we have the inequal-
ities by taking the boundary sum of the two definite bounding.

(6) From the property that the unimodular even definite quadratic form
with rank 8 is isomorphic to ±E8.
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(7,8) The definition of ds and g8 does not depend on the orientation.
(9) From the inequality (2) the inequalities hold.
(10) If ds′(Y ) or g′8(Y ) is odd, then µ(Y ) = ds(Y ) ̸= 0 mod 2, thus we

have |Y | = ∞.
(11) If ds(Y ) is even, then |Y | < ∞ holds. Then we get a closed spin 4-

manifold by gluing the two boundings. The intersection form is isomorphic
to ds(Y ) · (−E8)⊕ |Y | ·H. Furuta’s inequality implies |Y | ≥ ds(Y ) + 1.

(12) If |Y | = 1, 2 and ds(Y ) is finite, then due to Furuta’s inequality
2 ≥ ds(±Y ) + 1 holds. Since ds(Y ) is even, then ds(Y ) = 0 namely [Y ] = 0
in Θ3

Z. This contradicts to |Y | > 0.
(13) Let Y be a homology sphere with ϵ(Y ) ̸= ∞. We denote ||Y || :=

ϵ(Y )(Y ). Then ||Y || has a positive definite spin bounding X and

m(||Y ||)/2 ≥ max {5σ(X)/8− b2(X)/2|∂X = ||Y || and σ(X) = b2(X)}
= ds(||Y ||) = ds(Y )

m(||Y ||)/2 ≤ min {5σ(X)/8 + b2(X)/2|∂X = ||Y || and σ(X) = b2(X)}
= 9ds(||Y ||) = 9ds(Y )

(14) Let X1, X2 be two negative-definite spin boundings with b2(Xi) = βi
and 0 < β1 < β2. Then the invariants of the capped closed spin manifold
X = X2 ∪ (−X1) are b2(X) = β1 + β2 and σ(X) = β2 − β1. From Furuta’s
inequality in [5], we have β2 ≤ 9β1 + 8.

ds(Y ) < ds(Y ) ≤ 9ds(Y ) + 8

Consequently, ds(Y )− ds(Y ) ≤ 8(ds(Y ) + 1) holds.
(15) By the result in Theorem 1.2, we get the bound of the ds-invariant.

□
Here one of motivations for studying invariants ds, and g8 is to give coun-

terexamples to the (11/8)-conjecture. We give a proof of Proposition 1.1.
Proof of Proposition 1.1. Suppose Y is a homology 3-sphere with

µ(Y ) = 0, ds(Y ) < ∞ and 2|Y | < 3ds(Y ). Let X1, X2 be two spin bounding
4-manifolds satisfying ∂X1 = Y and ∂X2 = −Y , where X1 is a definite spin
4-manifold and QX2

∼= nH. Gluing X1 and X2 along Y we get a closed
spin 4-manifold with QX1∪X2

∼= mE8 ⊕ nH. In particular, we may assume

n = |Y | and m = ds(Y ). Thus, n < 3|m|
2 holds. The manifold X violates

the (11/8)-conjecture.
Let X be a closed, smooth, oriented, spin, simply-connected 4-manifold

with QX = 2k(−E8) ⊕ lH. Then according to [10] there exists a ho-
mology 3-sphere Y cutting the intersection form, i.e., X = X1 ∪Y X2

and QX1
∼= 2k(−E8) and QX2

∼= lH and ∂X2 = Y . Thus Y satisfies
µ(Y ) = 0 and ds(Y ) < ∞ and Xi is homologically 1-connected. Hence,
l ≥ |Y | ≥ 3

2ds(Y ) ≥ 3
2 |2k| = 3|k|. This implies (11/8)-conjecture for simply-

connected 4-manifolds. □

3. The negative E8-boundings
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3.1. Milnor-fiber construction. The Milnor-fiberM(p, q, r) is the 4-manifold
defined as the compactification of

{(x, y, z) ∈ C3|xp + yq + zr = ϵ},

where ϵ is some constant. The boundary is the Brieskorn rational homology
3-spheres Σ(p, q, r). If each two elements in {p, q, r} are relatively prime,
then the Brieskorn 3-sphere is a homology 3-sphere. The Milnor-fibers are
nice examples of spin bounding. As mentioned at the Exercise 7.3.18. in
Section 7.3, in [11] p.265, for integers p, q, r, p′, q′, r′ with p ≤ p′, q ≤ q′ and
r ≤ r′, there exists the inclusion M(p, q, r) ↪→ M(p′, q′, r′). This gives a
cobordism between Σ(p, q, r) and Σ(p′, q′, r′).

Proof of Theorem 1.3. Here, consider the following natural inclusion:

M(2, 3, 6n− 5) ↪→ M(2, 3, 6n− 1).

The induced cobordism Xn between Σ(2, 3, 6n − 5) and Σ(2, 3, 6n − 1) has
intersection form −E8. In fact, from Novikov’s additivity, σ(M(2, 3, 6n −
1)) = σ(M(2, 3, 6n − 5) + σ(Xn) holds, hence, σ(Xn) = −8. Since the
boundary ofXn is diffeomorphic to−Σ(2, 3, 6n−5)∪Σ(2, 3, 6n−1), andXn is
spin, QXn must be isomorphic to −E8 from the classification of unimodular
definite even quadratic forms.

By removing one 3-handle from Xn, we get a cobordism Wn from a punc-
tured Σ(2, 3, 6n − 5) to punctured Σ(2, 3, 6n − 1). The manifold Wn satis-
fies ∂Wn = Mn and QWn

∼= −E8. From the construction of Wn we have
H1(Wn,Z) ∼= H1(Xn,Z) clearly. Since Xn is obtained by attaching 8 2-
handles on the boundary of Σ(2, 3, 6n − 5) × I, there exists a surjection
{0} = H1(Σ(2, 3, 6n − 5),Z) → H1(Xn,Z). Therefore Wn is homologically
1-connected.

On the other hand, since d(Mn) = d(Σ(2, 3, 6n− 1)− d(Σ(2, 3, 6n− 5) =
2− 0 = 2, we get ds(Mn) = g8(Mn) = ϵ(Mn) = 1. □

3.2. The minimal resolution. Let W (G) be a plumbed 4-manifold asso-
ciated with a graph G, which is a tree weighted by integers.

Definition 3.1. Let G be a connected star-shaped graph as in Figure 2. The
‘star-shaped’ means the graph has at most one n-valent vertex with n ≥ 3.

Let {v0, vji } be the vertices and m0 and mj
i be the weights of the vertices v0

and vji . That is, the unique vertex v0 is at least 3-valent and the valencies
of the other vertices are all 1 or 2. If G satisfies the following properties,
we call the graph G is minimal:

(1) The incidence matrix is negative-definite.
(2) m0 ≤ −1.

(3) mj
i ≤ −2.

The minimal graph gives a negative-definite plumbing 4-manifold with a
Seifert rational homology 3-sphere boundary. Furthermore, if all the weights
are even, then the plumbing 4-manifold is a spin negative-definite bounding.
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v0

v11 v12 v13 v1n1

v21 v22 v23 v2n2

v31 v32 v33 v3n3

Figure 2. A Seifert diagram with three branches.

Let G be a weighted graph. We give a lemma for finding types of G which
give homology spheres. Let Vert(G) be the set of vertices of G. Let det(G)
be the determinant of the incident matrix of G.

Lemma 3.1. Let v ∈ Vert(G) be a 1-valent vertex with weight m(v) and
Gp the graph from G obtained by adding the weight m(v) by p > 0. Then
det(G) ≡ det(Gp) mod p.

Let w be the vertex connecting to v and G0 a graph obtained by deleting
v and w. If m(v) ≡ 0 mod p, det(G) ≡ −det(G0) mod p.

Proof. Let m(v) be the weight of v and G̃ the graph obtained by
deleting v from G. Expanding the determinant det(G), we have

det(G) = m(v) det(G̃)−det(G0)
mod p
≡ (m(v)+p) det(G̃)−det(G0) = det(Gp).

The latter assertion follows from

det(G) = m(v) det(G̃)− det(G0)
mod p
≡ − det(G0).

□
If the lengths of branches of the Seifert diagram are n1, n2, · · · , nk, we say

that the Seifert diagram has length type (n1, n2, · · · , nk). For example, Fig-
ure 2 has length diagram (n1, n2, n3). Let G(n1,··· ,nk) be a weighted graph of
the length type (n1, · · · , nk) with all weights even. G(1) is a weighted graph
having one vertex with weight even, namely det(G(1)) ≡ 0 mod 2. Note that
the following lemma holds.

Lemma 3.2.

det(G1 ∪G2) = det(G1) det(G2).

det(G(n,1,1,··· ,1)) ≡ 0 mod 2

Proof. Since any v ∈ G1 and w ∈ G2 are not connected, the determinant
is computed as det(G1 ∪ G2) = det(G1) det(G2). By using Lemma 3.1, we
have

det(G(n,1,1,··· ,1)) ≡ det(G(1,1,··· ,1)) ≡ det(G(1) ∪ · · · ∪G(1)) ≡ 0 mod 2.

□
We prove the following:



THE E8-BOUNDINGS OF HOMOLOGY SPHERES AND NEGATIVE SPHERE CLASSES IN E(1).13

Proposition 3.1. Let Σ(p, q, r) be a Brieskorn homology 3-sphere whose
minimal resolution with negative-definite gives an E8-bounding with b2 = 8.
Then Σ(p, q, r) = Σ(2, 3, 5) or Σ(3, 4, 7).

Proof. The minimal resolution graph of the Seifert structure we require
is rank= 8, unimodular, negative-definite and even. Since the graph is even,
the weight of the central vertex is −2.

In general, consider negative definite resolutions graph for Σ(a1, · · · , an)
with all vertices ≤ −2 except at the central vertex. Let e be the weight of
the central vertex of the graph. It is well-known that e has the restriction
−1−n < e ≤ −1. This inequality is obtained by computing the 1st homology
of the Brieskorn homology sphere. In this case since n = 3 and e is even, e
must be −2.

The three possible lengths n1 ≥ n2 ≥ n3 of branches are (n1, n2, n3) =
(4, 2, 1), (3, 2, 2), in fact other ones (5, 1, 1), (3, 3, 1) cannot be unimodu-
lar. Because det(G(5,1,1)) ≡ 0 mod 2 and G(3,3,1) ≡ G(1,1,1) ≡ 0 mod 2
(Lemma 3.1).

Let us consider Seifert manifolds with length type (3, 2, 2) as in Figure 3,
where b, c, d, e, f, g, h are positive integers. Then we put an integer D as
follows:

X := 2− 4gh− 1

2(4fgh− f − h)
− 2c

4bc− 1
− 2e

4de− 1
=

D

pqr
.

D is the determinant of the resolution graph and p, q, r are the multiplicities
of the Seifert manifolds, namely, p = 2(4fg − f − h), q = 4bc − 1 and
r = 4de− 1. We find cases where the Seifert manifold is a homology sphere.
Since the Seifert manifold is a homology sphere, any two of p, q, r is coprime
and D is one. Here X is a function of variables b, c, d, e, f, g, h. The maximal
value of D/pqr for the Brieskorn homology spheres Σ(p, q, r) is 1/30, which
is the case of the Poincaré homology sphere.

Here − 4gh−1
2(4fgh−f−h) , −

2c
4bc−1 , and − 2e

4de−1 are increasing functions, because

all partial derivatives in b, c, d, e, f, g are positive functions on the each point.
Since f, g, h are natural numbers, − 4gh−1

2(4fgh−f−h) ≥ −3
4 holds. Now, we as-

sume bc ≥ 2 and de ≥ 2. then we have

X ≥ 5

4
− 4

7b
− 4

7d
≥ 5

4
− 8

7
=

3

28
>

1

30

Thus, this case is not a homology sphere. From the symmetry of the graph
we may assume d = e = 1. This means that r = 3 holds.

Then, further, if b ≥ 2, then

X ≥ 5

4
− 2c

8c− 1
− 2

3
≥ 7

12
− 2

7
=

25

84
>

1

30
.

Thus, this case does not occur.
Suppose that b = d = e = 1. If c > 2, then we have

X ≥ 7

12
− 2c

4c− 1
≥ 7

12
− 6

11
≥ 5

132
>

1

30
.
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Thus we have c = 1, 2. If c = 2 holds, then q = 7 and

X ≥ 7

12
− 4

7
=

1

84
,

hence p ≤ 4 holds. Further, since p = 2(4fgh− f − h) ≥ 4, we have p = 4.
Hence f = g = h = 1. This case corresponds to the Brieskorn 3-sphere
Σ(3, 4, 7).

If we suppose c = 1, then q = 3 holds. This is contradiction to what p, q
are relatively prime.

In the case of (4, 2, 1), X takes the minimal value among negative definite
quadratic even forms, when all weights are −2. This is the Σ(2, 3, 5) case.
On the other hand, the Σ(2, 3, 5) takes the maximal value 1/30 in all the
Brieskorn homology spheres Σ(p, q, r) ̸= S3. Thus, this means that all Seifert
homology spheres with even form and lengths (4, 2, 1) is (p, q, r) = (2, 3, 5)
only. □

−2 −2f −2h
−2b

−2c

−2g

−2d

−2e

Figure 3. The resolution graph with type (3, 2, 2).

Proposition 3.2. Let Σ(a1, a2, · · · , an) be a Brieskorn homology 3-sphere
with n ≥ 4. Suppose that the minimal resolution graph is even and rank 8.
Then n = 4 and the Brieskorn 3-spheres are Σ(2, 3, 7, 11), Σ(2, 3, 7, 23), or
Σ(3, 4, 7, 43).

Proof. The partitions of 7, the number of whose parts is more than
3, are the following 7 types. (4, 1, 1, 1), (3, 2, 1, 1), (2, 2, 2, 1), (3, 1, 1, 1, 1),
(2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1, 1). By using Lemma 3.2, the
determinants of G(4,1,1,1), G(3,1,1,1,1), G(2,1,1,1,1,1), G(1,1,1,1,1,1,1) are even. In
the cases G(3,2,1,1) and G(2,2,1,1,1), since

det(G(3,2,1,1)) ≡ det(G(3,1,1)) ≡ 0 mod 2

det(G(2,2,1,1,1)) ≡ det(G(2,1,1,1)) ≡ 0 mod 2,

these do not occur. The type (2, 2, 2, 1) has det = 1 mod 2. Let D be the
determinant for the graph of type (2, 2, 2, 1) in Figure 4. We may assume
the type (2, 2, 2, 1). The parameters a, b, c, d, e, f, g, h are positive numbers.

(4) X := 2a− 1

2h
− 2c

4bc− 1
− 2e

4de− 1
− 2g

4fg − 1
=

D

pqrs

where p = 2h, q = 4bc− 1, r = 4de− 1, and s = 4fg − 1. Since any two of
p, q, r, s is coprime, we have pqrs ≥ 2× 3× 7× 11 = 462.

D is the determinant of the Seifert manifolds as in Figure 4. We find
the parameters a, b, c, d, e, f, g, h with D = 1.
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−2a −2b −2c

−2d

−2e

−2f−2g

−2h

Figure 4. Resolution graph with type (2, 2, 2, 1).

First, the central weight −2a is −2 or −4, because the above inequality
−1− 4 < −2a < 0 implies a = 1 or 2. We may assume that q ≤ r ≤ s from
symmetry of the graph.

[The case of a = 2.] Suppose that a = 2. Note that − 2g
4fg−1 is an

increasing function of f, g. By using b, c, d, e, f, g, h ≥ 1, we have

X ≥ 4− 1

2
− 3× 2

3
≥ 3

2
.

This case does not satisfy D = 1.
[The case of a = 1.]

Suppose that h ≥ 3. Then we have

X ≥ 2− 1

6
− 2

3
− 4

7
− 6

11
≥ 23

462
>

1

924
.

Thus we have h = 1, 2.
We assume that h = 2, i.e., p = 4. Suppose that bc ≥ 2. Then we have

de ≥ 3, fg ≥ 4 and

X ≥ 7

4
− 4

7
− 6

11
− 8

15
≥ 461

4620
>

1

924
.

Hence, we have bc = 1 holds, then b = c = 1 and q = 3. If de ≥ 3, then we
have fg ≥ 4 and

X ≥ 7

4
− 2

3
− 6

11
− 8

15
≥ 1

220
>

1

924
.

Hence, we have de = 2. Thus r = 7 and (d, e) = (1, 2) or (2, 1). If (d, e) =
(2, 1), then − 2e

4de−1 = −2
7 . Since fg ≥ 3,

X ≥ 7

4
− 2

3
− 2

7
− 6

11
≥ 233

924
>

1

924
.

Thus we must have (d, e) = (1, 2). Suppose that fg ≥ 3 and f ≥ 2, then

X ≥ 7

4
− 2

3
− 4

7
− 3

11
≥ 221

924
>

1

924
.

Thus f = 1 holds. If g ≥ 12 holds, then

X ≥ 7

4
− 2

3
− 4

7
− 24

47
≥ 5

3948
>

1

924
.
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When 3 ≤ g ≤ 11, in the case of D = 1 we have g = 11 only. The case of
(b, c, d, e, f, g, h) = (1, 1, 1, 2, 1, 11, 2) corresponds to Σ(3, 4, 7, 43).

We assume that h = 1. Then the maximal value of D/pqrs of homology
spheres with type (2, 2, 2, 1) is 1/(2 · 3 · 7 · 11) = 1/462.

Suppose that bc ≥ 2. Then we have de ≥ 3, fg ≥ 4.
Furthermore, we suppose that b ≥ 2, d ≥ 2, or f ≥ 2.

X ≥ 3

2
− 4

7b
− 6

11d
− 8

15f
>

1

462
.

Thus b = d = f = 1 holds, and c ≤ e ≤ g holds. Then, we have

X =
3

2
− 2c

4c− 1
− 2e

4e− 1
− 2g

4g − 1
≤ 3

2
− 6g

4g − 1
< 0.

Hence, bc = 1 holds, i.e., q = 3 holds.
Suppose that bc = 1, i.e., b = c = 1 and q = 3. If de ≥ 3, then we have

fg ≥ 4 and

X ≥ 3

2
− 2

3
− 6

11
− 8

15
≥ 1

220
>

1

462
.

Hence, we have de = 2. Thus q = 7 and (d, e) = (1, 2) or (2, 1).
If (d, e) = (2, 1), then − 2e

4de−1 = −2
7 . Since fg ≥ 3,

X ≥ 3

2
− 2

3
− 2

7
− 6

11
=

1

462
.

Hence, the required only case is the one satisfying the equality. Thus
(b, c, d, e, f, g, h) = (1, 1, 2, 1, 1, 3, 1) and (p, q, r, s) = (2, 3, 7, 11).

If (d, e) = (1, 2) and f = 1, then

X =
3

2
− 2

3
− 4

7
− 2g

4g − 1
<

11

42
− 1

2
=

−5

21
< 0.

Thus we assume that f ≥ 2. If fg ≥ 7, then we have

X ≥ 3

2
− 2

3
− 4

7
− 14

27f
≥ 1

378
>

1

462
.

Hence, this case does not occur. Suppose that f ≥ 2 and fg ≤ 6. Computing
X, we obtain (f, g) = (2, 3) only. This case corresponds to (p, q, r, s) =
(2, 3, 7, 23).

□
Proof of Theorem 1.4. The rest part in the assertion is the computation

of ds. From the inequality (2) by Ozsváth and Szabó, the required assertion
follows. In fact, the d-invariants of those Brieskorn homology 3-spheres
below are all 2 by Némethi’s algorithm in [14],

Σ(2, 3, 5), Σ(3, 4, 7), Σ(2, 3, 7, 11), Σ(2, 3, 7, 23), Σ(3, 4, 7, 43).

Hence, these manifolds are all g8 = 1. □
In the following, we prove Theorem 1.5.
Proof of Theorem 1.5. The minimal resolution graphs of Σ(4n−2, 4n−

1, 8n− 3), Σ(4n− 1, 4n, 8n− 1), Σ(4n− 2, 4n− 1, 8n2− 4n+1), and Σ(4n−
1, 4n, 8n2− 1) are Figure 5 and 6. The numbers of the parentheses are the
lengths of the branches. □
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−2 −2

−2 −2

−2n −2 −2 −2

−2 (4n− 2)

Σ(4n− 2, 4n− 1, 8n− 3)

−2 −2

−2 −2

−2n −4

−2

(4n− 2)

(4n− 1)

Σ(4n− 1, 4n, 8n− 1)

(4n− 3)

Figure 5. The minimal resolution graphs.

−2 −2

−2n −2−2

(4n)

Σ(4n− 2, 4n− 1, 8n2 − 4n+ 1)

−2n −2

−2 −2−2

(4n− 2)

(4n− 1)

Σ(4n− 1, 4n, 8n2 − 1)

−2n

−2 −2
(4n− 3)

−2 −2 −2n− 2

Figure 6. The minimal resolution graphs.

The intersection forms of these minimal resolution graphs are not isomor-
phic to n(−E8) for n > 1. It follows from the argument below. Any vector
with square −2 in n(−E8) is contained in a −E8-component, because −E8 is
a definite matrix. Furthermore, there exists no 9 vectors x1, · · · , x9 in −nE8

satisfying x2i = −2 and xi ·xi+1 = 1 (i = 1, · · · , 8). In fact such vectors must
be in a common −E8-component in −nE8, because xi ·xi+1 = 1 implies that
xi and xi+1 are in a same −E8-component. However since these vectors are
linearly independent, they cannot be embedded in a −E8. Therefore, any of
4 minimal resolution graphs in Figure 5 and 6 is not isomorphic to n(−E8)
when n > 1. We do not know whether the homology 3-spheres have other
boundings with g8 = n and ϵ = −1.

3.3. Blow-downs of the minimal resolution. In general, any minimal
resolution is a negative-definite bounding with possibly not even. But there
are some −1-spheres in the bounding 4-manifold. By performing blow-downs
of the spheres we can get a smaller bounding. The new bounding is not a
resolution any more. In this section, we give several E8-boundings with
g8 = 1 and ϵ = −1 by using the blow-down of the minimal resolutions of
Brieskorn homology 3-spheres. These strategies can be also seen in [16].

The blow-down process of a Brieskorn homology 3-sphere is described as
follows. As an example, let us consider a plumbing graph with 3 singular
fibers as in the first diagram in Figure 7. By doing the blow-down at
the central component, we get the next diagram. The (unlabeled) edge
presents the +1-linking between corresponding components. In the next
diagram, doing the further blow-down at the −1-framed component, we get
the third diagram. The integers nearby the edge are the linking number
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between the two components. In the same way we get the fourth diagram.
Here the (x + 6)-framed component is the (2, 3)-torus knot. Here we deal
with the diagram as in the left of Figure 9. This diagram stands for the
handle diagram in the right of the Figure 9. In this paper such a graph
is called a configuration and any graph obtained by several blow-downs of
a Seifert plumbing graph is called a blow-downed configuration. The integer
associated with any vertex is called a weight and that with any edge is
called a label. The incidence matrix for the configuration naturally gives the
quadratic form for the bounding 4-manifold.

Each step of the blow-down performances is based on the formula in
Figure 8. Here, if the x-framed component in the figure is the (a, b)-torus
knot, then the next (x+ b2)-framed component is the (a+ b, b)-torus knot.

Figure 7. Blow-down process.

Figure 8. A blow-down formula on configurations.

Let G0 be a 1-cycled graph with three edges with labels {a, b, 1}. The
weight of the vertex intersecting two edges with a, b is −2c. The graph G is
the union of G0 and linear edges connecting the three vertices. See the right
of Figure 9. We call the graph G a branched triangular configuration. Here,
we must note that this graph represents not a usual plumbing graph but a
simply-connected 4-manifold constructed by attaching 2-handles according
to the graph.

Proposition 3.3. Let G be a branched triangular configuration. The pair
(G; a, b, c) with gcd(a, b) = 1 in Table 1 is the blow-downed configurations
with type (1) to (8) in Figure 1, whose intersection form is presented by
−E8.
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Note that configurations (1) to (8) are not all the blow-downed, branched
triangular configurations with −E8 intersection form.

Figure 9. The actual handle diagram with branched trian-
gular configuration.

Proof. We consider configurations in Figure 1. Other branched
triangular configurations with rank 8 cannot be a unimodular form. Let
G(−2c, a, b;n1, n2, n3) be a branched triangular configuration as in Fig-
ure 10 with all weights −2. Then in the case of G(−2c, a, b; 5, 0, 0), we
have

det(G(−2c, a, b; 5, 0, 0)) = −15− 12a2 − 12ab− 12b2 + 36c ≡ 0 mod 3.

This case does not occur. In the case of G(−2c, a, b; 4, 1, 0), we have

det(G(−2c, a, b; 4, 1, 0)) = −16− 15b2 − 20ab− 20a2 + 40c ≡ −1 mod 5.

This case also does not occur. In the cases ofG(−2c, a, b; 2, 3, 0) orG(−2c, a, b; 2, 2, 1),
the determinants are all divisible by 3. Thus these cases do not occur.

−2c

n1

n3 n2

ab

Figure 10. The definition of G(−2c, a, b;n1, n2, n3).

Computing the determinants of the 8 examples, we obtain the equations:

(1) : 3a2 + 4ab+ 3b2 = 5c− 2; (2) : 3a2 + 3ab+ 2b2 = 5c− 2

(3) : 6a2 + 9ab+ 6b2 = 7c− 2; (4) : 6a2 + 8ab+ 5b2 = 7c− 2

(5) : 5a2 + 5ab+ 3b2 = 7c− 2; (6) : 15a2 + 20ab+ 12b2 = 16c− 1

(7) : 12a2 + 12ab+ 7b2 = 16c− 1, (8) : 16a2 + 24ab+ 15b2 = 16c− 1.
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Figure 11. Blow-up process by the Euclidean algorithm.

The positive integral solutions {a, b, c} in these equations give the negative-
definite E8-boundings with configurations from (1) to (8). If a and b are
relatively prime, then these pairs (G; a, b, c) are blow-downed configurations
by iterating several blow-ups in accordance with the Euclidean algorithm
for relatively prime (a, b) as in Figure 11.

Suppose that {a, b} is a relatively prime solution with a < b. Let m
denote the minimum positive number satisfying b−ma < a. We iterate the
blow-up process (the inverse of Figure 8) m-times at the left bottom angle
in the triangle as in the first configuration in Figure 11. Next, exchanging
the role of a and b −ma, we continue to perform the blow-up at the right
bottom angle. Applying the Euclidean algorithm to this blow-up process
in this way, we obtain the star-shaped graph which all labels are +1 and
all weights are smaller than or equal to −2 except for the central vertex of
weight −1.

In consequence, the pair (a, b, c) in the Table 1 with relatively prime a, b
can give a Brieskorn homology 3-sphere with E8-bounding with ϵ = −1. □

Proposition 3.4. Let G be the configuration (1) in Figure 1. The integral
solutions a, b, c in Table 1 with a ≤ 6 are Table 3:

Proof. Let us take a = 1 in the case of (1). Then for some integer m
we have k = 2m+ 1, ℓ = 3m± 1 + 1 and b = 5m+ 1± 1. Thus we get

c = 15m2 + 16m+ 5, or 15m2 + 4m+ 1

from Table 1. In this way we get the expressions of b, c as in Table 3.
Let Y be one of Brieskorn homology 3-spheres for resolution graphs

obtained by doing several blow-ups of branched triangular configurations
(a, b, c) inTable 3. According to the formula of µ in [6], we have µ(Y ) = −1.
From Ue’s inequality (Theorem 1.2), we get ds = 1. In particular they have
g8 = 1.
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a b c a b c
1 5i− 3 15i2 − 14i+ 4 1 5i 15i2 + 4i+ 1
2 10i− 7 60i2 − 68i+ 21 2 10i+ 1 60i2 + 28i+ 5
3 15i− 11 135i2 − 162i+ 52 3 15i− 8 135i2 − 108i+ 25
3 15i− 1 135i2 + 18i+ 4 3 15i+ 2 135i2 + 72i+ 13
4 10i− 5 60i2 − 28i+ 9 4 10i− 7 60i2 − 52i+ 17
5 5i− 4 15i2 − 4i+ 9 5 5i− 1 15i2 + 14i+ 12
6 30i− 23 540i2 − 684i+ 229 6 30i− 13 540i2 − 324i+ 61
6 30i− 5 540i2 − 36i+ 13 6 30i+ 5 540i2 + 324i+ 61

Table 3. The pairs (a, b, c) (i ≥ 0) are blow-downed config-
urations with (1) with −E8 intersection form and with a ≤ 6.

Thus, by using Theorem 1.2 we have g8 = g8 = ds = ds = 1. These data
give Brieskorn homology 3-spheres as in Table 2. □

3.4. The negative E8 boundings of Σ(2, 3, 6n−1). We restrict ourselves
to Σ(2, 3, 6n±1). Let denote Y −

n = Σ(2, 3, 6n−1) and Y +
n = Σ(2, 3, 6n−5).

The invariants µ, µ and d for Y ±
n are represented as in Table 4. We focus

on bounding 4-manifolds of Y −
2k+1. The minimal resolution Rn for Y −

n is

µ µ d definite bounding

Y +
2k 1 1 0 ds = ∞

Y −
2k 0 0 2 ds = ∞

Y +
2k+1 0 0 0 must be b2(X) = 0

Y −
2k+1 1 −1 2 must be b2(X) = 8

Table 4. Invariants of Y ±
n .

Figure 12. The intersection form of Rn is isomorphic to −E8 ⊕n−1 ⟨−1⟩.

−2−2−2−2

−2

−2 −2 −2 −3 −2 −2

n− 2

Figure 12. The minimal resolution graph of Y −
n .

Any square −1 class in Rn cannot be realized as a sphere, in other words
the following holds:

Proposition 3.5. The 4-manifold Rn can be never blow-downed any more.
Namely, the minimal genus of any square −1 class in Rn is positive.

Proof. Since by replacing any component in Figure 12 with a Legen-
drian knot as in Figure 13, we can get a Stein surface on Rn.

As explained in [11], the union of one 0-handle and 2-handles along a
Legendrian link with framings tb − 1 admits a Stein structure, where tb is
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the Thurston-Bennequin invariant. Here we use the formula

tb(K) = w(K)− λ(K),

for the computation of tb(K). Here w is the writhe of the Legendrian knot
and λ is the number of left corners of the Legendrian knot. For example, in
the cases of Figure 13, the first and the second examples are as follows:

tb(K1) = 0− 1 = −1, tb(K2) = 0− 2 = −2.

On the other hand, any Stein structure does not contain any (−1)-sphere
due to the result in [8] by Lisca and Matić. This means that Rn can be
never blow-downed any more. □

Figure 13. Deformations into Stein structure.

Y −
2k+1 has another spin bounding Sk as in Figure 14 with the intersection

form isomorphic to −E8 ⊕
(
0 1
1 0

)
.

The direct sum −E8 ⊕H implies the existence of a homology 3-sphere Y
separating −E8 and H. The H-summand corresponds to a 4-manifold X
with QX

∼= H and ∂X = Y . Can such a homology 3-sphere Y be taken as
one satisfying [Y ] = 0 in the homology cobordism group Θ3

Z? We post the

following question, which is equivalent to ds(Y −
2k+1) = 1 for any k.

−2 −2 −2 −2 −2 −2 −2 −2

−2

2k

Figure 14. The plumbing graph for Sk.

Question 3.1. Let k be a positive number. Can any homology 3-sphere Y
in Sk separating the intersection form QSk

= −E8 ⊕H (i.e., ∂X = Y and
QX

∼= H) bound an acyclic 4-manifold?

3.5. The embedding of Y −
2k+1 in E(1). Question 3.1 is unknown, al-

though, we can give several negative E8 boundings for Y −
2k+1.

In the case of n = 0, it is well-known that Y −
1 = Σ(2, 3, 5) is the boundary

of the E8-plumbing. In the case of n = 1, since Y +
3 = Σ(2, 3, 13) bounds a

contractible 4-manifold, we have a homology cobordism

Y −
3 ≃h Y −

3 #(−Y +
3 ) = M3,
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where Mn is defined in Section 3.1. By use of Theorem 1.3, we can give a
negative E8-bounding of Y −

3 with g8 = 1.

Proposition 3.6. For some integer k with 0 ≤ k ≤ 12, 14, E(1) can be
decomposed along Y −

2k+1 so that E(1) = Wk ∪Y −
2k+1

N2k+1. Here Wk is a

simply-connected, E8-bounding of Y −
2k+1 with g8 = 1 and ϵ = −1.

Proof. We start from a well-known decomposition E(1) = M(2, 3, 5) ∪
N1, where N1 is the nuclei, which is defined in [11]. Figure 15 (Figure 16
in [1]) is the handle diagram for the decomposition. In the following, we

Figure 15. Figure16 in [1] and the embedding of N1.

deform the decomposition into other ones via the following 2-handle slide
of α in Figure 16. The handle slide by a straight band keeps the framing
(the left picture in Figure 16). On the other hand, the handle slide by a
twisting band (the right picture in Figure 16) decreases the framing by 4.
Therefore, the framings of α become −1 and −5 respectively. We iterate this
process to the linear 7-component link connecting the −2-framed 2-handle
except the −2-framed 2-handle adjacent to another −1-framed 2-handle. We
can realize 2-handle α with the framings of −1,−5,−9,−13,−17,−21,−25,
and −29. These attaching spheres are all unknots. The 2-handles with
framing −3,−7,−11,−15,−19, and −23 are obtained by sliding linear sub-
k-chain (0 ≤ k ≤ 5) and the unknot in the 7-component link. For example,
Figure 17 realizes a −7-framed unknot by sliding −5-framed 2-handle to
an un-connecting −2-framed 2-handle.

This process gives other decomposition E(1) = Wk ∪Y −
2k+1

N2k+1, where k

is 0 ≤ k ≤ 12 or 14. In fact Wk is a 4-manifold with intersection form −E8

and the boundary is Y −
2k+1. The process above preserves the intersection

form of the complement. As a result, Wk is a simply-connected 4-manifold
with intersection form−E8 whose boundary is Y −

2k+1 (0 ≤ k ≤ 12 or 14). The
complement is the nuclei N2k+1. See [11] for the definition of the nuclei. □
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Figure 16. The straight handle slide and twisting handle slide.

Figure 17. A realization of −7-framed 2-handle.

Proof of Theorem 1.7. The 4-manifold Wk is a negative E8-bounding
of Y −

2k+1 for 0 ≤ k ≤ 12 or 14. Thus, for the integer k, we have g8(Y
−
2k+1) = 1

and ϵ(Y −
2k+1) = −1. □

There exists a homology cobordism Y +
2k+1 ≃h (−M2k+1)#Y −

2k+1, where ≃h

stands for homology cobordant. The homology 3-sphere Y +
2k+1#(−Y −

2k+1) =
−M2k+1 has a ‘positive’ E8-bounding with g8 = 1 by Theorem 1.3. Even if
Y −
2k+1 has a ‘negative’ E8-bounding with g8 = 1, we do not know whether

Y +
2k+1 bounds a contractible 4-manifold or not. In general, what condition

for homology spheres Y1, Y2 with ϵ(Y1) + ϵ(Y2) = 0 and g8(Yi) = 1 can
cancel out the intersection form E8⊕ (−E8) into ∅? We pose a more general
question (Question 5.8) in the final section.

4. The several sphere classes in E(1).

Theorem 4.1. The classes k[f ] − [s] (1 ≤ k ≤ 13 or k = 15) in H∗(E(1))
are represented by embedded spheres, where f is the general fiber and s is
the section in the elliptic fibration.
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Proof. Let Ql be the quadratic form by representing by the matrix(
−l 1
1 0

)
. The decomposition Wk ∪Y2k+1

N2k+1 in Proposition 3.6 gives

QE(1) = QWk
⊕QN2k+1

∼= −E8 ⊕Q2k+1. Let α denote the same class as the
one in Proposition 3.6. This class is the first class (1, 0) in the N2k+1-part.

By applying an isomorphism (Z2, Q2k+1) → (Z2, Q1) that the class (1, 0) ∈
Z2 is mapped to (1,−k), we obtain an isomorphism

(Z10,−E8 ⊕Q2k+1) ∼= (Z10,−E8 ⊕Q1) ∼= (Z10, ⟨1⟩ ⊕ 9⟨−1⟩).

Here the element for α is mapped to (−3k, k, · · · , k, k + 1) by this iso-
morphism, because (0, 1) ∈ (Z2, Q1) is the class for the general fiber of
N1 ⊂ E(1).

By using the result in [19], this isomorphism induces a diffeomorphism

E(1) ∼= CP 2#9CP 2. The element α is mapped to

−3k · [h] + k

9∑
i=1

[ei] + [e9] = −k[f ] + [s],

where {[h], [ei]|1 ≤ i ≤ 9} is the generator in H2(CP 2#9CP 2). The classes
[f ] and [s] correspond to the fiber and the section of E(1) respectively. In
the case of 0 ≤ k ≤ 12, 14, α, that is, −k[f ] + [s] can be represented as a
sphere. □

5. Some questions and problems.

Here we post several questions and problems.

Question 5.1. Let Y be a homology 3-sphere.

(1) When does Y have a definite spin bounding?
(2) If ds(Y ) < ∞, then does Y have an E8-bounding?
(3) When the equality m(−Y )/2 = ds(Y ) or m(−Y )/2 = ds(Y ) hold?

Question 5.2. Does there exist any homology 3-sphere Y with g8(Y ) >
g8(Y ), ds(Y ) ̸= g8(Y ) or ds(Y ) ̸= g8(Y )?

Question 5.3. Let Y be a Brieskorn homology 3-sphere. If 4d(Y ) = −8µ(Y ) >
0, then is ds(Y ) = 4d(Y ) true?

Question 5.4. Let Y be a Brieskorn homology 3-sphere with finite E8-
genus. Then is g8(Y ) = g8(Y ) true?

We post some inequalities for bounding genus which are presumed by
(11/8)-conjecture and Theorem 1.5.

Question 5.5. For positive integer n, do the inequalities:

|Σ(8n− 2, 8n− 1, 16n− 3)|, |Σ(8n− 1, 8n, 16n− 1)| ≥ 3n

|Σ(8n− 2, 8n− 1, 32n2 − 8n+ 1)|, |Σ(8n− 1, 8n, 32n2 − 1)| ≥ 3n

hold?
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If one of these inequalities does not hold, then the (11/8)-conjecture does
not hold.

Question 5.6. Do these homology 3-spheres above give some E8-boundings
with g8 = 2n?

Question 5.7. Let ak denote the 2nd homology class k[f ] − [s] in E(n),
where f is the general fiber and s is a section. Does there exist an upper
bound of k for ak to be represented by an embedded S2?

Question 5.8. For two homology 3-spheres with ds(Xi) < ∞ (i = 1, 2), let
us denote d̃s(Y ) = ϵ(Y )ds(Y ). Then when does the equality

d̃s(X1) + d̃s(X2) = d̃s(X1#X2)

hold?

Although, in the case ofX1 = Σ(2, 3, 17) andX2 = Σ(2, 3, 13)#(−Σ(2, 3, 17)),
the equality holds, this equality seems unlikely, in general. In order to satisfy
this equality, some geometrically special condition would be necessary.

Finally, we post future’s direction for this paper’s topic.

Problem 5.1. Find more general constructions of positive (or negative)
E8-boundings for many homology 3-spheres.
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[17] P.Ozsváth and Z. Szabo, Absolutely graded Floer homologies and intersection forms
for four-manifolds with boundary, Advances in Math. 173(2003)179-261

[18] M.Ue, The Fukumoto-Furuta and the Ozsváth-Szabó invariants for spherical 3-
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