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Abstract

Fintushel-Stern’s knot surgery gave many exotic pairs, which are homeomorphic
but non-diffeomorphic. We show that if an elliptic fibration has two, parallel, oppositely-
oriented vanishing circles (for example S2 × S2 or Matsumoto’s S4), then the knot
surgery gives rise to the standard manifold. The diffeomorphism can give an alterna-
tive proof that Scharlemann’s manifold is standard (originally as proven by Akbulut
[Ak1]).

1 Introduction.

1.1 Knot surgery.

For a 4-manifold X containing the cusp neighborhood C the knot surgery XK is
defined by R. Fintushel and R. Stern [FS], where K is a knot in S3, see definitions
in the next section. It is easy to see that XK is homeomorphic to X by Freedman’s
celebrated result if X is simply connected and closed. We have a natural question:
When is (X,XK) an exotic pair?

The Seiberg-Witten (SW -invariant) formula in [FS] by R. Fintushel and R. Stern

SWXK
= SWX · ∆K , (1)

showed that many pairs (X,XK) are exotic. Here ∆K is the Alexander polynomial
of K. In the case where ∆K(t) = 1 or SWX = 0, it is unknown whether the pair is
exotic or not in general.

It is well-known that S2 × S2 is diffeomorphic to the double C ∪ C of C, namely
S2 × S2 admits achiral elliptic fibration, where the overbar notation stands for the
reversed orientation of the manifold. The diagram is drawn in Figure 1.

Definition 1.1. We denote by AK the knot surgery C ∪ CK of S2 × S2 = C ∪ C.

The 4-manifold AK is homotopy equivalent to S2×S2, while SW -invariant cannot
distinguish whether AK is exotic or not, since SWS2×S2 = 0 holds.

In [Ak2] S. Akbulut showed that A31 is diffeomorphic to S2 × S2. The diffeomor-
phism is essentially due to his another result [Ak1]. Our first main theorem is:

Theorem 1.1. AK is diffeomorphic to S2 × S2 for any knot K.

We will prove this theorem in Section 3. The theorem shows the existence of exotic
embedding of C into S2 × S2.
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Figure 1: Two parallel, oppositely-oriented cusp fibers in S2 × S2.

1.2 Link surgery.

We extend the knot surgery for links (according to Fintushel and Stern’s defini-
tion in [FS]) as link surgery (operation). This is regarded as a variation of fiber-sum
operation connecting some manifolds rather than surgery. Our link surgery opera-
tion is defined for an n-tuple (X1, X2, · · · , Xn) of 4-manifolds each of which contains
(specified) C and an n-component link L in S3.

When every Xi is a copy of S2 × S2, we denote the link surgery operation by AL.
We will give a generalization of Theorem 1.1.

Theorem 1.2. For an n-component link L, AL is diffeomorphic to

AL =

{
#2n−1S2 × S2 if L is a proper link
#2n−1CP 2#2n−1CP 2 otherwise.

For the proof we give a way to draw handle pictures of link surgery operation
X(C, · · · , C;L) for a split link L = K1 ∪K2 or Hopf link L = H

1.3 Scharlemann’s manifolds.

Let S3
p(K) be the p-surgery along K in S3 and γ(ϵ) an embedded framed curve in

S3
p(K). Here γ is a simple closed curve in S3 −K ⊂ S3

p(K) and ϵ is a framing. This
framing is defined in Section 5 (Definition 5.1).

We use the obvious diagram of S3
p(K) to assign an integer to the framing. We

concern with the free homotopy class of the framed curve and denote the homotopy
class by the same notation γ(ϵ). In particular the framing is (mod2)-framing. Any
homotopy class of the framed curve in S3

p(K) can be represented in the form of γ(ϵ).
For an embedded framed curve γ(ϵ) in S3

p(K) we define a 4-manifold BK,p(γ(ϵ))
(Scharlemann’s manifold) to be the result of a surgery (see Definition 5.2) along S1 γ→
S3
p(K) ↪→ S3

p(K) × S1 using the framing ϵ (see Definition 5.2). The diffeomorphism
type depends only on (K, p) and the free isotopy type of the image of the framed curve
γ(ϵ) in S3

p(K)×S1. Note that if two framed curves γ(ϵ) and γ′(ϵ′) are free homotopic
in S3

p(K), then the two framed curves give the same isotopy class in S3
p(K)×S1. Hence

the homotopy class of a framed curve γ(ϵ) definitely determines the diffeomorphism
type BK,p(γ(ϵ)). This is the reason why we consider the homotopy class of γ(ϵ). If γ
is a normal generator of π1(S3

p(K)), then each manifold BK,p(γ(ϵ)) is homeomorphic
to S3 × S1#S2 × S2 or S3 × S1#CP 2#CP 2 as can be seen from results presented in
[FQ]. In the case of p = −1 we drop the suffix p from BK,p(γ(ϵ)) as BK(γ(ϵ)).
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Scharlemann in [Sc] studied the case where (K, p) = (31,−1) and γ = γ0 (the
meridian of 31) and showed that B31(γ0(1)) has a fake self-homotopy structure on S3×
S1#S2 × S2. At that time the diffeomorphism type of BK(γ(ϵ)) was not determined.
After that Akbulut [Ak1] showed the following theorem using an amazingly difficult
handle calculus.

Theorem 1.3 ([Ak1]). B31(γ0(1)) is diffeomorphic to S3 × S1#S2 × S2.

Since Akbulut’s result it had been unknown for a long time whether in general
BK(γ(ϵ)) is diffeomorphic to the standard manifold or not. Here we show the following
as the third main theorem.

Theorem 1.4. For any knot K in S3 and γ0 ⊂ S3
−1(K) the meridian of K in the

diagram BK(γ0(1)) is diffeomorphic to S3 × S1#S2 × S2.

In the second half of Section 5.2 we will consider the diffeomorphism type of
B31(γ(ϵ)) for other homotopy classes than γ0(ϵ).

Theorem 1.1 and 1.4 are proven by S. Akbulut in [Ak4] independently. Our proofs
are based on Lemma 3.3 regarding knot surgery in some achiral elliptic fibration. The
essence in the lemma becomes important to extend knot surgery case to any link
surgery operation case.
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2 Preliminaries

2.1 Several singular fiber neighborhoods and knot surgery.

First we recall the cusp neighborhood C and fishtail neighborhood F , see [GS] as
the explanation about the topology of elliptic fibrations and singular fibers. We define
two more neighborhoods with some singular fibers as well.

Definition 2.1 (Fishtail (or Cusp) neighborhood.). A fishtail (or cusp) neighborhood
F (or C) is an elliptic fibration over D2 with one fishtail (or cusp) singular fiber. The
handle picture is the top-left (or top-right) in Figure 2. The neighborhood C (or F )
includes self-intersection 0 torus as the general fiber.

Definition 2.2 (Symmetric fishtail (or cusp) neighborhood.). We denote a fiber-sum
of two parallel oppositely-oriented fishtail (or cusp) fibers over D2 by SyF (or SyC).
The handle picture is the bottom-left (or bottom-right) in Figure 2. The neighborhood
SyF (or SyC) includes self-intersection 0 torus as the general fiber. We call SyC (or
SyF ) symmetric cusp (or fishtail) neighborhood.

By the diagrams in Figure 2 SyF and SyC have the obvious embeddings F ↪→ SyF
and C ↪→ SyC respectively.

Let X be a 4-manifold that contains C or F , and K a knot in S3. The symbol ν
(and ν) represents the open neighborhood (and its closure).

3



Figure 2: F , C, SyF , and SyC.

Definition 2.3. We define (Fintushel-Stern’s) knot surgery XK,n as

XK,n := [X − ν(T )] ∪φn [(S3 − ν(K)) × S1].

Here the gluing map is

φn : ∂ν(K) × S1 → ∂ν(T ) = T 2 × ∂D2

such that the map φn induces the following on the 1st homology:

[{the meridian of K} × {pt}], [{pt} × S1] → α, β

[{the longitude of K} × {pt}] + n[{the meridian of K} × {pt}] → [{pt} × ∂D2]

where α, β are generators of H1(T 2). When X contains F , we assume that α is the
class of the the vanishing circle. In the case of n = 0, we denote the result of the knot
surgery by simply XK .

2.2 The logarithmic transformation.

We define the logarithmic transformation. Let X be an oriented 4-manifold and
T ⊂ X an embedded torus with self-intersection 0.

Definition 2.4. Let γ be an essential simple closed curve in T and φ a homeomor-
phism ∂D2 × T 2 → ∂ν(T ) satisfying φ(∂D2 × {pt}) = q({pt} × γ) + p(∂D2 × {pt}).
Removing ν(T ) from X and attaching D2×T 2 by use of φ, we get the following surgery

[X − ν(T )] ∪φ D2 × T 2.

We say this surgery logarithmic transformation and denote it by XT,p,q,γ .

It is well-known that the diffeomorphism type of logarithmic transformation de-
pends only on the data (T, p, q, γ). The integer p is multiplicity of the logarithmic
transformation, γ the direction and q the auxiliary multiplicity.

If p = 1, then we call XT,1,q,γ a q-fold Dehn twist of ∂ν(T ) along T parallel to γ.
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Lemma 2.1 (Lemma 2.2 in [G1]). Suppose N = D2 × S1 × S1 is embedded in a 4-
manifold X. Suppose there is a disk D ⊂ X intersecting N precisely in ∂D = {q}×S1

for some q ∈ ∂D2×S1, and that the normal framing of D in X differs from the product
framing on ∂D ⊂ ∂N by ±1 twist. Then the diffeomorphism type of X does not change
if we remove N and reglue it by a k-fold Dehn twist of ∂N along S1 × S1 parallel to
γ = {q} × S1.

The submanifoldN∪ν(D) in Lemma 2.1 is diffeomorphic to a fishtail neighborhood
F . Lemma 2.1 implies the following.

Lemma 2.2. Let X be a 4-manifold containing F . Then a k-fold Dehn twist of a
neighborhood of the general fiber parallel to the vanishing circle of the fishtail fiber does
not change the differential structure.

3 Knot surgery case.

3.1 1-strand twist.

Let X be a 4-manifold containing C, K1 any knot in S3, and K2 the meridian of
K1. The torus T2 := K2 × S1 ⊂ [S3 − ν(K1)] × S1 ⊂ XK1 is self-intersection 0. The
subset N2 := ν(K2) × S1 is the trivial normal bundle over T2.

Definition 3.1 (1-strand twist). We call an (n-fold) Dehn twist along T2 ⊂ XK1

parallel to K2 (n-fold) 1-strand twist of XK1 along K2.

Lemma 3.1. The n-fold 1-strand twist of XK1 along K2 does not change the differ-
ential structure.

Proof. Any parallel copy K ′
2 ⊂ ∂N2 of K2 moved through the use of obvious

trivialization of N2 is isotopic to one of vanishing circles of CK1 . Thus there exists
a disk D ⊂ CK1 with ∂D = K ′

2 whose framing of ∂D coming from the trivialization
of ν(D) differs from the normal framing of the trivialization of N2 by −1. Hence
N2 ∪ ν(D) is the fishtail neighborhood.

Therefore Lemma 2.2 gives the following:

XK1,n
∼= XK1,0 = XK1 .

�
This diffeomorphism can be also understood using handle calculus as in Figure 3,

which was pointed out by S. Akbulut in [Ak1]. The left in Figure 3 is the 41 surgery of
the cusp neighborhood. Sliding the top −1-framed 2-handle over one of two 0-framed
2-handles below, we get the right-top one in Figure 3. Sliding upper 0-framed 2-handle
over the −1-framed 2-handle, we have the right-bottom picture. This process increases
the framing of the knot by 1. Iterating the process or the inverse one, we can change
the framing to the arbitrary integer.

3.2 3-strand twist.

Finding a hidden fishtail neighborhood in SyFK or SyCK , we shall prove a dif-
feomorphism using 3-strand twist.

Let L be a 2-component link as in Figure 4. The left box is some tangle which
presents K1. Let X be a 4-manifold containing SyC or SyF . Along the general torus
fiber in the fibration we perform a knot-surgery XK . The torus T2 = K2 × S1 ⊂
[S3 − ν(K1)]× S1 has the trivial neighborhood in XK1 . We denote the neighborhood
of the torus by N2.
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3-handle

Figure 3: Diagram CK (ex. K = 41) and framing change.

Figure 4: L = K1 ∪ K2 and ℓ1, ℓ2, ℓ3.
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Definition 3.2 (3-strand twist). Let X be a 4-manifold containing SyC or SyF . We
call any 1-fold Dehn twist along T2 ⊂ XK1 parallel to K2 3-strand twist along K2.
Here in the case of SyF K2 is parallel to the vanishing circles.

Lemma 3.2. For a manifold X containing SyC or SyF , the 3-strand twist of XK1

along K2 does not change the differential structure.

Proof. Our main strategy here is to construct a fishtail neighborhood in which
K2 ×S1 is a general fiber. Here we can find an obvious three-punctured disk P whose
boundaries are K2, ℓ1, ℓ2, and ℓ3 as indicated in Figure 4. Here each meridian ℓi lies
in the boundary of N1 which is the neighborhood of K1. Figure 5 is the following
modification of either of the handle pictures of SyF or SyC in Figure 2. We take the
middle 1-handle, two 2-handles running the 1-handle in Figure 2, and an additional 1-
framed 2-handle (canceling with a 3-handle by one slide to another 1-framed 2-handle).
Each image φ0(ℓi) is parallel to two vanishing circles in XK1 as in Figure 5.

We construct mutually disjoint three annuli A1, A2 and A3 such that one compo-
nent of each ∂Ai is φ0(ℓi). In addition these annuli and P are also disjoint because
P is embedded in the [S3 − ν(K1)] × S1 part. A1 is indicated in Figure 6 and the
right side of ∂A1 is φ0(ℓ1). A2 and A3 are indicated in the left and right in Figure 7
respectively. A3 runs through the carved 2-handle (the dotted 1-handle) once. The
right sides of ∂A2 and ∂A3 are φ0(ℓ2) and φ0(ℓ3). From the pictures obviously A1, A2

and A3 are disjoint annuli in AK1 .
The other sides of ∂Ai coincide with the boundaries of 2-disks parallel to the cores

of the 2-handles in Figure 5. The three 2-disks are disjoint from P ∪ A1 ∪ A2 ∪ A3

since these 2-handles are disjoint from P and Ai. Capping the 2-disks C1, C2 and C3

to three components of ∂(P ∪A1 ∪A2 ∪A3) −K2, we obtain an embedded disk

D := P ∪A1 ∪A2 ∪A3 ∪ C1 ∪ C2 ∪ C3

in AK1 whose boundary is K2.
The framing in ∂ν(D) inducing from the trivialization of ν(D) differs from the

framing of K2 inducing from the normal bundle of N2 by −1 + 1 + 1 = 1. Therefore
N2 ∪ ν(D) is diffeomorphic to F .

Instead, sliding the canceling 0-framed 2-handle to the −1-framed 2-handle, we
can prove the existence of three embedded disks whose boundaries are φ0(ℓi). As a
result the disk D obtained in the similar way has −1-framing on the boundary. The
−1-framed 2-disk and N2 construct a fishtail neighborhood F whose general fiber is
T2.

Applying Lemma 2.2 to this situation, we obtain the assertion of Lemma 3.2. �
For a 4-manifold X satisfying the same assumption as Lemma 3.2, we can also

prove that any odd-strand twist does not change the differential structure.

3.3 Proof of Theorem 1.1.

Since C ∪ C includes SyC as in Figure 1, 3-strand twist of AK1 along K2 gives
rise to the same manifold, namely we have AK1

∼= C ∪CK3,n. The integer n is one of
∓1, ∓9. K3 is the knot obtained by the ±1-Dehn surgery along K2 as in Figure 8.
By using 1-strand twist in Section 3.1 we have AK3

∼= C ∪ CK3,n
∼= AK1 .

Y. Ohyama in [Oh] has proven that local 3-strand twist of knots is an unknotting
operation of knots. Therefore for any knot K there exists a finite sequence of local 3-
strand twists: K = k0 → k1 → · · · → kn = unknot. The sequence implies a sequence
of diffeomorphisms:

AK = Ak0
∼= Ak1

∼= · · · ∼= Akn = S2 × S2.

7



Figure 5: An isotopy of φ0(ℓi).

Figure 6: A1.

Figure 7: Two embedded annuli A2, A3.

Figure 8: K3: ±1-Dehn surgery along K2 of K1. The right box is the ∓1 full twist.
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�
The argument in the proof of Theorem 1.1 can be summarized as follows:

Lemma 3.3. Any knot surgery of any achiral elliptic fibration containing SyF (or
SyC) does not change the differential structure.

Y. Matsumoto’s achiral elliptic fibration on S4 in [M] includes SyF . The handle
picture can be seen in Figure 8.38 in [GS].

Corollary 3.1. Any knot surgery along a general fiber in Matsumoto’s elliptic fibra-
tion on S4 (such that the meridian of the knot is isotopic to the vanishing circle) is
diffeomorphic to standard S4.

3.4 Infinitely many exotic embeddings.

Using the diffeomorphism, we obtain infinitely many embeddings:

C ↪→ C ∪ CK = S2 × S2. (2)

Thus we can give the following:

Corollary 3.2. There exist infinitely many homeomorphic but mutually non-diffeomorphic
embeddings C ↪→ S2 ×S2. Namely the embeddings give infinitely many exotic comple-
ments.

Proof. We show that the complements CK of the embeddings (2) give mutually
non-diffeomorphic infinite exotic 4-manifolds. The cusp neighborhood C is embedded
in K3 surface E(2) as a neighborhood of a singular fiber of the elliptic surface. The
group of self-diffeomorphisms up to isotopy on ∂C ∼= Σ(2, 3, 6) is Z/2Z in the same
way as the proofs of Lemma 8.3.10 in [GS] and Lemma 3.7 in [G2]. The nontrivial
self-diffeomorphism is a 180◦ rotation of ∂C about the horizontal line in the top-right
picture in Figure 2. Since the diffeomorphism is caused by a symmetry on 0-framed
trefoil, this diffeomorphism extends to E(2) (see also the proof of Theorem 0.1 in
[Ak2]). Thus, if E(2)K1 and E(2)K2 are non-diffeomorphic for some knotsK1,K2, then
CK1 and CK2 are non-diffeomorphic. The formula (1) and SWE(2) = 1 give infinitely
many differential structures in {CK |K:knot}. The homeomorphism C ≈ CK for any
knot K is due to the fact C∪CK ∼= S2×S2 (spin) and the result (0.8) Proposition-(iii)
in [B]. Therefore {CK |K:knot} includes infinitely many exotic structures. �

4 Link surgery case.

In this section we give how to draw a handle picture of the link surgery operation
X(C, · · · , C;L) in the cases where L is a split link and is a Hopf link. Finally we will
prove AL is the standard manifold (Theorem 1.2).

Let L = K1 ∪ · · · ∪ Kn be an n-component link and Xi (i = 1, · · · , n) oriented
4-manifolds which contain the cusp neighborhood Ci. Let Ti be a general fiber of Ci.
By the gluing maps

φi : ∂ν̄(Ki) × S1 → ∂ν̄(Ti) = Ti × ∂D2

satisfying
φi(li × {pt}) = {pt} × ∂D2

φi(mi × {pt}) = αi, φi({pt} × S1) = βi,

where li and mi are the longitude and meridian of Ki and αi, βi are two circles in
∂ν̄(Ti) corresponding to a basis in H1(Ti).
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Definition 4.1. For any i removing ν(Ti) from Xi, gluing Ki-component in the bound-
ary of [S3 − ν(L)] × S1 using φi, we define the link surgery operation as

n⨿
i=1

Xi → [Xi − ν(Ti)] ∪φi [S3 − ν(L)] × S1.

We write the link surgery operation of (X1, · · · , Xn) along a link L by X(X1, · · · , Xn;L).

The SW -invariant of X(X1, · · · , Xn;L) is computed as follows:

SWX(X1,··· ,Xn;L) = ∆L(t1, · · · , tn) ·
n∏
i

SWE(1)#T=Ti
Xi
,

where ∆L(t1, · · · , tn) is the n variable Alexander polynomial of L and E(1)#T=TiXi

is the fiber sum of the elliptic fibration E(1) and Xi along general fibers T and Ti
respectively. The definition of the fiber sum can be seen in [FS].

Here we consider the link surgery operation of
⨿n
i=1 S

2×S2 along any n-component
link L. We denote the operation by AL. The following diffeomorphism

E(1)#T=TiS
2 × S2 ∼= E(1)#2S2 × S2 = #3CP 2#11CP 2 (3)

holds. The first diffeomorphism is due to Figure 9. The leftmost figure is a picture
of E(1)#T=Ti

S2 × S2, where the handle decomposition of E(1) uses the diagram of
Figure 8.10 in [GS]. Sliding handles several times, we find a separated Hopf link in
the rightmost figure. The second equality in (3) is due to some blow ups and downs.
Thus the vanishing theorem of SW -invariant implies SWAL

= 0.

Figure 9: E(1)#T=TiS
2 × S2 = E(1)#2S2 × S2

We prepare several lemmas to prove Theorem 1.2.

Lemma 4.1. Let L = U1 ∪ U2 be a 2-component unlink. Then the handle picture of
X(C,C;L) is Figure 11.

Suppose that L = L1 ∪L2 is any split link. Then the handle picture of X(C,C;L)
is obtained by replacing the two dotted 1-handles in Figure 11 with the slice 1-handles
corresponding to L1 and L2.

In particular, in the case where L = L′∪U is an n-component link and U is a split
unknot,

AL′∪U ∼= AL′#2S2 × S2.
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Proof. Let L = K1 ∪ K2 be a split link. First we consider the case where
K1,K2 are both unknots. Let D1 and D2 be 3-disks splitting U1 and U2 respectively.
In other words D1 ∪ D2 = S3, D1 ∩ D2 = S2, and Ki ⊂ int(Di). Then we get a
decomposition [S3−ν(L)]×S1 = [(D1−ν(U1))∪(D2−ν(U2))]×S1. Each component
[Di − ν(Ui)] × S1 is diffeomorphic to D2 × S1 × S1 − ν(βi) (see Figure 10), where βi
is {pi} × S1 and pi is a point in D2 × S1.

Figure 10: [D3 − ν(unknot)] × S1 ∼= D2 × T 2 − ν(β)

The handle picture of D2 × T 2 − ν(β1) is the left in Figure 13. The S2 × S1

boundary component ∂ν(β1) ∼= S2 × S1 corresponds to the cylinder in the picture.
The gluing of D2×T 2−ν(β1) and D2×T 2−ν(β2) along the S2×S1 component using
the identity map has the handle picture of the right in Figure 13. With the dotted
1-handles description, the handle picture of X(C,C;L) is Figure 11. Since X(C,C;L)
has two boundary components, we must draw a 3-handle as can be seen in Figure 11.

In the case where K1,K2 are any link, the handle picture of X(C,C;L) can be
drawn replacing the solid torus in Figure 10 with the knot complement D3 − ν(Ki).
The replacement of handle pictures can be viewed as in [Ak2]. For example in the
case of K1 = 31 and K2 = 41, the handle picture is Figure 12.

In particular if K2 is the unknot, then AL gives rise to two connected-sum compo-
nents of S2×S2 as can be seen in Figure 14. Here we apply handle calculus in Figure 15.
We denote 0-framed 2-handles by unlabeled links. Therefore AL′∪U ∼= AL′#2S2 × S2

holds. �
Next we draw a handle picture of the link surgery operation X(C,C;H) along a

Hopf link H and we compute AH .

Lemma 4.2. Let H be a Hopf link. Then AH is diffeomorphic to #3(CP 2#CP 2).

Proof. The complement [S3 −ν(H)]×S1 is the diffeomorphic to T 2 ×S1 × I (the
left in Figure 16), where I is the interval [0, 1] and some unlabeled links are 0-framed
2-handles.

Attaching two −1-framed 2-handles to T 2 × S1 × {0} in T 2 × I and the other two
−1-framed 2-handles to T 2 ×S1 ×{1}, we get the picture of X(C,C;H) (the right in
Figure 16). We denote the attached circles in T 2 × S1 × ∂I are α := ᾱ× (p2, 0), β :=
β̄ × (p2, 0) and α × (p2, 1), η := {p1} × S1 × {1}, where p1 ∈ T 2, p2 ∈ S1 and ᾱ, β̄
are two 1-cycle generators in T 2. Next attaching on two boundaries of X(C,C;H)
four vanishing circles with opposite orientation (four meridional 0-framed 2-handles),
and two sections (two 0-framed 2-handles), we get the top-left handle decomposition
in Figure 17. The decomposition can be modified into the top-right picture by two
handle slides as indicated in the top-left picture. The resulting picture can be modified
into the bottom-left picture by two handle slides indicated by the two arrows in the
top-right picture. Two (unlinked) 0-framed 2-handles obtained by this modification
are canceled with 2 3-handles. By applying Figure 15 and easy handle calculus, the
bottom-left picture can be modified into the bottom-middle picture in Figure 17. This
picture is the diagram of #3(CP 2#CP 2) using handle calculus. �
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Figure 11: The handle picture of X(C,C; U0 ∪ U1).

Figure 12: X(C,C; 31
⨿

41)

Figure 13: T 2 × D2 − ν(β) → (T 2 × D2 − ν(β1)) ∪ (T 2 × D2 − ν(β2)).
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Figure 14: The handle picture of AL′∪U = AL′#2S2 × S2.

Figure 15: To make an S2 × S2-component from two parallel −1-framed 2-handles.
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Figure 16: T 2 × S1 × I → X(C, C; H).

Figure 17: The handle picture of AH = #3(CP 2#CP 2).
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At this point we can prove Theorem 1.2.
Proof of Theorem 1.2. Let L = K1 ∪K2 ∪ · · · ∪Kn be any n-component link. The
set L̃n of all n-component links up to local 3-strand twist consists of 2n−1 classes due to
Nakanishi and Ohyama’s results [Oh, Na]. Forgetting the ordering of the components
of any link in L̃n we get a set Ln. The set Ln has n classes. A standard representative
in each class is a link Ln,ℓ (ℓ = 0, 1, · · · , n− 1) as presented in Figure 18. Applying 3-

components

components

Figure 18: The representation Ln,ℓ of Ln

strand twist to link surgery operation AL we have only to consider the diffeomorphism
type of ALn,ℓ

for some ℓ.

Notice that Ln,0 is the representative of all proper links (def⇔
∑
i ̸=j lk(Ki,Kj) ≡

0 ( mod 2) ∀i) and Ln,ℓ (ℓ > 0) are the representatives of improper link (def⇔ not proper
link).

Now suppose that 1 ≤ ℓ ≤ n− 2. Applying Lemma 4.1 to the n− ℓ− 1 component
unlink, we have

ALn,ℓ
= ALℓ+1,ℓ

#2(n−ℓ−1)S2 × S2.

In addition since ℓ parallel meridians in the remaining components construct a fiber-
sum of ℓ-copied symmetric cusp neighborhoods, by using the handle calculus in Fig-
ure 15 we have

ALℓ+1,ℓ
= AH#2(ℓ−1)S2 × S2.

Using Lemma 4.2, therefore

ALn,ℓ
= #3(CP 2#CP 2)#2(ℓ−1)S2 × S2#2(n−ℓ−1)S2 × S2

= #2n−1(CP 2#CP 2).

Suppose that ℓ = 0. The link Ln,0 is n-component unlink. Thus using Lemma 4.1
we have

ALn,0 = S2 × S2#2(n−1)S2 × S2 ∼= #2n−1S2 × S2.

Suppose that ℓ = n− 1. Since the link Ln,n−1 does not have unlink component,

ALn,n−1 = #3(CP 2#CP 2)#2(n−2)S2 × S2 ∼= #2n−1(CP 2#CP 2).

Therefore

AL ∼=

{
ALn,0

∼= #2n−1S2 × S2 L is proper
ALn,ℓ

∼= #2n−1(CP 2#CP 2) otherwise.

�
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5 Scharlemann’s manifolds.

Let K be a knot in S3 and γ(ϵ) an embedded framed curve in S3
p(K), where γ is

the embedding of the curve and ϵ is the framing.

Definition 5.1. The 0-framing is defined as the Seifert framing of the curve embedded
in the surgery diagram (p-surgery along K).

Embedding the framed curve in S3
p(K) × S1 in the obvious way, we can find a

framed curve γ̃ in S3
p(K) × S1.

The isotopy type of the framed curve γ̃ depends only on the homotopy type of
the framed curve γ(ϵ) as mentioned in Subsection 1.3. Therefore the framing ϵ is
(mod2)-framing. Figure 19 is an example of framed curve presentation.

Figure 19: A curve γ0 with (mod2)-framing.

The 0-framing is designated by Definition 5.1 in Subsection 1.3.

Definition 5.2. We fix a diagram of γ in the surgery presentation of S3
p(K). Let

γ(ϵ) be an embedded framed curve in S3
p(K). Namely the induced framing on γ̃ gives

a trivialization tϵ : ν̄(γ̃) ∼= D3 × S1.
We define the (ϵ)-surgery along γ as

BK,p(γ(ϵ)) := [S3
p(K) × S1 − ν(γ̃)] ∪ψϵ S

2 ×D2.

The gluing map ψϵ is the composition of the identity map S2 × ∂D2 → ∂D3 × S1 and
the boundary restriction of t−1

ϵ . We call BK,p(γ(ϵ)) Scharlemann’s manifold. In the
case of p = −1 we drop the suffix p. This manifold depends only on the homotopy type
of γ(ϵ) in S3

p(K).

In other words this operation coincides with taking the boundary after attaching
a 5-dimensional 2-handle along γ̃ with the framing.

5.1 Scharlemann’s manifolds along the meridian curves.

In this subsection we consider Scharlemann’s manifolds with respect to the merid-
ian γ0 of K. When we choose the presentation of γ0, we only use the meridian of K
in the surgery presentation of S3

−1(K) as in Figure 19. We remark the following.

Remark 5.1. Let γ0 be the meridian circle in S3
−1(K). All Scharlemann’s manifolds

BK(γ0(0)) are diffeomorphic to S3 × S1#CP 2#CP 2.

In the case of ϵ = 1, we note the relationship between BK(γ0(1)) and the knot
surgery of the fishtail neighborhood.

Lemma 5.1. BK(γ0(1)) is diffeomorphic to F ∪ FK .
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Proof. Performing knot surgery of the fishtail neighborhood as in Definition 2.3
to F ∪ F , we have

F ∪ FK = F ∪ [F − ν(T )] ∪φ0 [(S3 − ν(K)) × S1].

The handle picture is Figure 20 (the case of K = 41).

Figure 20: F ∪ [F − ν(T )] ∪φ0 [(S3 − ν(K)) × S1].

The surgery along γ̃0 in S3
−1(K) × S1 is the right in Figure 21. Hence we get the

following diffeomorphisms.

BK(γ0(1)) = [S3
−1(K) × S1 − ν(γ̃0)] ∪ψ1 S

2 ×D2

∼= F ∪ (F − ν(T )) ∪φ−1 [S3 − ν(K)] × S1 (See Figure 3 and 21.)
∼= F ∪ (F − ν(T )) ∪φ0 [S3 − ν(K)] × S1 (Lemma 3.1)
= F ∪ FK

�

Figure 21: The surgery along γ̃0 with the framing 1.

Proof of Theorem 1.4. Since F ∪ F contains SyF , applying Lemma 3.3 to this
situation, we have

F ∪ FK = F ∪ F ∼= S3 × S1#S2 × S2,

where the last diffeomorphism is due to Figure 22. �
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Figure 22: F ∪ F = S3 × S1#S2 × S2.

Corollary 5.1. Let γ0 be a meridian of K in the surgery presentation of S3
p(K).

BK,p(γ0(ϵ)) is classified as follows

BK,p(γ0(ϵ)) =

{
S3 × S1#S2 × S2 (ϵ− 1)p ≡ 0 (2)
S3 × S1#CP 2#CP 2 (ϵ− 1)p ≡ 1 (2).

Here we fix γ0 as the meridian of K in the surgery presentation of S3
p(K).

Proof. In the case of ϵ = 1, using 1-strand twist

BK,p(γ0(1)) ∼= BK(γ0(1)) ∼= S3 × S1#S2 × S2.

In the case of ϵ = 0 for the same reason as Remark 5.1 we obtain

BK,p(γ0(0)) ∼=

{
S3 × S1#S2 × S2 p ≡ 0 (2)
S3 × S1#CP 2#CP 2 p ≡ 1 (2)

(see Figure 23).

Figure 23: BK,p(γ0(0)).

Remark 5.2. BK(γ0(1)) is obtained from AK as a surgery along an embedded S2.
The neighborhood of the sphere Σ is the union of the bottom 0-framed 2-handle and
the 4-handle (the left of Figure 24). Attaching the 3-handle and 4-handle to the
complement gets BK(γ0(1)) (the right of Figure 24). The circle δ in Figure 24 is the
core circle of S1 ×D3 attached.

Remark 5.3. In [Ak3] Akbulut got a plug twisting (W1,2, f) satisfying E(1) = N ∪id

W1,2 and E(1)2,3 = N ∪f W1,2. The definitions of plug, N and W1,2 are written

18



2 3-handles

Figure 24: The left: AK . The right: surgery BK(γ0(−1)) ∼= [AK − ν(Σ)] ∪ S1 × D3.

down in [Ak3]. In the same way as [Ak3] we can also show that there exist infinitely
many plug twistings (W1,2, fK) of E(1) with the same plug W1,2. As a result any plug
twisting satisfies E(1) = M ∪id W1,2 and E(1)K = M ∪fK W1,2. Infinite variations
of Alexander polynomial ∆K(t) of knot imply the existence of infinite embeddings
W1,2 ↪→M ∪idW1,2.

5.2 Scharlemann’s manifold along non-meridian curves.

In this subsection we consider B31(γ(ϵ)) in the case where γ are some non-meridian
curves.

The fundamental group of S3
−1(31) is homomorphic to

π = π1(S3
−1(31)) = ⟨x, y|x5 = (xy)3 = (xyx)2⟩ ∼= Ã5.

These elements x, y are two generators as in Figure 25.

Figure 25: The generators x, y of π1(Σ).

The set
[S1, S3

−1(31)] = π/conj. (4)

of free homotopy classes of maps S1 → S3
−1(31) possesses 9 classes as follows.

Classes [e] [x5] [xyx] [x] [x2] [x3] [x4] [xy] [(xy)2]
Orders 1 2 4 10 5 10 5 6 3
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Each of the classes is a normal generator of the fundamental group except [e], [x5].
When we consider non-meridian curve γ, we fix the concrete presentation of γ in
S3
−1(31).

In the case of z = x, according to Corollary 5.1 (originally Akbulut’s result Theo-
rem 1.3 and Remark 5.1) the surgeries along a curve γ0 with [γ0] = x completely gives
the diffeomorphism types as following:

B31(γ0(ϵ)) =

{
S3 × S1#S2 × S2 ϵ = 1
S3 × S1#CP 2#CP 2 ϵ = 0.

We consider for another conjugacy class we will prove the following.

Proposition 5.1. Let γxy be a presentation in Figure 26, where [γxy] = xy. B31(γxy(1))

Figure 26: γxy

is diffeomorphic to S3 × S1#CP 2#CP 2.

In the handle pictures in this subsection ∼ and ∼1 stand for 3-manifold homeo-
morphism and 1-strand twist, respectively. They correspond to some 4-dimensional
diffeomorphism.

By using 3-dimensional diffeomorphism and 1-strand twist we can prove a diffeo-
morphism as in Figure 27. We show that this diffeomorphism can be extended to any
twist along γ(1).

Lemma 5.2 (1-strand twist along γ(1)). A full-twist of any number of strand along
γ(1) does not change the diffeomorphism type of the 4-manifold: If a framed link
(K ′; p′) is obtained from (K; p) by a full-twist along γ(ϵ), then BK′,p′(γ(ϵ)) is diffeo-
morphic to BK,p(γ(ϵ)). We call such a deformation 1-strand twist as well.

Proof. A Dehn twist (that is, 1-strand twist as in Lemma 3.1) along a curve
parallel to γ does not change the differential structure because γ(1) plays a role in the
vanishing circle in a fishtail neighborhood. �
Remark 5.4. To avoid reader’s confusion, we must note that 1-strand twist in
Lemma 5.2 is 1-strand twist along γ(1), thus it does not mean that we can gener-
alize Lemma 3.2 to any even-strand twist case. Any odd-strand twist is interpreted
as ‘a kind of 1-strand twist’ given by a summation of odd 1-strand twists as in Fig-
ure 28 ((odd number)×1 ≡ 1(2)). This summation is due to the proof of Theorem 1.1.
At any rate for a twist to give a 4-dimensional diffeomorphism we require an odd
situation.

We use the same notation ∼1 for any 1-strand twist along γ(1) in Lemma 5.2.
Through Figure 27-34 curves with (1) or (0) mean the (1) or (0)-surgery along the
curves.
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Figure 27: A 1-strand twist along γ(1).

Figure 28: 1-strand twist along γ(1) and odd-strand twist.

Proof of Proposition 5.1. By using Figure 29 and Corollary 5.1 we have

B31(γxy(1)) ∼= Bunknot,3(γ0(0)) ∼= S3 × S1#CP 2#CP 2.

�

Figure 29: B31(γxy(1)) ∼= Bunknot,3(γ0(0)).

Here we will argue several other cases.

Proposition 5.2. We fix diagrams γx2 , γx3 and γx4 as in the leftmost pictures
in Figure 30, Figure 31, and Figure 32 respectively. B31(γx2(1)), B31(γx3(0)) and
B31(γx4(1)) are diffeomorphic to S3 × S1#CP 2#CP 2.

Proof. In the case of B31(γx2(1)), by using Figure 30 and Corollary 5.1 we have
B31(γx2(1)) ∼= S3 × S1#CP 2#CP 2.

In the case of B31(γx3(0)) the last picture in Figure 31 represents a knot γ (the
positive (2,7)-torus knot) in S3 with odd framing. It is obviously homotopic to the
unknot. Namely the manifold B31(γx3(1)) is diffeomorphic to S3 × S1#CP 2#CP 2.

In the case of B31(γx4(1)), the last picture in Figure 32 gives S3 ×S1#CP 2#CP 2

in the similar way. Here Pr(−2, 3, 7) is the (−2, 3, 7)-pretzel knot. �
Proposition 5.3. We fix diagrams γxyx and γ(xy)2 as in the leftmost pictures in Fig-
ure 33 and Figure 34 respectively. B31(γxyx(0)) and B31(γ(xy)2(1)) are diffeomorphic
to S3 × S1#CP 2#CP 2.
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Figure 30: B31(γx2(1)) ∼= Bunknot,5(γ0(0)).

Figure 31: The diffeomorphism for B31(γx3(0)).

Figure 32: The diffeomorphism for B31(γx4(1)).
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Proof. In the case of γxyx, the homotopy class of the curve γxyx is xyy−1xy ∼
x2y ∼ xyx. Thus by Figure 33, we get S3 × S1#CP 2#CP 2.

Figure 33: The diffeomorphism for B31(γxyx(0)).

In the case of γ(xy)2 the deformation as in Figure 34 gets S3 × S1#CP 2#CP 2.
Here T2,−7 is the negative (2, 7)-torus knot �.

In the end of paper we raise a question.

Question 5.1. In the following manifolds

B31(γxy(0)), B31(γx2(0)), B31(γx3(1)), B31(γx4(0)), B31(γxyx(1)), B31(γ(xy)2(0)),

does there exist any non-standard manifold?
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