
BOUNDARY-SUM IRREDUCIBLE FINITE ORDER CORKS

MOTOO TANGE

Abstract. We prove for any positive integer n there exist boundary-
sum irreducible Zn-corks with Stein structure. Here ‘boundary-sum irre-
ducible’ means the manifold is indecomposable with respect to boundary-
sum. We also verify that some of the finite order corks admit hyperbolic
boundary by HIKMOT.

1. Introduction

1.1. G-corks. Cork (C, g) is a pair of a compact contractible (Stein1) 4-
manifold C and a diffeomorphism g on the boundary ∂C that g cannot
extend to the inside C as a smooth diffeomorphism. Cork twist means the
4-dimensional surgery by the following cut-and-paste

X ′ = (X − C) ∪g C.

The manifold presented by the diagram as in Figure 1 becomes a cork.
The map g is the 180◦ rotation about the horizontal line in the picture. In
particular, C(1) is the first cork which was used by Akbulut. Here a box
with the integer x stands for the x-fold right handed full twist.

Figure 1. The handle diagram of C(m).

In the definition of the original cork the condition g2 = id∂C is included.
Recently, in some papers the order of gluing map g is generalized to finite
order ([11], [2]), infinite order [7] or generally any group G in [2]. In terms of
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the view by Auckly, Kim, Melvin, and Ruberman [2], if a group G smoothly
and effectively acts on the boundary of a contractible 4-manifold C and any
non-trivial diffeomorphism g ∈ G cannot smoothly extend to the inside C,
then the pair (C,G) is called a G-cork.

As examples of finite order corks, the author [11] gave pairs of (Xn,m, τn,m)
for X = C,D,E and or generally, X = X(x) for {∗, 0}-sequence x ̸=
(0, · · · , 0) or (∗, · · · , ∗), where we call such a sequence x non-trivial. The
diffeomorphism τn,m is the 2π/n-rotation with respect to the diagram. In
the paper [11], we put the index X on τn,m, like the notation τXn,m. We
remove the indexes if it is understood from the context. We describe Cn,m

in Figure 2. Dn,m is obtained by exchanging all the dots and 0-framings

Figure 2. The handle decomposition of Cn,m.

in Cn,m. En,m is obtained by modifying Cn,m as in Figure 3. The concrete
diagrams for these examples are described in [11].

Figure 3. The modification.
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Theorem 1.1 ([11]). For X = C,D,E or X(x), for any non-trivial {∗, 0}-
sequence x, (Xn,m, τn,m) is a finite order cork. Furthermore, Cn,m is a
Zn-cork with Stein structure.

Auckly, Kim, Melvin, and Ruberman [2] gave the examples of G-corks for
any finite subgroup G of SO(4).

Theorem 1.2 ([2]). Let G be any finite subgroup in SO(4). Then there
exists a G-cork.

Let Y1, Y2 be two n-manifolds with boundary. We call the surgery of
attaching an n-dimensional 1-handle along two neighborhoods of pi ∈ ∂Yi
boundary-sum and the resulting manifold as X1♮X2. Their Stein corks in [2]
were constructed by the boundary-sum of several copies of C(1). They also
announce the existence of finite order cork with hyperbolic boundary in [2].

We say that an n-manifold X with boundary is boundary-sum irreducible
if X = X1♮X2, then X1 or X2 is homeomorphic to an n-disk. If X is not
boundary-sum irreducible, then we call X boundary-sum reducible. Here a
4-manifold X is called irreducible if for any connected-sum decomposition
X = X1#X2, X1 or X2 is a homotopy n-sphere. We call a 3-manifold Y
prime if for any connected-sum decomposition Y = Y1#Y2, Y1 or Y2 is a
3-sphere. The following holds.

Lemma 1.3. Let X be a 4-manifold. If X is irreducible and ∂X is prime,
then X is boundary-sum irreducible.

The problem of whether the examples Xn,m in Theorem 1.1 are boundary-
sum irreducible corks or not has remained. Our main theorem answers this
question for the case of X(x)n,m.

Theorem 1.4. For any integer m and positive integer n. There exist
boundary-sum irreducible Zn-corks (Cn,m, τn,m) with Stein structure. For
any non-trivial {∗, 0}-sequence x, (X(x)n,m, τn,m) are boundary-sum irre-
ducible finite order corks.

Another variation (En,1, τn,1) is boundary-sum irreducible Zn-corks.

Indeed, X(x)n,m is irreducible and ∂X(x)n,m is prime. This result means
that (X(x)n,m, τn,m) is a different finite order cork from the one used in
Theorem A in [2]. We do not know whether our examples are different from
their finite order corks with hyperbolic boundary.

We can show the following result which follows immediately from the
proof of Theorem 1.4. We set Yn,m := ∂Cn,m. Clearly this 3-manifold is
diffeomorphic to any ∂Xn,m(x), for any {∗, 0}-sequence x. We set Y ′

n,m :=
∂En,m.

Theorem 1.5. Let n,m be integers as above. Then Yn,m and Y ′
n,1 are prime

homology spheres.

Furthermore we can prove the following hyperbolicity. In [2] they sug-
gested any Yn,m would be a hyperbolic 3-manifold.
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Theorem 1.6. Let n,m be integers with 0 ≤ m ≤ 2 and 1 ≤ n ≤ 4. Yn,m
and Y ′

n,m are hyperbolic 3-manifolds.

These are direct results by the computer software HIKMOT [5]. It is
proven that Y1,m = Y ′

1,m = ∂C(m) are hyperbolic 3-manifolds in [8], by using

the fact that these are Dehn surgeries of the pretzel knot Pr(−3, 3,−3). We
put a question here.

Question 1.7. Let X be X(x) for non-trivial {∗, 0}-sequence or E.

• Is (Xn,m, τn,m) finite order cork with Stein structure?
• Is (Xn,m, τn,m) finite order cork with hyperbolic boundary?

Notice that it is not known at all what reflection for the exotic structures
does a cork twist by a cork with hyperbolic boundary give. This theme is
left up to a future study of exotic 4-manifolds.
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2. Primeness of Kn,m and K ′
n,m.

Yn,m and Y ′
n,m are n-fold cyclic branched covers of Y (m) := ∂C(m) with

the branch locus Kn,m and K ′
n,m respectively. See Figure 4 for Kn,m. The

picture of K ′
n,m is obtained by modifying the diagram of Kn,m ⊂ Y (m) in

Figure 4 according to Figure 3. In this picture, the slice disks of Kn,m

and K ′
n,m intersect with the 0-framed 2-handle at 2n points. Let d(K) be

the top degree of the symmetrized Alexander polynomial ∆K(t).

Lemma 2.1. For any integer m and positive integer n, the Alexander poly-
nomials of Kn,m and K ′

n,m are ∆Kn,m

.
= 2tn − 5 + 2t−n and ∆K′

n,m
=

6tn − 13 + 6t−n. Furthermore, the genera of Kn,m and K ′
n,m are n.

Note that the computation in the case of K1,m was done in [8].
Proof. Kn,m has the genus n Seifert surface Σn,m as in Figure 4. We
compute the Seifert matrix for Σn,m. We take the generators {λi, µi|i =
1, · · · , n} in H1(Σn,m) as in Figure 5.

We define λ+
i and µ+

i to be the parallel transforms in the one side of the
neighborhood of Σn,m. Consider the order of the generators as

λ1, λ2, · · · , λn, µ1, µ2, · · · , µn.

The (r, s)-entry of the Seifert matrix Sn,m is the linking number lk(x+r , xs),
where xi is the i-th generator above. Here we have the following:

lk(λ+
i , λj) = 0, lk(µ+

i , µj) = 0, lk(λ+
i , µj) =

{
2 i ≤ j

1 i > j
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and

lk(µ+
i , λj) =

{
1 i ≤ j

2 i > j.

These calculations are done by considering the linking indicated in Figure 6.

The Seifert matrix Sn is

(
On An

Bn On

)
, where On is the n×n zero matrix, An

and Bn are n× n matrices satisfying the following:

An = (aij), aij =

{
2 j ≥ i

1 j < i.
and Bn = (bij), bij =

{
1 j ≥ i

2 j < i.

Then we have

∆Kn,m = det(tSn − ST
n ) = det

(
On tAn −BT

n

tBn −AT
n On

)
= (−1)n det(tAn −BT

n ) det(tBn −AT
n )

= det(tAn −BT
n ) det(An − tBT

n ).

We set (αij) = tAn−BT
n , where αij =


2t− 2 j > i

2t− 1 i = j

t− 1 j < i.

We define det(tAn−

BT
n ) to be αn. By expanding αn and deforming it, we have

αn = det


1 2t− 2 · · · · · · 2t− 2
−t 2t− 1 2t− 2 · · · 2t− 2

0 t− 1 2t− 1
. . .

...
...

...
. . .

. . . 2t− 2
0 t− 1 · · · t− 1 2t− 1

 = αn−1 + tβn−1,

where βn−1 is the (n− 1)× (n− 1) matrix satisfying the following:

βn−1 = det


2t− 2 2t− 2 · · · · · · 2t− 2
t− 1 2t− 1 2t− 2 · · · 2t− 2
... t− 1 2t− 1

. . .
...

...
...

. . .
. . . 2t− 2

t− 1 t− 1 · · · t− 1 2t− 1



= det


0 2t− 2 · · · · · · 2t− 2
−t 2t− 1 2t− 2 · · · 2t− 2

0 t− 1 2t− 1
. . .

...
...

...
. . .

. . . 2t− 2
0 t− 1 · · · t− 1 2t− 1

 = tβn−2

β2 = det

(
2t− 2 2t− 2
t− 1 2t− 1

)
= 2t(t− 1).

Thus βn−1 = 2tn−2(t− 1), therefore, we have αn = 2t2− 1+
∑n

k=3 2t
k−1(t−

1) = 2tn − 1.



6 MOTOO TANGE

By using the following equality

det(An − tBT
n ) = (−t)n det(1/tAn −BT

n )

we have det(An − tBT
n ) = (−t)n(2t−n − 1) = (−1)n(2 − tn). Therefore, we

have
∆Kn,m(t) = (2tn − 1)(−1)n(2− tn)

.
= 2tn − 5 + 2t−n.

Hence, since d(Kn,m) coincides with the genus of Σn,m, we can see that the
surface is the minimal Seifert surface. Thus, we have g(Kn,m) = n.

In the case of K ′
n,m, we can do the similar computation to above by taking

the corresponding generators in the Seifert surface.

The Seifert matrix S′
n is

(
On A′

n

B′
n On

)
, where On is the n× n zero matrix,

A′
n and B′

n are n× n matrices satisfying the following:

A′
n = (a′ij), a′ij =

{
−2 j ≥ i

−3 j < i.
and Bn = (bij), bij =

{
−3 j ≥ i

−2 j < i.

Then we have

∆K′
n,m

= det(tS′
n − S′T

n ) = det

(
On tA′

n −B′T
n

tB′
n −A′T

n On

)
.
= 6tn − 13 + 6t−n.

2

Figure 4. Kn,m in Y (m)

Lemma 2.2. Let K1 and K2 be two knots in two homology spheres Y1, Y2
respectively. Then

g(K1#K2) = g(K1) + g(K2)

holds.
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Figure 5. Generators of H1(Σn,m).

Figure 6. lk(λ+
i , µj) and lk(λ+

i , µj)

This is a classical result, however, we prove it here again.
Proof. Let S ⊂ Y1#Y2 be the embedded separating sphere for Y1 and
Y2. We suppose that S is separating K1#K2 i.e., (K1#K2) ∩ S are two
points. Let Σ be the minimal genus Seifert surface of K1#K2. The set
of the intersection Σ ∩ S consists of finite circles and single arc connecting
the two points in the general position. We take the inner most circle C
not including the arc in the interior. C bounds a disk in Σ because Σ is
the minimal genus surface. Then by cutting the disk and capping two new
disks, we can decrease the number of the intersection circles. We call the new
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embedded surface Σ again. This cut-and-past process preserves the genus
of Σ. The isotopy class of Σ may be changed. By iterating this process we
vanish all the intersection circles. Then Σ = Σ1♮Σ2 is obtained and

g(K1#K2) = g(Σ) = g(Σ1) + g(Σ2) ≥ g(K1) + g(K2)

holds. Conversely, since g(K1)+g(K2) ≥ g(K1#K2), we obtain g(K1#K2) =
g(K1) + g(K2). 2

Let K be a knot in a homology sphere. If ∆K(t) cannot be decomposed
as in ∆K(t) = f1(t)f2(t) and fi(t) agrees with the Alexander polynomial of
a knot in a homology sphere, then we call ∆K(t) A-irreducible.

Lemma 2.3. Let K be a knot in a homology sphere Y . If ∆K(t) is A-
irreducible and g(K) = d(K), then K is prime.

Proof. Suppose that K is not prime. Then K is isotopic to a composite
knot K1#K2. Then ∆K(t) = ∆K1(t)∆K2(t). Hence, d(K) = d(K1)+ d(K2)
holds. Since g(K) = d(K), we have d(K) = g(K) = g(K1) + g(K2) ≥
d(K1)+ d(K2). Therefore, g(K1)+ g(K2) = d(K1)+ d(K2) holds. From the
inequalities g(Ki) ≥ d(Ki), g(Ki) = d(Ki) holds for i = 1, 2.

On the other hand, since K is A-irreducible, ∆K1(t) = 1 or ∆K2(t) = 1.
Thus g(K1) = 0 or g(K2) = 0 holds. This means that K is prime. 2

We prove Kn,m is a prime knot.

Lemma 2.4. Kn,m and K ′
n,m are prime knots in Yn,m, Y ′

n,m respectively.

Proof. The Alexander polynomials of Kn,m and K ′
n,m are 2tn − 5 + 2t−n

and 6tn − 13 + 2t−n. These polynomials are A-irreducible. Because, the
polynomials are completely decomposed as ∆Kn,m

.
= 2tn−5+2t−n = (2tn−

1)(tn−2) and ∆K′
n,m

.
= 6tn−13+6t−n .

= (2tn−3)(3tn−2) as a polynomial
over Z. Any factor of these decompositions is an irreducible polynomial by
Eisenstein’s criterion and is not an Alexander polynomial of a knot in a
homology sphere. Since the genus of Kn,m and K ′

n,m is n, from Lemma 2.3,
Kn,m and K ′

n,m are prime. 2

3. Boundary-sum irreducibility of X(x)n,m.

Before proving Theorem 1.4, we prove Lemma 1.3.
Proof. Suppose that X4 is boundary-sum reducible. Then there exists
a decomposition X = X1♮X2 and Xi is not homeomorphic to a 4-disk.
Suppose that either ∂X1 or ∂X2 is diffeomorphic to S3. We may assume
∂X1

∼= S3. Then X is connected-sum X̂1#X2, where X̂1 is X1 capped off
by a 4-disk D4 and X̂1 is not homeomorphic to S4. Then X is irreducible.
Therefore we get the desired assertion.

Here we prove Theorem 1.4.
Proof. For any {∗, 0}-sequence we set X = X(x). The irreducible decom-
position of Xn,m is already done and unique. Use Freedman’s classification
[3] for the double of X. Thus Xn,m is irreducible.

We prove that Yn,m is a prime 3-manifold. Yn,m is the n-fold cyclic
branched cover of Y (m) along Kn,m. Namely, Yn,m/⟨τ⟩ = Y (m), where
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τ = τn,m. If S ⊂ Yn,m is an embedded 2-sphere, we assume that up to
isotopy, S satisfies either of the following conditions for any g ∈ ⟨τ⟩ due to
[9] and [6]:

• g(S) ∩ S = ∅
• g(S) = S.

Suppose that the first condition is satisfied. S does not intersect with
the branch locus, namely, S is projected to a sphere in Y (m). Since Y (m)
is a prime 3-manifold due to [8], then the sphere bounds a 3-ball in Y (m).
Hence, lifting the ball to Yn,m, we can find a 3-ball in Yn,m with the boundary
S.

Suppose that the second condition is satisfied. Then the action restricts
on S. The action is orientation-preserving, because if the action on S is
orientation-reversing, then the quotient space has a connected-sum compo-
nent of L(2, 1). Then in the general position, S transversely intersects with
the branch locus at finite points. By this argument, we can rule out the case
where the branch locus is included in S.

This means that ⟨τ⟩ acts on S with the fixed points discrete. The finite
action of the 2-sphere is conjugate to the rotation in SO(3) up to homotopy
due to [10]. In particular, the fixed points are two points. Let S′ be an
image of S into Y (m) and S′ ∩Kn,m are two points. Since Y (m) is prime,
S′ bounds a 3-disk D in Y (m). D ∩Kn,m is the trivial arc, because Kn,m

is prime knot in Y (m). Since the branched cover along the trivial arc is a
3-disk, S bounds a 3-disk in Yn,m.

In each case, any embedded sphere in Yn,m bounds a 3-disk. This means
Yn,m is prime and it follows that Xn,m is boundary-sum irreducible.

Y ′
n,1 is the n-fold branched cover over Kn,1 in Y ′(1) = C(1). This argu-

ment works for Y ′
n,1. This means Y ′

n,1 is prime. Thus, for any n, (En,1, τn,1)
is boundary-sum irreducible Zn-order cork. 2

Here, we put a quick proof of Theorem 1.5.
Proof of Theorem 1.5. It immediately follows from the latter of the proof.
2

For any integerm withm ̸= 1, we do not know whether En,m is boundary-
sum irreducible or not. We need to prove the primeness of Y ′(m). The Dehn
surgery diagram of Y ′(m) is drawn in Figure 7. This manifold is a Dehn
surgery of S3

1(Pr(−3, 3,−3)).

4. Proof of hyperbolicity.

Finally, we prove Theorem 1.6.
Proof. The output “True” for the program HIKMOT means that the
3-manifold admits hyperbolic structure [4]. To get True-output, we need
apply Algorithm 2 in [4]. The data after using the algorithm are updated
in the site [12]. We can get “True” for these four examples by running the
data by HIKMOT. 2
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isotopy

blow up

sliding

sliding & canceling

Figure 7. The Dehn surgery diagram of Y ′(m).
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