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Pochette

Definition 1 (Z.Iwase-Y.Matsumoto (East Asia Conf. in
2004))

We call
P = S1 × D3♮S2 × D2

a pochette.

P ≃ S1 ∨ S2 (homotopy eq.)

0

Figure: Pochette P
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Submanifolds

m, l ,B,S ⊂ P
l = S1 × {∗} (longitude)
m = {∗} × ∂D2 (meridian)
B = {∗} × ∂D3 (belt sphere)
S = S2 × {∗} (core sphere)

Homology
H1(∂P) = Z[m]⊕ Z[l ]
H1(P) = Z[l ]
H2(∂P) = Z[S ]⊕ Z[B]
H2(P) = Z[S ]
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Another view of P

P = S1 × ST ∪ H2,

where S1 × {∗} : attaching sphere of 2-handle H2.

S1 × ∪
0

Figure: Pochette
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0

0

Figure: P = S1 × ST ∪ H
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Pochette surgery

Definition 2 (Iwase-Matsumoto)

M :a 4-manifold.
e : P ↪→ M: an embedding (Pe := e(P))
g : ∂P → ∂(M \ Pe): a gluing map

M(e, g) := (M \ Pe) ∪g P

It is called a pochette surgery.

M(e, g) = (M \ Pe) ∪g(m) (2-handle) ∪ (3-handle) ∪ D4

g(m): the attaching sphere of the 2-handle
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g(m): the image of curve m

me := e(m), le := e(l).
H1(∂(M \ Pe)) = Z[me ]⊕ Z[le ]

g : ∂P → ∂(M \ Pe): gluing map

g∗ : H1(∂P) → H1(∂(M \ Pe))

g∗([m]) = p[me ] + q[le ],

gcd(p, q) = 1

Lemma 3 (Iwase-Matsumoto)

p/q ∈ Q determines the isotopy type of g(m).
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Mod 2 framing

Lemma 4

The framing of g(m) mod 2 determines the diffeomorphism type of
M(e, g).

Attaching with even framing can be extendable to P.
Recall Gluck surgery to understand mod 2 framing.

Definition 5 (Framing of g(m))

We call the framing mod 2 of g(m) mod 2 framing.

We write mod 2 framing by ”ϵ”.
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Theorem 6 (Iwase-Matsumoto)

M(e, g) is determined by the following data:
e : P ↪→ M

g∗([m]) ∈ H1(∂(M \ Pe))

mod 2 framing of g(m)

We denote the result of pochette surgery M(e, g) by

M(e, p/q, ϵ).
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Examples

p/q = 1/0 case

M(e, 1/0, 0) = M (trivial surgery)
M(e, 1/0, 1): the Gluck surgery along Se

p/q = 0/1 case

M(e, 0/1, ϵ): S1-surgery (Cappell-Shaneson, Scharlemann used
this.)

ϵ = 0

T 2 ⊂ M: product nbd (with framing 0 vanishing cycle)
M(e, p/q, 0) = Mp/q: log-transformation along T 2

T 2 ↪→ S1 × ST ⊂ P
e
↪→ M
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0
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Figure: P = S1 × ST ∪ H
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Therefore, ...

Pochette surgery is a mixture of

Gluck surgery

log-transformation (near a framing 0 v.c.)

S1-surgery

There are so many intermediate surgeries.
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Motivation

Our aim

To construct homotopy S4’s and investigate the diffeomorphism
types.

Conjecture 7 (smooth Poincare conjecture in 4D)

Any smooth homotopy S4 is diffeomorphic to S4.

Our main results (Suzuki-T.)

Computation of Hn.

Determination of diffeomorphism types of several pochette
surgeries yielding homotopy S4’s.

We will see main theorems later on.
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The third view

Figure: Pochette

P = S1 × D3♮S2 × D2 ∼= S2 × D2 ∪ H1

H1: 1-handle
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Core sphere & cord

S := S2 × {∗} ⊂ P (Core sphere)
C ⊂ P (Cord).
e : P → S4 an embedding
Se := e(S), Ce := e(C ), Be = e(B), me := e(m)

S4 \ Pe = (S4 \ N(Se)) \ N(Ce)

B4

Se Ce

me

Be

Figure: (S4 \ N(Se)) \ N(Ce)
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Homology of S4(e, g , ϵ)

g : ∂P → ∂(S4 \ Pe) : slope p/q
H1(P) = Z[l ]
H2(P) = Z[S ]
H1(S

4 \ Pe) = Z[me ]
H2(S

4 \ Pe) = Z[Be ]
ℓ = ℓk(Ce , Se): linking number
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H1 of S4(e, g , ϵ)

H1(∂P)
g∗→ H1(∂(S

4 \ Pe))

g∗([m]) = p[me ] + q[le ], g∗([l ]) = p′[me ] + q′[le ]

H1(∂(S
4 \ Pe))

i∗→ H1(S
4 \ Pe)

i∗([me ]) = [me ], i∗([le ]) = ℓ[me ]

H1(∂P)
j1⊕j2→ H1(S

4\Pe)⊕H1(P)
k→ H1(S

4(e, g , ϵ)) (M-V sequence)

j1 = i∗ ◦ g∗
j1([m]) = (p + qℓ)[me ], j1([l ]) = (p′ + q′ℓ)[me ]
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j2([m]) = 0, j2([l ]) = [l ]

A =

(
p + qℓ p′ + q′ℓ

0 1

)
H1(S

4(e, g , ϵ)) = H1(S
4 \ Pe)⊕ H1(P)/ ∼

∼= Z[me ]⊕ Z[l ]/Im(A)

∼= Z[me ]/(p + qℓ)[me ] (p + qℓ ̸= 0)

Lemma 8

H1(S
4(e, g , ϵ)) ∼=

{
Z/(p + qℓ)Z p + qℓ ̸= 0

Z p + qℓ = 0.
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H2 of S4(e, g , ϵ)

H2(S
4 \ Pe) = Z[Be ], H2(P) = Z[S ]

H2(∂P)
g∗→ H2(∂(S

4 \ Pe))

g∗([B]) = p[Be ] + q[Se ], g∗([S ]) = p′[Be ] + q′[Se ]

H2(∂(S
4 \ Pe))

i∗→ H2(S
4 \ P)

i∗([Be ]) = [Be ], i∗([Se ]) = ℓ[Be ]

H2(∂P)
j1⊕j2→ H2(S

4\Pe)⊕H2(P)
k→ H2(S

4(e, g , ϵ)) (M-V sequence)

j1 = i∗ ◦ g∗
j1([B]) = (p + qℓ)[Be ], j1([S ]) = (p′ + q′ℓ)[Be ]
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j2([B]) = 0, j2([S ]) = [S ]

A =

(
p + qℓ p′ + q′ℓ

0 1

)
H2(S

4(e, g , ϵ)) = H2(S
4 \ Pe)⊕ H2(P)/ ∼

∼= Z[Be ]⊕ Z[S ]/Im(A)

∼= Z[Be ]/(p + qℓ)[Be ] (p + qℓ ̸= 0)

Lemma 9

H2(S
4(e, g , ϵ)) ∼=

{
Z/(p + qℓ)Z p + qℓ ̸= 0

Z p + qℓ = 0.

H3(S
4(e, g , ϵ)) ∼=

{
0 p + qℓ ̸= 0

Z p + qℓ = 0.
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Theorem 10 (Suzuki-T.)

S4(e, g , ϵ) is a homotopy S4, iff{
p + qh = ±1,

π1(S
4(e, g , ϵ)) = e.
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Trivial cord case

First, ℓ = 0 holds.
H1 = Z/pZ ⇒ p = ±1
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Theorem 11 (Suzuki-T.)

Let e : P ↪→ S4 be an embedding of P with a trivial cord. Then if
a pochette surgery S4(e, p/q, ϵ) is a homotopy S4, then it is
diffeomorphic to{

standard S4 ϵ = 0

the Gluck surgery along Se ϵ = 1

Thus, if Se is ribbon, then any pochette surgery with trivial cord is
diffeomorphic to standard S4.
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(proof)
The pochette surgery.

S4(e, 1/q, ϵ)

0

me le

S4 \ Pe S4(e, 1/q, ϵ)

q

ϵ
0

∪3-handle, 4-handle

Figure: Attaching P on S4 \ Pe .

Motoo Tange a joint work with Tatsumasa Suzuki. Pochette surgery on S4



Introduction Homology Trivial cord case Unknot case Knotted case

⟨0⟩
⟨ϵ⟩

q

0
⟨0⟩ ⟨ϵ⟩

q

0

sliding

⟨0⟩ ⟨ϵ⟩
0

q − 1

sliding

⟨0⟩ ⟨ϵ⟩ 0

sliding

⟨0⟩ ⟨ϵ⟩ 0
canceling

0

Figure: The isotopy type of the rightmost unknot component.
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Se: unknot case

Theorem 12 (Suzuki-T.)

Let e be an embedding of P into S4 with core sphere Se unknot.
Then any S4(e, 1/q, ϵ) is diffeomorphic to the standard S4.

(proof)
π1(S

4 \ Se , ∂): the set of isotopy classes of cord in S4 \ Se .

π1(S
2 × S1)

i→ π1(S
4 \ Se) → π1(S

4 \ Se , ∂)

π1(S
4 \ Se) = Z

i : isomorphism
hence, π1(S

4 \ Se , ∂) = e
Any cord is trivial.
Therefore, from Theorem 11, S4(e, 1/q, ϵ) = S4 2
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Se: knotted & Ce: non-trivial case

Theorem 13 (Suzuki-T.)

Let Se be the following 2-knot.

0

0

∪ 3-handle
∪ 4-handle

Figure: A diagram of a ribbon 2-knot complement.

Then S4(e, 1/2, ϵ) is diffeomorphic to the standard S4.
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Proof

0

0 0

me

le

0

0

ϵ

0 ∪3-handles

Figure: A pochette surgery for non-trivial 2-knot Se with a nontrivial
cord.
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0
0 ϵ

0

0
0 ϵ

0

0
0 ϵ

0

0
0 ϵ

0

0

0

ϵ

0

0
0 ϵ

0

S4(e, 1/2, ϵ) = C ∪ (−C ): C : a cont’ble 4-mfd with no 3-handles
A standard argument results in C ∪ (−C ) = S4. 2
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Corollary 14

If Se is a ribbon with Ce a cord with ℓ = 1 and if S4(e, 1/2, ϵ) is
simply-connected, then S4(e, 1/2, ϵ) is diffeomorphic to S4.

Question 15

If S4(e, p/q, ϵ) is a homotopy sphere, is S4(e, p/q, ϵ) always
standard S4?
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