
Introduction to Heegaard Floer homology

Motoo Tange

University of Tsukuba

1 Atiyah-Floer conjecture and Ozsváth-Szabó’s motivation

In [25, 26] Ozsváth and Szabó defined topological 3-manifold invariants by using Floer
homology theory:

ĤF (Y, s), HF∞(Y, s), HF+(Y, s), HF−(Y, s).

Those invariants are new invariants in terms of the point that the invariants are categorifi-
cations of some topological invariants: Casson invariant (with correction term) Alexander
polynomial and Turaev torsion invariant. The motivation of defining these invariants is
that it is a symplectic counterpart of Seiberg-Witten Floer homology via Atiyah-Floer
conjecture. Original Atiyah-Floer conjecture for Yang-Mills equation is the following:

Conjecture 1.1 (Atiyah-Floer conjecture) Let Y be a closed oriented 3-manifolds.
The instanton Floer homology on Y and the Lagrangian intersection Floer homology for
flat connections are isomorphic each other:

HF Inst(MY ) ∼= HF Symp(MΣ;L0,L1).

The instanton Floer homology HF Inst(MY ) is a Morse homology on a moduli space MY

of Yang-Mills equation on a 3-manifold Y up to gauge action. The generators are the flat
connections on Y . The differentials are the counting of the moduli space of Yang-Mills
solutions on the cylinder Y × I.

On the other hand for a Heegaard decomposition Y = H0 ∪Σ H1 we consider the
symplectic moduli space MΣ on Σ of flat connections. Let L0,L1 in MΣ be Lagrangian
submanifolds extending to H0 and H1. The generators of symplectic side are intersection
points of the two manifolds with a suitable general condition. The differentials are the
counting of the holomorphic disks connecting two points. The boundary of a holomorphic
disk lies in union of L0 and L1.

Heegaard Floer theory corresponds to the opposite side of the Seiberg-Witten Floer
homology through analogy of Atiyah-Floer conjecture. Before Heegaard Floer homol-
ogy appearing, no one would have succeeded a symplectic counterpart of Seiberg-Witten
theory. Ozsváth and Szabó attacked that natural and essential problem to attain such
Lagrangian intersection Floer homology. Instanton Floer homology had rediscovered topo-
logical invariants, Casson invariant [45]. Hence they should have expected applications
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of interesting topological invariants from the Heegaard Floer homology. More than ex-
pected, it turns out to be a powerful tool to study low-dimensional topology and be an
attractable object for low-dimensional topologists. As a result, a whole lot of results have
been built by Heegaard Floer homology, some new phenomena are discovered.

This article is a simple overview of Heegaard Floer homology up to now. But some
interesting topics had to skip because of space limitation. If this article arouses your
interests in your mind, as present Heegaard Floer topologists were so in the past, then
you should begin with one in a pile of papers.

One can also read some excellent lecture notes [30] [31] [32] as the first study of Hee-
gaard Floer homology.

2 Heegaard Floer homology

2.1 Definition of Heegaard Floer homologies

We define Heegaard Floer homology in this section. Let Y = H0 ∪Σg H1 be a Heegaard
decomposition of a 3-manifold Y . Since H0, H1 are two genus g handlebodies, there exist
two tuples of g simple closed disjoint curves α1, · · · , αg ⊂ ∂H0 and β1, · · · , βg ⊂ ∂H1

each of which is compressing in each handlebody. Hence, on Σ = ∂H0 = ∂H1 we can see
the diagram (Heegaard diagram) consisting of 2g curves α1, · · · , αg, β1, · · · , βg (these are
called α-curves and β-curves). Here we assume that all the intersection points between
the α-curves and β-curves are transversal in the general position.

In this situation ‘our moduli space’ is the g-th symmetric product

Symg(Σg) := Σg/Sg.

It is a smooth complex manifold by resolving the singular set by the Sg-action. Let Tα

and Tβ denote the image of

α1 × α2 × · · · × αg, β1 × β2 × · · · × βg

by the quotient map Σg → Σg/Sg. The images in Symg(Σg) are g-dimensional tori.
We denote the g curves by α = {α1, · · · , αg} and β = {β1, · · · , βg}. Let z be a base
point in Σg in the complement of α and β. Naturally these are totally real submanifold

(
def⇔ Y ⊂ X and i · TpY ∩ TpY = {0}). Floer’s theory works for the case of a pair of
totally real submanifolds in a complex (or almost complex) manifold. This tuple of these
data (Σg,α,β, z) is called pointed Heegaard diagram. Since 2 dimY = dimX holds, the
intersection points Tα ∩ Tβ are finite points.

Here we verify the homology of the symmetric product is isomorphic to the homology
of Y .

H1(Sym
g(Σg))

H1(Tα)⊕H1(Tβ)
∼= H1(Y,Z)

This means that the Symg(Σg) is regarded as an ‘expounded body’ of a 3-manifold. One
direction is the ordinary homology and another sharpener direction is the Heegaard Floer
homology.
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The intersection point x ∈ Tα ∩ Tβ and base point z determine a spinc structure.
The point x implies g Morse trajectories from index 2 to 1 with respect to the Heegaard
splitting. The point z is regarded as the trajectory from index 3 to 0 naturally. Thus
removing the neighborhoods of the g+1 trajectories, we obtain a non-zero vector field in
a holed 3-manifold. The homotopy classes of such fields up to homologous coincide with
the spinc structures on Y . The ‘homologous’ means that the two fields are homotopic
after deleting several balls. Hence, we get the map:

sz : Tα ∩ Tβ → Spinc(Y ).

Let x,y be intersection points in Tα ∩ Tβ. Let π2(x,y) be the homotopy classes
connecting x and y. The class [u] ∈ π2(x,y) is represented by a continuous map u : D →
Symg(Σg) satisfying 

u({Re ≥ 0} ∩ ∂D) ⊂ Tα

u(i) = y

u({Re ≤ 0} ∩ ∂D) ⊂ Tβ

u(−i) = x,

where D is the unit disk in the complex plane. For any ϕ ∈ π2(x,y) let nz(ϕ) be the

algebraic count #((z × Symg−1(Σg) ∩ u(D)). M̂(ϕ) = M(ϕ)/R is the moduli space of

holomorphic disk which is divided by natural R-action. Then the differential ∂̂ are defined
to be

∂̂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),nz(ϕ)=0,µ(ϕ)=1

M̂(ϕ) · y.

Here µ is the Maslov index. We put ĈF (Σg,α,β, z) = Z⟨x|x ∈ Tα ∩Tβ⟩. Then Ozsváth
and Szabó proved the following:

Theorem 2.1 (ĈF (Σ,α,β, z), ∂̂) is a chain complex and its homology is a topological
3-manifold invariant.

We denote the chain complex and homology by ĈF (Y ) and ĤF (Y ) respectively. The
proof of this theorem is supported by an analytical argument on the moduli space of
holomorphic disks. The argument is important, however, skip here. Actually, to hold this
topological invariance, we need some general conditions: admissibility in Section 4.2.2 in
[25].

The homology ĤF (Y ) is decomposed as follows:

ĤF (Y ) = ⊕s∈Spinc(Y )ĤF (Y, s),

because the differential keep the map sz, i.e., sz(x) = sz(y) when π2(x,y) ̸= ∅. The Euler
number of ĤF (Y, s) is

χ(ĤF (Y )) =

{
|H1(Y,Z)| b1(Y ) = 0

0 b1(Y ) ̸= 0.

Namely, ĤF (Y ) is a categorification of the ordinary homology H1(Y ) = H2(Y ).
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Let (Y, s) be a spinc 3-manifold with b1 > 0. Then the Euler characteristic of HF+

agrees with the Turaev torsion.

χ(HF+(Y, s)) = −τ(Y, s)

This equality makes sense in non-torsion spinc case, but this equality holds even for any
torsion spinc structure by taking truncated Euler characteristic. In particular if Y is 0-
surgery of a knot K, then the i-th Turaev torsion ti(K) is computed by the coefficients
of the Alexander polynomial of K as in [33].

Furthermore by counting intersection numbers with z × Symg−1(Σg), we define the
following chain complex

CF∞(Σg,α,β, z) = Z⟨Un · x|x ∈ Tα ∩ Tβ, n ∈ Z⟩.

The differential ∂∞ is a U -equivariant map and

∂∞x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

#M̂(ϕ)Unz(ϕ)y.

There exists a subchain complex CF−(Σ,α,β, z) = Z⟨Un · x|x ∈ Tα ∩Tβ, n ∈ Z<0⟩. The
quotient complex CF∞/CF− denotes by CF+(Σ,α,β, z). Then we have the following:

Theorem 2.2 ([25]) These chain complexes give topological invariants

HF∞(Y ), HF−(Y ) and HF+(Y ).

Furthermore, these homology are Z[U ]⊗ Λ∗H1(Y,Z)/Tors-module.

By the definition we have the following short exact sequence:

0 → CF−(Y )
i→ CF∞(Y )

π→ CF+(Y ) → 0.

Thus we induce the long exact sequence:

· · · → HF−(Y ) → HF∞(Y ) → HF+(Y ) → HF−(Y ) → · · ·

The cokernel of π is denoted by HFred(Y ). Since the chain complex ĈF (Y ) is embedded
in the n = 0 level in CF∞(Y ), the short exact sequence:

0 → ĈF (Y ) → CF+(Y )
×U→ CF+(Y ) → 0

Here the second is the U -multiple map. Thus we induce the long exact sequence:

· · · → ĤF (Y ) → HF+(Y ) → HF+(Y ) → ĤF (Y ) → · · ·

2.2 Holomorphic disks

Next step of Heegaard Floer homology is a dimensional reduction of holomorphic disks
in Symg(Σg). One of most remarkable points of Heegaard Floer theory is computable by
using words of low-dimensional topology.
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Proposition 2.3 ([25]) For a continuous map u : D → Symg(Σg), there exists a con-

tinuous map from a branched cover û : D̂ → Σg satisfying the following commutative
diagram:

D̂ −−−→ {(x, v) ∈ Σ× Symg(Σg)|x ∈ v} −−−→ Σyg-fold branched cover

y
D −−−→ Symg(Σg)

This proposition asserts the holomorphic disk in Symg(Σg) is understood as a surface
mapped in Σg. The condition ∂D ⊂ Tα ∪ Tβ corresponds to û ⊂ α ∪ β. The Maslov
index in the definition of the Heegaard Floer homology is analytical information data of
holomorphic disk.

Proposition 2.4 ([13]) The Maslov index of a disk u in [u] = ϕ ∈ π2(x,y) is determined
by a topological information of the region mapped in Σg.

2.3 The TQFT viewpoint and absolute grading

Floer theory is defined in the framework of topological quantum field theory (TQFT).
Any element in Floer homology can be delivered by the cobordism to an element in Floer
homology of another side. Let (W, s) be a spinc 4-dimensional cobordism from Y1 to Y2.
Then there exists a U -equivariant map:

F∞
W,s : HF∞(Y1, t1) → HF∞(Y2, t2),

where s|Yi
= ti. This map is induced to other homologies HF+, HF− and ĤF in the

same way. For the composition of two cobordisms X = X1 ∪X2 we have F
◦
X1,s1

◦F ◦
X2,s2

=∑
{s∈Spinc(X)|s|Xi

=si} F
◦
X,s, where ◦ = ∞,±,∧.

Let Y be a rational homology sphere. In general, (Y, s) is a torsion spinc 3-manifold,
where c1(s) is a torsion element. Then the Heegaard Floer homology admits an absolute

Q-grading gr. This grading is defined as follows. First for a generator x0 ∈ ĤF (S3)
gr(x0) = 0 holds. The difference of the gradings by F ◦

W,s (◦ = ∞,±,∧) is computed by

gr(F ◦
W,s(x))− gr(x) =

c21(s)− 2χ(W )− 3σ(W )

4
.

The U -action lowers the degree by −2. These properties determine the absolute Q-grading
on the Heegaard Floer homology of (Y, s) uniquely.

Heegaard Floer homology relates to smooth 4-manifold invariant. Ozsváth and Szabó
in [37] defined the mixed invariant as a map Fmix

W,s : HF−(Y1, t1) → HF+(Y2, t2) by using
3+1 dimensional TQFT. First, we cut a 4-dimensional cobordism into 2 pieces V1, V2 along
a suitable 3-manifold N . Suppose that each of V1, V2 has at least one positive eigenvalue
in the intersection form and δH1(N) is 0 in H2(W,∂W ). The spinc 4-manifolds (V1, s|V1)
and (V2, s|V2) are spinc cobordisms from (Y1, t1) to (N, s|N) and from (N, s|N) to (Y2, t2)
respectively. Then Fmix

W,s is a composition as follows:

Fmix
W,t1

: HF−(Y1, t1)
F−
V1,s|V1→ HF+(N, s|N) → HFred(N, s|N) ⊂ HF+(N, s|N)

F+
V2,s|V2→ HF+(Y, t2).
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The reduced part of HF+(N, s|N) is also embedded in HF−(N, s|N) naturally.
Let X be a closed smooth 4-manifold with b+2 (X) > 1. Then deleting two 4-balls in

X we built a cobordism W from S3 to S3. Applying Un · Θ− in HF−(S3) to the mixed
invariant through this cobordism, we obtain an invariant

Fmix
W,s (U

n ·Θ−) =: ΦX,s ·Θ+ ∈ HF+(S3)

Here Θ− (Θ+) is the top (bottom) generator in HF−(S3) (HF+(S3)) and n = (c1(s)
2 −

2χ(X) − 3σ(X))/4 (it agrees with the dimension of the moduli space of Seiberg-Witten
solutions). The number ΦX,s ∈ Z is a smooth 4-manifold invariant (smooth OS-invariant)
and conjecturely, the number coincides with the Seiberg-Witten invariant SWX,s.

Definition 2.5 (correction term [33]) Let (Y, s) be a spinc 3-manifold. Then d(Y, s)
is defined to be the minimal grading in the image π : HF∞(Y, s) → HF+(Y, s). This
invariant is called correction term (or d-invariant).

In the case of integral homology sphere the invariant is denoted by d(Y ) ∈ 2Z. From the
property of gr the correction term d is a spinc rational homology cobordism invariant.
Suppose that W is a rational homology cobordism between Y1, Y2. Let s be a spinc

structure on W with s|Yi
= ti. Then we have

d(Y1, t1) = d(Y2, t2).

Let (Y, s) be a spinc rational homology sphere. Then

HF+(Y, s) ∼= T+
(d(Y,s)) ⊕HFred(Y, s).

Here T+
(d) is isomorphic to T+ and the minimal grading is d. The d-invariant and Euler

number of HFred compute the Casson invariant.

Theorem 2.6 Let Y be an integral homology sphere. Then the Casson invariant λ(Y ) is
computed by

λ(Y ) = χ(HFred(Y ))− 1

2
d(Y ).

The Heegaard Floer homology of (branched) covering space Σn(K) is less known so far.
Casson invariant formula of double branched cover is known by Mullins [18] as follows:

λ(Σ2(K)) =
1

8
sign(K)− 1

12
V ′
K(−1)/VK(−1),

where Σ2(K) is a homology sphere and VK is the Jones polynomial. On the other hand
Ozsváth and Szabó show the following in [35]:

Theorem 2.7 Let L a link in S3. There exists a spectral sequence with E2-term the
Khovanov homology of L such that the sequence converges to the F2-coefficient homology

ĤF (Σ2(L),F). Here F is a field isomorphic to Z/2Z.

The Khovanov homology is a categorification of Jones polynomial, and ĤF and Kh have
surgery exact sequence. Does this spectral sequence interpret Mullins’ formula? Definitely,
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covering space is a weak point for Casson invariant and Heegaard Floer homology. Dehn
surgery formula for these invariants have been studied ever, however there are not so much
research for covering space.

For a rational homolog sphere Y , the renormalized Euler characteristic is defined as

χ̂(Y, s) = χ(HFred(Y, s))−
1

2
d(Y, s).

Then due to [43] we have ∑
s∈Spinc(Y )

χ̂(Y, s) = |H1(Y )| · λCW (Y ),

where λCW is the Casson-Walker invariant.
The correction term has the 4-dimensional information as follows:

Theorem 2.8 Let (Y, t) be a spinc rational homology sphere. If (Y, t) admits a negative
definite bounding (W, s) with s|Y = t, then we have the following inequality:

c1(s)
2 + b2(W ) ≤ 4d(Y, t).

The extended inequality of this theorem to a 3-manifold with b1 > 0 can prove the Thom
conjecture again [33].

2.4 L-spaces

Let Y be a rational homology sphere. If ĤF (Y, s) = Z for any spinc structures, then Y is
called an L-space. Examples of L-space are lens spaces. The genus one Heegaard diagram
of a lens space L(p, q) consists of single α-curve and β-curve. Then the pointed Heegaard
digram is (T 2, α, β, z). Thus the symmetric product is T 2 itself and we have Tα = α and
Tβ = β. Hence, the generators α ∩ β are p points. The differentials are all zero, because
the p points belong to distinct spinc structures. Thus we have the following:

Proposition 2.9 Let Y be a lens space and s any spinc structure on Y .

ĤF (Y, s) ∼= Z, HF∞(Y, s) = Z[U,U−1], HF+(Y, s) ∼= Z[U,U−1]/UZ[U ], HF−(Y, s) ∼= Z[U ]

We put T∞ = Z[U,U−1], T+ = Z[U,U−1]/U · Z[U ], T− = Z[U ]. Another component as a
Z[U ]-module is Z[U ]/Un, which is a finite rank Z-module and we denote it by T+(n).

Any elliptic manifolds (i.e., it is a finite fundamental group) are an L-space. In other
words L-space is a generalization of such a manifold. In addition, L-spaces contain not
elliptic 3-manifolds. Suppose that a hyperbolic knot K is an L-space knot (i.e., an integral
Dehn surgery is an L-space), e.g., the (−2, 3, 7)-pretzel knot. Then a sufficiently large
Dehn surgery of the knot is also an L-space. This is an easy result due to the surgery exact
sequence of Heegaard Floer homology. In other examples, double cover of any alternating
knot is also L-space [35]. [35] shows that the double cover of quasi-alternating link is
L-space. The quasi-alternating knots Q is the smallest set defined inductively as follows:
(1) unknot∈ Q; (2) if L0, L1 ∈ Q, det(L0) det(L1) ̸= 0 and L0, L1 are two types of the
resolution of a crossing of L and det(L) = det(L0) + det(L1), then L ∈ Q.

L-space includes interesting geometric properties besides:
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Theorem 2.10 ([29]) Any L-space does not admit co-oriented taut foliation.

This result is useful, because the nonexistence of taut foliation is hard to prove with-
out L-space property. We do not find a method in Heegaard Floer theory to prove the
nonexistence of tight contact structure, so far.

Recently developing noticeable property is left-orderbility of the fundamental group.
‘Left-orderable’ (LO) means that the existence of a total order on a group that any left
action of the group keeps the order relation between any two elements. A group is LO
if and only if it is a subgroup in Homeo+(R). We believe that the following mysterious
relationship:

Conjecture 2.11 Let Y be a rational homology sphere. Then Y is not LO, if and only
if Y is an L-space.

It is well-known that LO group is a non-torsion group. Then any elliptic manifold is not
LO. Furthermore, Boyer, Gordon, and Watson [2] proved that for any Seifert manifold or
Sol manifold this conjecture is true. Any other hyperbolic manifold is not so known. For
example for not all double covers of (quasi-)alternating link this relationship is verified.

2.5 Surgery exact triangle

In general Floer theory an exact triangle among three homologies is inherent. In Heegaard
Floer theory, the three homologies correspond to replacements of α or β-curves. In the
context of a low-dimensional topology, the replacements are 0-surgery, and p-surgery. Let
Yn be a n-surgery of a 3-manifold Y along a null-homologous knot K. Then the following
exact triangle holds:

· · · → HF+(Y ) → HF+(Y0, [i]) → HF+(Yp, i) → HF+(Y ) → · · · .

Read [26] for surgery exact sequence. The decategorification of this exact triangle is the
Dehn surgery formula of Casson invariant as follows:

λCW (Yp) = λ(Y )− s(1, p) +
1

2p
∆′′

K(1),

where s(1, p) is the Dedekind sum, which is equivalent to the Casson-Walker invariant of
L(p, 1). Unlike Casson invariant, generally, for determining Floer homology of Yp we need
homologies of Y and Y0, exact triangle and a more extra information. The other triads
of surgery exact sequence are {Y, Yn, Yn+1} or {Y, Y0, Y1/q}. These correspond to surgery
formulas for Casson invariant. The surgery triangle is applied on the variable situation.

2.6 Contact structure

Let (Y, ξ) be a contact 3-manifold, which the 2-plane filed ξ is nowhere integrable. Any
contact 3-manifold is decomposed into two types of non-isotopic contact structures: tight
and overtwisted. The classification of tight contact structures is more difficult than the one
of overtwisted structures. The latter structures agrees with the classification of homotopy
types of 2-plane fields due to Eliashberg [4]. The situations which a tight contact structure
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naturally appear is the cases where it is the boundary of a symplectic 4-manifold with
some suitable boundary condition. This contact structure is called symplectic fillable. The
boundary of Stein manifold is also a tight contact structure, which is called Stein fillable.

Ozsváth and Szabó define in [36] an isotopy invariant of contact structure. The class

c(ξ) is an element in ĤF (−Y, s(ξ))/± 1 and has the following property:

Theorem 2.12 If ξ is an overtwisted contact structure, then c(ξ) = 0. If ξ is Stein
fillable contact structure, then c(ξ) ̸= 0.

The converse of this theorem does not holds. This theorem implies that the invariant
c(ξ) detects the tight-ness and Stein fillability. Since the detection of tight-ness by using
contact topology is difficult in general, after this theorem, the computation of c(ξ) has
been a reasonable method. The most simple example in [15] is the contact +1-surgery
of a Legendrian right-handed trefoil, which is topologically −Σ(2, 3, 4). It admits no
symplectic fillable but a tight contact structure. The former is due to an application of
the Seiberg-Witten invariant and the latter part is due to the computation of c(ξ).

In general, invariants of some tight contact structures are vanishing (structures with
some symplectic fillable or positive Giroux torsion etc.) However if one take a suitable
twisted system, one can sometimes give a non-vanishing class [29]. For other examples
related to contact structures, symplectic topology, Lefschetz fibration, and Stein manifold
readers should take a look at [22].

2.7 Graph manifolds

In [34], Ozsváth and Szabó gave a method to compute HF+ for plumbed 3-manifolds.
In short, this method is a machinery put surgery exact sequence together. Némethi
[19] gives a systematical algorithm (the tau function and the graded root) to compute
Heegaard Floer homology for any plumbed 3-manifold with at most one bad vertex. This
computation gives the module structure of HF+ completely, and it is used as a first useful
trial to explore Heegaard Floer behavior for some topological phenomenon.

The more general 3-manifolds are hyperbolic 3-manifolds. Does Heegaard Floer ho-
mology capture hyperbolic structure? This is a natural and challenging question.

3 Knot Floer homology

3.1 Definition and an example

The most attractable point of Heegaard Floer theory is what it is able to build some
variations of Floer homology. One of variation is knot Floer homology. Knot Floer
homology was defined by Ozsváth and Szabó [27] and independently by Rasmussen [42].

Let K be a knot in S3. We take a (g, 1)-decomposition S3 = H0 ∪Σg H1 of (S3, K).
In other words K is transversal about Σg and the union of the two arcs Ai = K ∩ Hi

(i = 0, 1). Furthermore, we assume that Ai does not intersect compressing disks of α-
curves and β-curves. Such a Heegaard splitting always exists for any knot K. From the
assumption K intersects two points ∂A0 = ∂A1 in Σg with α-curves and β-curves disjoint.
We denote the points by z, w. We call such a diagram double pointed Heegaard diagram

9



Then the chain complex of knot Floer homology CFK∞(S3, K, i) is isomorphic to
CF∞(Σg,α,β, w) as a Z[U ]-module. We denote by Mas(x) the absolute grading on
CF∞(Y ) which is defined in the previous section. The grading satisfies:

Mas(x)−Mas(y) = µ(ϕ)− 2nw(ϕ),

where ϕ ∈ π2(x,y).
We will introduce a filtration (Alexander filtration Alex(x)) on the module by using a

knot in the S3. The filtration is defined as follows. For x,y ∈ Tα ∩ Tβ

Alex(x)− Alex(y) = nz(ϕ)− nw(ϕ),

where ϕ is a disk with ϕ ∈ π2(x,y). This definition is a relative Z-filtration only. To
make an absolute filtration we impose a symmetry.

#{x|Alex(x) = i} = #{x|Alex(x) = −i} mod 2.

We denote such a filtered chain complex of CF∞(Σg,α,β, z) by CFK∞(Σ,α,β, z, w).
Here we give an example of double pointed Heegaard diagram and the filtered chain

complex. Consider the trefoil K = 31. In Figure 1 we describe two digging arcs and two

Figure 1: The trefoil knot and the Heegaard decomposition of S3.

2-handles on a 3-ball. The circles β1, β2 are the attaching circles. The circle β2 is the
meridian disk of K. Moving the circles and holes on the 3-ball we obtain the first picture
in Figure 2. The dashed arc presents a longitude of a knot K. In this case the double
points z, w are two points close to the meridian circle β2. The position of curves α2, β2

can be made cancel the two critical points in terms of Morse theory. Hence, the diagram
moves to the next picture and it is isotopic to the last diagram in Figure 2.

From the last diagram we compute the Alexander filtration of the trefoil. The inter-
section points are 3 points: x1,x2,x3. The non-trivial disks on the diagram are D1, D2.
D1 is a disk connecting from x2 to x1 and D2 is a disk connecting from x2 to x3. Thus,
the filtration definition implies

Alex(x2)− Alex(x1) = −1, Alex(x2)− Alex(x3) = 1.

From the symmetric condition we have

Alex(x1) = 1, Alex(x2) = 0, Alex(x3) = −1.
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Figure 2: A double pointed Heegaard diagram of the trefoil knot and a move.

The Maslov grading is

Mas(x2)−Mas(x1) = −1, Mas(x2)−Mas(x3) = 1

The differential ∂∞ works as follows:

∂∞x1 = 0, ∂∞x2 = U · x1 + x3, ∂∞x3 = 0

Here we compute hat Heegaard Floer homology. Since the version is embedded in the
0-level in CF∞ with U = 0, then we have

∂̂x1 = 0, ∂̂x2 = x3, ∂̂x3 = 0,

ĤF (S3) ∼= Z · x1.

By the definition of the absolute grading, gr(x1) = 0. Since U -action decreases by 2, the
Maslov gradings are computed as Mas(x1) = 0,Mas(x2) = −1,Mas(x3) = −2.

Here we define differential ∂̂K of knot Floer homology ĈFK(S3, K) as follows:

∂̂Kx =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),nz(ϕ)=nw(ϕ)=0

#M̂(ϕ)y.

The chain complex ĈKF (Σg,α,β, z, w) is isomorphic to ĈF (Σg,α,β, w) and the dif-

ferentials are ∂̂K .
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Theorem 3.1 (Knot Floer homology) The homology of (ĈKF (Σg,α,β, z), ∂̂K) is an
isotopy invariant of a knot K. This homology decomposes as follows:

ĤFK(S3, K) = ⊕iĤFK(S3, K, i),

where ĤFK(S3, K, i) is the homology with the Alexander grading i.

Furthermore, the Euler characteristic of ĤKF (S3, K) is the i-th Alexander polynomial

χ(ĤFK(S3, K, j)) = ai.

In the case of our trefoil, the differentials ∂̂K are computed as follows:

∂̂Kx1 = 0, ∂̂Kx2 = 0, ∂̂Kx3 = 0.

Hence, we obtain

ĤFK(S3, K, j) =


Z(0) j = 1

Z(−1) j = 0

Z(−2) j = −2.

Taking the Euler characteristic of these complexes, we have

g(K)∑
j=−g(K)

χ(ĤFK(S3, K, j)) · tj = t− 1 + t−1 = ∆K(t).

We denote for any x ∈ Tα ∩ Tβ the map CFK∞(S3, K) ∋ Un · x 7→ −n ∈ Z by Alg.
Then one can visualize the double complex Alex-filtration and Alg-filtration on the plane.
In the case of K = 31, the double complex is described as Figure 3.

Generally, due to [40] if K is alternating, then ĤFK(K, j) ∼= Z|ai|
(s+σ

2
). In this case the

homology is determined by the Alexander polynomial and the knot signature. However,
for non-alternating knot, it is different in general, see Theorem 3.7.

Other important variations of definitions of knot Floer homology are the ones by grid
diagram [17] and Kauffman state [40]. By the former, knot Floer homology is computed
from a purely combinatorial information of a knot. By the latter, on the knot Floer
homology, a geometric meaning of a state sum is given.

3.2 Genus and fiberness.

In this section we give the characterizations of Seifert genus and fiberness on knot Floer
homology. The knot Floer homology detects the Seifert genus g(K).

Theorem 3.2 ([29]) Let K be a knot in S3. Then we have

g(K) = max{s|ĤFK(S3, K, s) ̸= {0}}.

Furthermore, Heegaard Floer homology detects the fibered-ness of knot.

Theorem 3.3 ([20]) Let K be a knot in S3. Then K is a fibered knot if and only if

ĤFK(S3, K, g(K)) ∼= Z.

12



Figure 3: Differentials of CFK∞(S3,K) and ĈFK(S3,K) in it.

3.3 Legendrian and transverse knot.

Legendrian knot (or transverse knot) in a contact 3-manifold is a curve tangent (or trans-
verse) on any plane of the standard contact S3 at any point on the knot. Isotopy invariants
for those knots are classically the Thurston-Bennequin invariant (tb), and the rotation
number (rot) for Legendrian knots, and the self-linking number (sl) for transverse knots.
These and smooth isotopy type are called classical invariants. Classical invariants dis-
tinguish these knots but not complete. For example Chekanov [3] and Eliashberg found
non-isotopic Legendrian knots (CE-pairs) with the same classical invariants.

In the Heegaard Floer theory, (Legendrian or transverse) (unclassical) isotopy invari-
ants in (S3, ξstd) are included. Let L be a Legendrian knot in the standard contact
S3. Ozsváth, Szabó and Thurston defined in [41] defined Legendrian isotopy invariant
λ(L) ∈ HFK−(S3, L) using the grid diagram. After that, in [14] Lisca, Ozsváth, Stipsicz,
and Szabó defined another Legendrian invariant L(L) ∈ HFK−(S3, L) using open book
decomposition compatible with the contact structure, which it is proved these invariants
are equivalent to each other in [1]. For the transverse knot invariant T, which is defined
by Legendrian approximation, the same history has been traced. This equivalence is so
fruitful in terms of what some deeper information may be appeared. The image of the

hat version homology ĤFK(L) is referred to as L̂(L). The invariants reprove CE-pair
is not isotopic and a link 623 is not simple (i.e., the knot is determined uniquely from
classical invariants), and transverse CE-pair, which is trivial DGA invariant are also not
(transverse) isotopic [23]. The DGA invariant is sometimes not useful for Legendrian
approximation of transverse knot because it vanishes for a stabilized knot. However the
invariant L is sensitive for stabilized knots (it is multiplied by U or identity depending
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on stabilization). By using T, it is proven that the CE’s twist knots are transverse not
simple. The Alexander and Maslov gradings of L and T compute as follows:

Alex(L(L)) =
1

2
(tb(L)− rot(L) + 1)

2Alex(L(L))−Mas(L(L)) = d3(ξ).

M(T(T )) = 2A(T(T )) = sl(T ) + 1.

Here d3(ξ) is the invariant of 2-plane field on 3-dimensional obstruction defined in [7].

3.4 L-space surgery

The lens space knot K is a knot yielding a lens space by an integral Dehn surgery. This
research field is the one which was remarkably developed by Heegaard Floer homology.
Ozsváth and Szabó obtained the Alexander polynomial restriction for lens space knot (or
for L-space knot more strongly).

Theorem 3.4 Let K be an L-space knot. Then the Alexander polynomial is of form:

∆K(t) = (−1)m +
m∑
j=1

(−1)m−j(tnj + t−nj),

where the exponents nj give an increasing sequence:

0 < n1 < n2 < · · · < nm = d.

As a corollary, this theorem and Theorem 3.3 imply that any L-space knot must be a
fibered knot. By this theorem many knots are ruled out from L-space knot, in particular
lens space knot. Besides, if K yields a lens space L(p, q), then due to [12], we have

2g(K)− 1 ≤ p. (1)

This inequality follows from HF+(S3
0(K), i) ∼= T+(ti) (i ̸= 0) and g(K) = d (degree of

∆K(t)). Greene in [8] improved the inequality (1) in the case of lens space knot in S3 as
follows:

2g(K)− 1 ≤ p− 2
√
(4p+ 1)/5

by using Theorem 3.4 essentially. [8] classifies all lens spaces obtained by Dehn surgeries
in S3 by extracting some information of a lattice embedding coming from embedding
of the resolution of a lens space in a definite 4-manifold. This implies this property in
Theorem 3.4 is so strong among the other L-space knot restrictions.

3.5 Dehn surgery formula

We introduce the Heegaard Floer homology of a Dehn surgery S3
p/q(K) in [27], [38], [39].

Briefly speaking, the computation of the homology is the mapping cone technique of the
chain complex. Let K be a knot in S3. We denote Alex and Alg by j- and i-coordinate.
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Let C be CFK∞(K). Let A+
s = C{min{i, j − s} ≥ 0} and B+ = C{i ≥ 0}. We define

A+
i , B+, v+, h+ as follows:

A+
i = ⊕s∈Z(s, A

+
⌊(i+ps)/q⌋), B+

i = ⊕s∈Z(s,B
+)

v+ : (s, A+
⌊(i+ps)/q⌋) → (s,B+), h+ : (s, A+

⌊(i+ps)/q⌋) → (s+ 1, B+).

The second components v+s and h+
s of v+ and h+ on the level s are defined as follows:

The map v+s is defined to be the quotient to i ≥ 0. The map h+
s is defined to be the

composition of the quotient to j ≥ ⌊ i+ps
q

⌋ and the identification with i ≥ 0. Here we

define A+
i → B+ to be

D+
i,p/q(s, as) = {(s, v+

⌊ i+ps
q

⌋
(as) + h+

⌊ i+p(s−1)
q

⌋
(as−1)}.

Theorem 3.5 HF+(S3
p/q(K), i) is isomorphic to the homology of the mapping cone X+

i,p/qwith

respect to D+
i,p/q.

The mapping cone with respect to D+
i,p/q is the chain complex which the generators are

A+
i ⊕ B+

i and the differential is (
∂A+

i
0

D+
i,p/q ∂B+

i

)
.

In the case where q = 1 and p ≥ 2g(K) − 1, as in [27], the module of HF+ of S3
p(K)

or S3
−p(K) is isomorphic to

HF+
∗ (S3

p(K), [s]) ∼= H
∗+ (2s−p)2−p

4p

(A+
s , [s]), HF+

∗ (S3
−p(K), [s]) ∼= H

∗+ p−(2s+p)2

4p

(bA+
s , [s])

where bA+ = C{min{i, j− s} ≥ 0}. Further the homology of Âs := C{max{i, j− s} = 0}
and bÂs := C{min{i, j − s} = 0} compute the hat version of S3

p(K) and S3
−p(K) in the

same way.
Ni and Wu [21] gave the correction term formula of rational surgery of a knot. The

spinc structures of Dehn surgery of a knot are identified with Z/pZ naturally.

Theorem 3.6 Let K be a knot in S3 and p, q positive integers. For 0 ≤ i < p we have

d(S3
p/q(K), i) = d(L(p, q), i)− 2max{V⌊ i

q
⌋, V⌊ p+q−1−i

q
⌋}.

Here Vi is a concordance invariant will be defined as below.

3.6 Satellite knots

Hedden computed ĤFK of the (+)-Whitehead double D+(K,n) of a knot K. The coef-
ficient is F = Z/2Z. Let g be the genus of K.

Theorem 3.7 ([9]) Let K be a knot in S3. The case of n ≥ 2τ(K):

ĤFK(D+(K,n), i) =


Fn−2g−2
(1) ⊕g

j=−g [H∗−1(F(K, j))]2 i = 1

F2n−4g−3
(0) ⊕g

j=−g [H∗(F(K, j))]4 i = 0

Fn−2g−2
(−1) ⊕g

j=−g [H∗+1(F(K, j))]2 i = −1.
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The case of n < 2τ(K):

ĤFK(D+(K,n), i) =


F2τ(K)−2g−2
(1) ⊕ F2τ(K)−n

(0) ⊕g
j=−g [H∗−1(F(K, j))]2 i = 1

F4τ(K)−4g−4
(0) ⊕ F4τ(K)−2n−1

(−1) ⊕g
j=−g [H∗(F(K, j))]4 i = 0

F2τ(K)−2g−2
(−1) ⊕ F2τ(K)−n

(−2) ⊕g
j=−g [H∗+1(F(K, j))]2 i = −1.

Here τ(K) (concordance invariant defined in the knot Floer theory) will be defined in the
next section. Since the Alexander polynomial of D+(K,n) is −nt+ (2n+ 1)− nt−1, this
theorem says that knot Floer homology is strictly stronger invariant than Alexander poly-
nomial. For example, it follows immediately that if D+(K,n) is fibered non-trivial knot,
then the double is figure-8 knot only (K= the unknot and n = 1) by using Theorem 3.3
and the reduced knot filtration formula of τ(K) in [44]. Thus, due to [9] the τ -invariant
of D+(K,n) is following:

τ(D+(K,n)) =

{
0 n ≥ 2τ(K)

1 n < 2τ(K).

Hence, untwisted (n = 0) Whitehead double with positive τ(K) is not smoothly slice. On
the other hand, Freedman’s result [5] says that any knot with trivial Alexander polyno-
mial is topologically slice. Then, for example for any positive torus knot K, D+(K, 0) is
topologically slice but not smoothly slice knot. Such a knot gives an exotic R4 by Freed-
man’s result [5] and Gompf’s result [6]. The result of 0-framed attachment of the knot
on the 4-ball is embeddable in a 4-manifold homeomorphic to R4 but not in R4.

4 Concordance invariants

Two knotsK0, K1 are defined to be (knot) concordant if there exists a smoothly embedded
annulus f : S1 × [0, 1] ↪→ S3 × [0, 1] such that f |S1×{i} = Ki. The set C of the equivalent
classes of knots by knot concordance is an abelian group so that the connected-sum is the
addition. The zero element in C corresponds to the equivalent class of slice knot. We say a
knot K to be slice, if there exists a proper smoothly embedded disk in 4-ball such that the
boundary is isotopic to K. In the Heegaard Floer package there exist some concordance
invariants. We give the definitions of those. In this section we denote CFK∞(K) by C.

4.1 The τ-invariant and variations.

Let F(K, j) be C{Alex ≤ j, Alg = 0}. Then we have

· · · ⊂ F(K, i− 1) ⊂ F(K, i) ⊂ F(K, i+ 1) ⊂ · · ·

and ∪i∈ZF(K, i) = ĈF (S3). Knot Floer homology ĤFK(S3, K, j) is the graded homology

H∗(F(K, j)/F(K, j − 1)). The inclusion map ιm : F(K,m) ⊂ ĈF (S3) induces a map

ιm∗ : H∗(F(K,m)) → ĤF (S3) ∼= Z on the homology. If m is sufficiently small, then

F(K,m) is the 0-map. If m is sufficiently large, then F(K,m) is isomorphic to ĈF (S3).
The τ -invariant is defined as the following minimal:

τ(K) := min{m|ιm∗ is non-trivial}.
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Theorem 4.1 ([28]) The τ -invariant gives a group homomorphism τ : C → Z.

This invariant τ gives a bound of the 4-ball genus g4(K).

Theorem 4.2 ([28]) Let K be a knot. Then the following inequality holds:

|τ(K)| ≤ g4(K).

The knot signature σ(K) is also similar inequality |σ(K)| ≤ 2g4(K). For any alternating
knot, σ(K) = −2τ(K). Generally, this inequality on τ is sharper than the one on σ.
For τ , various sharpener invariants exist. To compute τ of a cable knot, Hom in [10]
introduced ϵ-invariant:

ϵ =


1 ĈF (S3) → bÂτ(K): trivial on the homology,

−1 Âτ(K) → ĈF (S3): trivial on the homology,

0 otherwise.

Theorem 4.3 ([10]) Let Kp,q be the (p, q)-cable knot of K with p > 0. Then, we have

τ(Kp,q) =

{
pτ(K) + (p− 1)(q − ϵ(K))/2 ϵ(K) ̸= 0

(p− 1)(q − sgn(q))/2 = τ(Tp,q) ϵ(K) = 0

Here Tp,q is the (p, q)-torus knot.

Ni and Wu defined knot concordance invariant Vk to compute the correction term of Dehn
surgery of a knot in [21]. Let v+k be a map A+

k → B+ which is defined in the similar way
to the previous section (note that the degree of the map is slightly different from the
previous section). The restriction to the T∞-part gives a U -power map. We define the
exponent to be Vk. The same invariant Hk replacing v+k with h+

k : A+
k → B+ is given. Vk

is a decreasing Z≥0-valued function on Z and Vk+1 = Vk or Vk − 1. The following minimal
value ν(K) := min{k|Vk = 0} is a concordance invariant and τ(K) ≤ ν(K) ≤ g4(K) holds
in [11]. This ν(K) is a sharpener invariant than τ(K).

4.2 Υ-invariant.

Recently, Ozsváth, Stipsicz and Szabó in [24] (also Livingston [16]) defined the concor-
dance invariant ΥK(t), whose value is a continuous function on the interval [0, 2]. And
Υ is a group homomorphism C → Cont([0, 2]). ΥK(t) is a piecewise linear function with
finite non-smooth points, which is the number of the smooth points is also concordance
invariant. We have Υ′

K(0) = −τ(K).
Here we define Υ according to [16]. Let Ft be an s-filtered chain complex with Ft,s =

C{ t
2
Alex+ (1− t

2
)Alg ≤ s}. Then Υ is defined to be ΥK(t) = −2ν(K,Ft), where

ν(K,Ft) = min{s|Image(H∗(Ft,s) → H∗(C)) contains the non-trivial element of grading 0}.

ΥK(t) give a 4-ball genus bound:

Theorem 4.4 ([24]) For any 0 < t < 1,

|ΥK(t)|/t ≤ g4(K).
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This invariant Υ is weaker than {Vk} invariant but is useful for the linear independence
on concordance group of a family of knots. For example, consider torus knots {Tp,p+1}.
Let G0 be generators in C with grading 0. Any element in G0 lies on the boundary of the
convex hull of G0 in R2. Since ΥTp,p+1 has a convex function with p singular points, these
are linearly independent in Cont([0, 2]) and the knots are also linearly independent.
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[28] Ozsváth, P., Szabó, Z., Knot Floer homology and the four-ball genus. Geom. Topol.
7 (2003), 615-639
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