
UPSILON INVARIANTS OF L-SPACE CABLE KNOTS

MOTOO TANGE

Abstract. We compute the Upsilon invariant of L-space cable knots
Kp,q in terms of p,ΥK and ΥTp,q . The integral value of the Upsilon
invariant gives a Q-valued knot concordance invariant. We also compute
the integral values of the Upsilon of L-space cable knots.

1. Introduction

1.1. Υ-invariant. In [14], Ozsváth, Stipsicz and Szabó defined a knot con-
cordance invariant Υ : C → C([0, 2]) where C([0, 2]) is the set of continuous
functions over the closed interval [0, 2]. After [14], Livingston in [12] gave a
simpler definition of ΥK .

This invariant is defined by extracting a “τ -like” information coming from
the knot filtration of the (whole) knot Floer chain complex CFK∞(S3,K).
Recall that Ozsváth-Szabó’s τ -invariant is defined by using the knot filtra-
tion over the subcomplex CFK∞(S3,K){i = 0} ⊂ CFK∞(S3,K). Natu-
rally, this invariant ΥK is a refinement of the τ -invariant and has properties
analogous to τ . In fact, τK is computed by the formula τK = −Υ′

K(0).
K is called an L-space knot if a positive surgery of K is an L-space, which

is defined to be a rational homology sphere with the same Heegaard Floer
homology as S3 for any spinc structure of the rational homology sphere.
Borodzik and Livingston wrote down a Υ-invariant formula for any L-space
knot K by use of the formal semigroup SK for any L-space knot K. The
formal semigroup is explained in Section 2.2.

Proposition 1 ([2]). Let K be an L-space knot with genus g. Then for any
t ∈ [0, 2] we have

ΥK(t) = max
m∈{0,··· ,2g}

{−2#(SK ∩ [0,m))− t(g −m)}.

In this paper we consider the following invariant Υ̃K(t,m) = −2#(SK ∩
[0,m))− t(g−m) for the formal semigroup SK of an L-space knot K. Hence

the Υ-invariant is written as ΥK(t) = max
m∈{0,··· ,2g}

Υ̃K(t,m).
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1.2. A cabling formula of the Υ-invariant. Let K be a knot in S3. Let
V be a tubular neighborhood of K. For integers p, q, the (p, q)-cable Kp,q

of K is defined to be the simple closed curves on ∂V whose homology class
is p · l+ q ·m in H1(∂V ), where m and l are represented by a meridian and
longitude curves on ∂V . If p, q are coprime integers, then Kp,q is a knot and
we call it the (p, q)-cable knot.

We consider the Υ-invariant of the cable knot. W. Chen in [3] gives an
inequality for the Υ-invariant of any cable knot. Our purpose of this article
is to give a cabling formula for any L-space knots.

Here we recall, to compare our cabling formula of ΥKp,q in this paper, two
cabling formulas for two invariants: Alexander polynomial and Tristram-
Levine signature.

The Alexander polynomial of the (p, q)-cable knot is computed as follows:

(1) ∆Kp,q(t) = ∆K(tp)∆Tp,q(t).

The Tristram-Levine signature σK(ω) is defined as the signature of the
matrix

(1− ω)S + (1− ω̄)TS,

where S is the Seifert matrix of K and ω is any unit complex number. Due
to [11], the Tristram-Levine signature of the (p, q)-cable knot is computed
as follows:

(2) σKp,q(ω) = σK(ωp) + σTp,q(ω).

Here we recall Hedden and Hom’s necessary and sufficient condition for
a cable knot Kp,q to be an L-space knot.

Theorem 2 (Hedden [6] and Hom [9]). Let K be a knot with the Seifert
genus g. Kp,q is an L-space knot if and only if K is an L-space knot and
(2g − 1)p ≤ q.

1.3. The L-space cabling formula of Υ. The first main theorem is the
following.

Theorem 3 (The case of 2gp ≤ q). Let K be an L-space knot with the
Seifert genus g. Let p, q be relatively prime positive integers with 2gp ≤ q.
Then the Υ-invariant of Kp,q is computed as follows:

(3) ΥKp,q(t) = ΥK(pt) + ΥTp,q(t).

Here ΥK(pt) means the p-fold amalgamated function of ΥK(t) in the sense
of the deformation as in Figure 1. In other words, the p-fold amalgamated
function is presented by ΥK(s) for 2i/p ≤ t ≤ 2(i+1)/p (i = 0, 1, · · · , p−1)
and 2i+ s = pt.

This formula (3) is similar to the cabling formula (2), however (3) does
not always hold even L-space cable knots. In fact, in the case of (2g−1)p ≤
q < 2gp, which is the remaining one, a different formula holds as mentioned
in the below.

We set

µK := min
0<m<2g

2#(SK ∩ [0,m))

m
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Figure 1. The amalgamated function of 3-copies of ΥK(t).

and
δ := q − (2g − 1)p.

Let gp,q denote g(Tp,q) = (p− 1)(q − 1)/2. The following theorem gives the
region of t that ΥKp,q(t) satisfies the same formula as the one in the first
case.

Theorem 4 (The case of (2g − 1)p < q < 2gp). Let K be an L-space
knot with the Seifert genus g. Let p, q be relatively prime integers with
(2g − 1)p < p ≤ 2gp.

Let t be a real number with 0 ≤ t ≤ 2. Let i be an integer with 2i/p ≤ t ≤
2(i + 1)/p and 0 ≤ i < p. We set the real number s satisfying 2i + s = pt.
Suppose that s satisfies either of the following conditions:

0 ≤ s ≤ 2− µK i = 0

µK ≤ s ≤ 2− µK 1 ≤ i ≤ p− 2

µK ≤ s ≤ 2 i = p− 1.

Then
ΥKp,q(t) = ΥK(s) + ΥTp,q(t)

holds.

In the region of t other than for the condition in Theorem 4, the formula
ΥKp,q(t) = ΥK(s)+ΥTp,q(t) fails. Here we observe this failure by an example.

1.4. Example (T3,7)3,35. Consider the (3, 35)-cable knot of K = T3,7. Then
p = 3, q = 35, g(K) = 6 and (2g − 1)p ≤ q < 2gp hold. Therefore K3,35 is
an L-space knot from the Hedden and Hom’s criterion. Then the value µK

defined above is 2/3. We compare the functions ΥK3,35(t) − ΥT3,35(t) and
ΥK(3t). See Figure 2. Let i, s and t be i = 0, 1, 2, 2i+ s = 3t and

0 ≤ s ≤ 4/3 i = 0

2/3 ≤ s ≤ 4/3 i = 1

2/3 ≤ s ≤ 2 i = 2.

Then ΥK3,35(t) = ΥT3,35(t) + ΥK(s) holds, as indicated in Figure 2.
On the other hands, for the remaining regions, e.g., i = 1 and 0 < s < 2/3

or 4/3 < s < 2, the ΥK3,35(t) violates the formula (3). Theorem 5 gives a
cabling formula on the such regions. As an example, in Section 6, we try to
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compute some of the actual functions of ΥK3,35(t) over the following regions:
i = 1 and 0 < s < 2/3 and i = 0 and 4/3 < s < 2.

0.5

1.0 1.5 2.0

- 4

- 3

- 2

- 1

Figure 2. The red graph is ΥK(3t). The blue graph is the
different part of ΥK3,35(t)−ΥT3,35(t) from ΥK(3t).

1.5. An L-space cabling formula of Υ over 0 < s < µK or 2−µK < s <
2. The behaviors of ΥKp,q(t) over the region of 0 < s < µK (0 < i < p− 1)
or 2− µK < s < 2 (0 ≤ i < p− 1) are more complicated.

Here for any real number t with 2i/p ≤ t ≤ 2(i + 1)/p we define Υδ,1
p,q(t)

and Υδ,2
p,q(t) to be

Υδ,1
p,q(t) = max

iq−δ<m≤iq
Υ̃Tp,q(t,m), Υδ,2

p,q(t) = max
iq−p<m≤iq−δ

Υ̃Tp,q(t,m).

Then,

max
{
Υδ,1

p,q(t),Υ
δ,2
p,q(t)

}
= ΥTp,q(t)

holds. In general, we have ΥTp,q(t) = max
iq−p<m≤iq

Υ̃p,q(t,m), due to Proposition

12. For any L-space knot K we define the truncated Υ-invariant as follows:

Υtr
K(s) = max

ν∈{1,2,··· ,2g−1}
Υ̃K(s, ν).

Actually, this invariant satisfies Υtr
K(s) = ΥK(s) for µk ≤ s ≤ 2 − µK

(Lemma 14).

Theorem 5. Let K be an L-space knot with the Seifert genus g. Let p, q be
relatively prime integers with (2g − 1)p < q < 2gp. Let t be a real number
with 0 ≤ t ≤ 2. We assume that i and s ∈ R satisfy 2i/p ≤ t ≤ 2(i + 1)/p
and 2i+ s = tp.
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Suppose that 0 < i < p. If 0 < s < µK , then ΥKp,q(t) is computed as
follows:

(4) ΥKp,q(t) = max
{
ΥK(s) + Υδ,1

p,q(t),Υ
tr
K(s) + Υδ,2

p,q(t)
}
.

Suppose that 0 ≤ i < p − 1. If 2 − µK < s < 2, then ΥKp,q(t) is computed
as follows:

(5) ΥKp,q(t) = max
{
ΥK(s) + Υδ,1

p,q(2− t),Υtr
K(s) + Υδ,2

p,q(2− t)
}
.

We note that the equalities (4) and (5) hold for 0 < s < 1 and 1 < s < 2
respectively. Because, since Υtr

K(s) = ΥK(s), these equalities (4) and (5)
become (3).

Corollary 6. Let K be an L-space knot. We assume that (2g(K) − 1)p <
q < 2g(K)p. For 0 ≤ t ≤ 2, let i and s be an integer and a real number with
2i/p ≤ t ≤ 2(i+ 1)/p, 2i+ s = pt and 0 ≤ s ≤ 2. Then

ΥTp,q(t) + ΥK(s) ≥ ΥKp,q(t) ≥ ΥTp,q(t) + Υtr
K(s)

holds.

In particular if µK ≤ s ≤ 2 − µK , then the inequalities become the
corresponding equalities. This means Theorem 4.

1.6. The integral value of ΥK(t). We compute the integral value of ΥK(t)
over [0, 2], which is also a concordance knot invariant:

I(K) =

∫ 2

0
ΥK(t)dt.

Then the values of torus knots are computed as follows:

Proposition 7. Let p, q be relatively prime positive integers. Let ai be the
i-th non-negative continued fraction of q/p:

(6) q/p = a1 +
1

a2 +
1

···+ 1
an

=: [a1, · · · , an].

Then we have

2I(Tp,q) = −1

3
(pq −

n∑
i=1

ai).

We can compare I(Tp,q) with the S1-integral
∫
S1 σTp,q(ω) of the Tristram-

Levine signature as follows:∫
S1

σTp,q(ω) = −1

3

(
pq − p

q
− q

p
+

1

pq

)
= 4(s(q, p) + s(p, q)− s(1, pq)),

where the function s is the Dedekind sum. This computation has been done
by many topologists for example [10], [13], [1] and [4].

Here we give a formula of I(L) with L = (· · · (Kp1,q1)p2,q2 · · · )pn,qn of any
iterated cable L-space knot. We denote the iterated cable L-space knot
(· · · (Kp1,q1)p2,q2 · · · )pi,qi by Li.
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Theorem 8. Let (pi, qi) be positive coprime integers. Let K be an L-space
knot. Let denote L := Ln. If (pi, qi) satisfies qi ≥ 2g(Li)pi for any i, then
the integral I(L) is computed as follows:

I(L) = I(K) +
n∑

i=1

I(Tpi,qi).

The similar formula to the S1 integral of σL(ω) for iterated torus knot L
is given in [1].
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below. He told me the Υ-invariant formula for the torus knots and the
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the L-space cable knots. Furthermore, he gave me many useful comments
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2. Preliminaries

In this section we introduce the tools to prove our main theorem (Theo-
rem 3).

2.1. L-space cable knot. We skip all the definitions relating to the Hee-

gaard Floer homology, e.g., ĤF and ĤFK. The set of L-space knots, whose
definition is given in the previous section, forms a class of the most simple

knots in terms of the property that ĤFK(S3,K, j) is at most 1-dimensional
at each j, see [18]. To study the definitions we recommend the papers [15],
[16] and [17].

Recall Theorem 2 in the previous section, proven by Hedden and Hom.
These results give the necessary and sufficient condition for the cable knot
Kp,q to be an L-space knot as follows:

Kp,q is an L-space knot ⇔ K is an L-space knot and (2g(K)− 1)p ≤ q.

2.2. Formal semigroup. Suppose that K is an L-space knot. Then due
to [18], the Alexander polynomial ∆K(t) of K is flat and has an alternating
condition on the non-zero coefficients. Here a polynomial is called flat if any
coefficient ai of the polynomial satisfies |ai| ≤ 1.

Expanding the following rational function ∆K(t)/(1− t) as follows:

∆K(t)

1− t
=
∑
s∈SK

ts,

we obtain a subset SK ⊂ Z≥0. This subset SK is called the formal semigroup
of K. According to [20], ifK is an algebraic knot, then SK is a semigroup. In
particular, if K is a right-handed torus knot Tp,q, then STp,q is the semigroup
generated by the positive integers p, q, namely, STp,q = ⟨p, q⟩ = {pa + qb ∈
Z | a, b ∈ Z≥0} holds. If K is an L-space knot, the knot is not always
an algebraic knot because there exists an L-space knot K whose formal
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semigroup SK is not semigroup. For example, the formal semigroup of the
(−2, 3, 2n+ 1) pretzel knot Kn for n ≥ 1 is an L-space knot and the formal
semigroup is as follows:

SKn = {0, 3, 5, 7, · · · , 2n− 1, 2n+ 1, 2n+ 2} ∪ Zn≥2n+4.

Furthermore K1 = T3,4,K2 = T3,5 hold. It can be easily seen that if n ≥ 3,
then the SKn is not a semigroup. The Alexander polynomials of (−2, 3, 2n+
1)-pretzel knots can be found, for example, in [8].

Wang, in [21], proved that the cabling formula of the formal subgroup of
any L-space knot as follows:

Proposition 9 (A cabling formula of formal semigroup [21]). Let K be
a nontrivial L-space knot. Suppose p ≥ 2 and q ≥ p(2g(K) − 1). Then
SKp,q = pSK + qZ≥0 := {pa+ qb | a ∈ SK , b ∈ Z≥0}.

Here we prove the following lemma.

Lemma 10. Let SK be a formal semigroup coming from non-trivial L-space
knot. Then 1 ̸∈ SK holds.

Proof. If 1 ∈ SK , then the Alexander polynomial of the L-space knot
is computed as follows:

∆K(t) = (1− t)(1 + t+ tsf(t)) = 1− t2 + ts(1− t)f(t),

where s ≥ 2 and f(t) is a series. Thus the coefficient of t in ∆K(t) vanishes.
The coefficient of t of the Alexander polynomial of a non-trivial L-space
knot is −1 due to [7]. Thus K must be the trivial knot. 2

In the case of lens space knots, there would be some restrictions to SK .
The results in [19] can give some restrictions.

3. Proofs of Proposition 7 and Theorem 8.

In [5] Feller and Krcatovich proved that the recurrence formula ΥTp,q(t) =
ΥTp,q−p(t) +ΥTp,p+1(t). By using this formula, they proved the following Υ-
invariant formula of torus knots.

Proposition 11 (Proposition 2.2 in [5]). Let ai be the same coefficient
defined in (6) and pi the denominator of [ai, ai+1, · · · , an]. Then we have

(7) ΥTp,q(t) =
n∑

i=1

aiΥTpi,pi+1(t).

Note that the formula depends on the way of taking the continued fraction
in general, but it does not depend on the way to take the non-negative
integral continued fraction expansions q/p = [ai, · · · , an], i.e., ai ≥ 0 for any
i. Here we prove Proposition 7 by using the formula (7).

Proof. From the torus knot formula, we immediately have

I(Tp,q) =

n∑
i=1

aiI(Tpi,pi+1).
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Comparing the first derivative of (7) at t = 0, we have

(8) (p− 1)(q − 1) =
n∑

i=1

aipi(pi − 1).

The direct computation for Tp,p+1 implies the following:

I(Tp,p+1) = −p2 − 1

6
.

Thus, we have

2I(Tp,q) = −1

3

n∑
i=1

ai(p
2
i − 1) = −1

3

n∑
i=1

(aipi(pi − 1)− ai + aipi).

Since pi−1 = aipi + pi+1,

n∑
i=1

aipi =

n∑
i=1

(pi−1 − pi+1) = q + p1 − pn = q + p− 1.

Thus using (8) we get the following:

2I(Tp,q) = −1

3

(
(p− 1)(q − 1)−

n∑
i=1

ai + q + p− 1

)
= −1

3

(
pq −

n∑
i=1

ai

)
.

2

Next, we prove Theorem 8 using Theorem 3.
Proof. Let denote L′ = Ln−1. First we obtain the equality:∫ 2

0
ΥL′(pt)dt =

∫ 2p

0
ΥL′(s)

1

p
ds = p

∫ 2

0
ΥL′(s)

1

p
ds = I(L′).

This equality can be justified by regarding ΥK(pt) as a function which is
naturally expanded to the periodic function over R with the period 2/p.
Using Theorem 3 and this computation we have

I(L) =

∫ 2

0
(ΥL′(pt) + ΥTpn,qn

(t))dt = I(L′) + I(Tpn,qn).

By iterating this relationship we have

I(L) = I(K) +
n∑

i=1

I(Tpi,qi).

2

4. Proof of Theorem 3.

Let K be an L-space knot with the Seifert genus g. Throughout this
section we assume that the relatively prime positive integers p, q satisfy
2gp ≤ p. In particular, Kp,q is also an L-space knot.
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For any L-space knot K we denote #(SK ∩ [0,m)) by φK(m). Let
ΦK(t,m) denote φK(m)−tm/2. According to Proposition 1, the Υ-invariant
of an L-space knot K is rewritten as follows:

ΥK(t) = −2 min
m∈{0,1,··· ,2g}

{φK(m)− tm/2} − tg(K).

= −2 min
m∈{0,1,··· ,2g}

ΦK(t,m)− tg(K).(9)

Extending the function φK(m) as φK(m) ≡ 0 if m < 0, we can define
ΦK(t,m) over m ∈ Z. We note that the function ΦK(t,m) satisfies the
following: {

−tm/2 m < 0

(1− t/2)m− g m > 2g.

Thus if a subset S ⊂ Z includes {0, 1, · · · , 2g} then we have

min
m∈S

ΦK(t,m) = min
m∈{0,1,···2g}

ΦK(t,m).

The genus g(Kp,q) coincides with the degree of ∆Kp,q(t) and K is an
L-space knot. Thus from the cabling formula (1), we have

g(Kp,q) = pg + gp,q.

We denote φKp,q(m) by φ(m). Let Φ(t,m) denote ΦKp,q(t,m).

Lemma 12. Let K be an L-space knot with g = g(K). Let p, q be relatively
prime integers with 2gp ≤ q. Let i be an integer with 0 ≤ i < p. Suppose
that t is any real number with 2i/p ≤ t ≤ 2(i+ 1)/p. Then we have

min
0≤m≤2g(Kp,q)

Φ(t,m) = min
iq−p<m≤iq+2gp

Φ(t,m).

Proof. We can extend the range 0 ≤ m ≤ 2g(Kp,q) in the minimality
to all integers. We fix a real number t with 0 ≤ t ≤ 2. Let i be an integer
with 2i/p ≤ t ≤ 2(i + 1)/p and 0 ≤ i < p. Suppose that m is any integer
with m ≤ iq − p.

Φ(t,m+ p)− Φ(t,m) = φ(m+ p)− t(m+ p)/2− φ(m) + tm/2

= #(SKp,q ∩ [m,m+ p))− tp/2

Since #(SKp,q ∩ [m,m+p)) ≤ i, we have Φ(t,m+p)−Φ(t,m) ≤ i−tp/2 ≤ 0.
Thus the minimal value of Φ(t,m) overm ∈ [0, iq] is the same as the minimal
value over m ∈ (iq− p, iq]. See Figure 3 for the aid of our argument. This
graph stands for elements in SKp,q with pSK +{0, 1, 2, · · · i−2}Z≥0 omitted.
All the circles mean the elements in STp,q , the black circles mean the elements
in SKp,q and white circles mean the elements not in SKp,q .

Suppose that m is an integer with iq + (2g − 1)p < m ≤ 2g(Kp,q). Since
φ(m+ p)− φ(m) = #(SKp,q ∩ [m,m+ p)) ≥ i+ 1 holds, we have Φ(t,m+
p) − Φ(t,m) ≥ i + 1 − tp/2 ≥ 0. Thus the minimal value of Φ(t,m) over
(iq+(2g−1)p, 2g(Kp,q)] coincides with the minimal over (iq+(2g−1)p, iq+
2gp].

Therefore the minimal value of Φ(t,m) over 0 < m ≤ 2g(Kp,q) attains
over iq − p < m ≤ iq + 2gp. 2
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m

iq + piq(i− 1)q + (2g − 1)p

(i− 1)q + 2gp

Figure 3. SK without pSK + jq with j < i− 1.

As a corollary of this lemma, if K is the unknot, then we have

min
0≤m≤2gp,q

ΦTp,q(t,m) = min
iq−p<m≤iq

ΦTp,q(t,m).

Next, we investigate the minimal values of Φ(t,m) in the region

Ii = {m ∈ Z | iq − p < m ≤ iq + 2gp}.

The minimal value of Φ(t,m) over Ii coincides with

min
ν∈SK ,ν−1̸∈SK

{
min

iq+(ν−1)p<m≤iq+νp
Φ(t,m)

}
.

This minimal value can be rewritten as follows:

(10)

m∑
l=0

p

(
i+ ϵ(l) + 1

p
− t

2

)
+ µi (m = −1, 0, 1, 2, · · · , 2g − 1),

where µi is the minimal value of Φ(t,m) over (iq − p, iq]. The function ϵ(l)
is defined as follows:

ϵ(ν) =

{
0 ν ∈ SK

−1 ν ̸∈ SK

Here in the case of m = −1 the sum means 0. Since
∑m

l=0(ϵ(l) + 1) =
#(SK ∩ [0,m+ 1)) holds, the summation in (10) is computed as follows:

min
−1≤m≤2g−1

{
#(SK ∩ [0,m+ 1))−

(
tp

2
− i

)
(m+ 1)

}
= min

0≤m≤2g
{#(SK ∩ [0,m))− sm/2} = min

0≤m≤2g
ΦK(s,m).

Then we have

(11) min
m∈Ii

Φ(t,m) = min
0≤m≤2g

ΦK(s,m) + µi.

Hence, we obtain

ΥKp,q(t) = −2 min
0≤m≤2g

ΦK(s,m)− 2µi − tg(Kp,q)

= ΥK(s) + sg − 2µi − t(pg + gp,q).
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iq − p

iq

m

iq + p

iq + 2p

µi

Figure 4. The places of local minimal points of Φ(t,m) over
m ∈ Ii.

SKp,q is the semigroup obtained by removing several copies of [0, 2g]∩Z−
SK from STp,q . Taking K as the unknot in Lemma 12, we have the following:

µi = min
iq−p<m≤iq

Φp,q(t,m)− ig

= min
0≤m≤2gp,q

Φp,q(t,m)− ig.(12)

Here Φp,q(t,m) means ΦTp,q(t,m).
Therefore the formula (9) for L-space knots, we obtain the following:

ΥKp,q(t) = ΥK(s) + sg − 2 min
0≤m≤2gp,q

Φp,q(t,m) + 2ig − (pg + gp,q)t

= ΥK(s) + ΥTp,q(t).

2

5. The case of (2g − 1)p < q < 2gp.

5.1. The minimal value of Φ(t,m). Let K be an L-space knot with the
Seifert genus g. Throughout this section we assume that the relatively prime
positive integers p, q satisfy (2g − 1)p < q < 2gp. In particular, Kp,q is an
L-space knot. We consider Φ(t,m) = #(SKp,q ∩ [0,m))− tm/2. We set the
difference q − (2g − 1)p as δ.

We denote {m ∈ Z | iq − δ < m ≤ (i + 1)q} by Iδi . Here we prove the
following lemma.

Lemma 13. Suppose that t is any real number with 2i/p ≤ t ≤ 2(i + 1)/p
for 0 ≤ i < p. Then we have

min
0≤m≤2g(Kp,q)

Φ(t,m) = min
m∈Iδi

Φ(t,m).

Proof. We consider the following difference in the same way as Lemma
12

Φ(t,m+ p)− Φ(t,m) = φ(t,m+ p)− φ(t,m)− tp/2.

If m ≤ iq− δ, then the difference φ(t,m+ p)−φ(t,m) = #(SKp,q ∩ [m,m+
p)) ≤ i holds. Hence we have Φ(t,m+ p)− Φ(t,m) ≤ i− tp/2 ≤ 0.
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Thus the minimal value of Φ(t,m) over (−∞, iq − δ + p] coincides with
the minimal value over (iq − δ, iq − δ + p].

In the case of (i+ 1)q − p < m ≤ 2g(Kp,q)− p the difference is computed
as follows: φ(m + p) − φ(m) = #(SKp,q ∩ [m,m + p)) ≥ i + 1. Hence we
have Φ(t,m + p) − Φ(t,m) ≥ i + 1 − tp/2 ≥ 0. Thus the minimal value of
Φ(t,m) coincides with the minimal value over Iδi . 2

m

iq + piq

(i− 1)q + (2g − 1)p

(i− 1)q + 2gp

Figure 5. SKp,q with pSK + jq with j = i− 1, i.

m

(i− 1)q + (2g − 1)p

iq iq + p iq + (2g − 1)p

(i+ 1)q

iq − p

Figure 6. The places of local minimal points of Φ(t,m) over
m ∈ [(i− 1)q + (2g − 1)p, iq + (2g − 1)p].

5.2. Proof of Theorem 4. Let p, q be relatively prime positive integers
with (2g − 1)p ≤ q < 2gp. For a real number t with 0 ≤ t ≤ 2, let i be an
integer with 2i/p ≤ t < 2(i+ 1)/p for some integer 0 ≤ i < p. We set s as a
real number with 2i+ s = pt.

A real number t satisfies ΥKp,q(t) = ΥK(s) + ΥTp,q(t) if and only if

min
0≤m≤2g(Kp,q)

Φ(t,m) = min
0≤m≤2g

ΦK(t,m) + µi

holds, where we recall µi = min
iq−p<m≤iq

Φp,q(t,m)− ig. In other words, such t

satisfies either of the following conditions. Let Si
Kp,q

be(
SKp,q ∪ {iq − δ} − {(i+ 1)q}

)
∩ [0, 2g(Kp,q)) ∪ Z≥2g(Kp,q).
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Let Φi(t,m) be

min
m∈Ii

(#(Si
Kp,q

∩ [0,m))− tm/2) +

{
0 i = 0

−1 0 < i ≤ p− 1.

The functions Φi(t,m) and Φ(t,m) coincide on iq− δ < m ≤ (i+1)q, while
Φi(t,m) is the shift of Φ(t,m) by −1 on the regions 0 ≤ m ≤ iq − δ and
(i+ 1)q < m as in Figure 7.

Condition 1. The minimal value of Φi(t,m) over iq ≤ m < iq + (2g − 1)p
is not greater than the minimal value of Φ(t,m) over iq− p < m ≤ iq. This
is equivalent to the condition

min
iq−δ<m

Φ(t,m) = min
iq−p<m

Φi(t,m).

Condition 2. The minimal value of Φi(t,m) over iq ≤ m < iq + (2g − 1)p
is not greater than the minimal value of Φ(t,m) over iq + (2g − 1)p < m ≤
iq + 2gp. This is equivalent to the condition

min
m≤(i+1)q

Φ(t,m) = min
m≤iq+2gp

Φi(t,m).

Φ(t,m)

· · ·

iq − p

iq − δ

iq iq + p (i+ 1)q − δ

(i+ 1)q

iq + 2gp

· · ·

Φi(t,m)

1

1

Figure 7. The functions Φ(t,m) and Φi(t,m) (in case of
0 < i < p− 1).

If m is an integer with iq − p < m ≤ iq − δ, then we have

Φi(t,m+ νp)− Φi(t,m) = #(Si
Kp,q

∩ [m,m+ νp))− νpt/2

= iν +#(SK ∩ [0, ν))− ν(i+
s

2
)

= #(SK ∩ [0, ν))− νs/2 = ΦK(s, ν).
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Condition 1 is satisfied if and only if there exists ν satisfying ΦK(s, ν) ≤ 0
(1 ≤ ν ≤ 2g − 1). This is equivalent to

s ≥ min
1≤ν≤2g−1

2φK(ν)

ν
=: µK .

If m is an integer with (i+ 1)q < m ≤ (i+ 1)q − δ + p, then we have

Φi(t,m)− Φi(t,m− νp) = #(Si
Kp,q

∩ [m− νp,m))− νpt/2

= iν +#(S̄K ∩ [0, ν))− ν(i+
s

2
)

= ν −#(SK ∩ [0, ν))− νs/2 = −ΦK(2− s, ν).

Here S̄K is the complement of SK in Z. Condition 2 is satisfied if and only
if there exists ν satisfying −ΦK(2 − s, ν) ≥ 0 (1 ≤ ν ≤ 2g − 1). This is
equivalent to

2− s ≥ min
1≤m≤2g−1

2φK(ν)

ν
= µK .

Suppose that 0 < i < p−1. The region µK ≤ s ≤ 2−µK holds if and only
if there exist 1 ≤ ν, ν ′ ≤ 2g−1 such that ΦK(s, ν) < 0 and ΦK(2−s, ν ′) < 0
hold. Namely, this means that

min
m∈Iδi

Φ(t,m) = min
m∈Ii

Φi(t,m).

Thus for such an s we have

ΥKp,q(t) = ΥTp,q(t) + ΥK(s).

Suppose that i = 0. Then we have

min
m∈Iδ0

Φ(t,m) = min
−p≤m≤q

Φ(t,m).

Furthermore if s ≤ 2 − µK , then min
−p≤m≤q

Φ(t,m) = min
−δ<m≤2gp

Φ0(t,m) =

min
m∈I0

Φ0(t,m) holds. Thus s ≤ 2− µK means that

ΥKp,q(t) = ΥK(s) + ΥTp,q(t).

Suppose that i = p− 1. Then we have

min
m∈Iδp−1

Φ(t,m) = min
(p−1)q−δ≤m≤(p−1)q+2gp

Φ(t,m).

Furthermore if µK ≤ s, then

min
(p−1)q−δ≤m≤(p−1)q+2gp

Φ(t,m) = min
(p−1)q−p≤m≤(p−1)q+2gp

Φp−1(t,m)

= min
m∈Ip−1

Φp−1(t,m)

holds. Thus if µK ≤ s, then we have

ΥKp,q(t) = ΥK(s) + ΥTp,q(t).

2
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5.3. The variations Υtr
K , Υδ,i

p,q (i = 1, 2, 3, 4). Recall the definitions of

Υδ,i
p,q (i = 1, 2) in Section 1.5. Here we also define Υδ,3

p,q(t) and Υδ,4
p,q(t) for

0 < δ < p as follows. Let t be a real number with For 2i/p ≤ t ≤ 2(i+ 1)/p

0 ≤ t ≤ 2. Then we define Υδ,3
p,q and Υδ,4

p,q to be

Υδ,3
p,q(t) = max

iq−p<m≤iq−p+δ
Υ̃Tp,q(t,m), Υδ,4

Tp,q
(t) = max

iq−p+δ<m≤iq
Υ̃p,q(t,m)

Here we prove properties of Υtr
K(s), Υδ,i

p,q(t).

Lemma 14. Let K be an L-space knot. Then,

Υtr
K(s) = Υtr

K(2− s), Υδ,3
p,q(t) = Υδ,1

p,q(2− t), and Υδ,4
p,q(t) = Υδ,2

p,q(2− t)

hold.

Proof. By using the equality

φK(2g− ν) = g−#(SK ∩ [2g− ν, 2g) = g−#(S̄K ∩ [0, ν) = g− ν +φK(ν),

we have

Υtr
K(s) = max

ν=1,2,··· ,2g−1
Υ̃K(s, ν) = max

ν=1,2,··· ,2g−1
Υ̃K(s, 2g − ν)

= −2 min
ν=1,2,··· ,2g−1

(g − ν + φK(ν)− s(2g − ν)/2)− sg

= −2 min
ν=1,2,··· ,2g−1

(φK(ν)− (2− s)ν/2)− (2− s)g = Υtr
K(2− s).

We assume that 2i+ s = pt and 0 ≤ s ≤ 2.

Υδ,3
p,q(t) = −2 min

iq−p<m≤iq−p+δ
Φp,q(t,m)− tgp,q

= −2 min
iq−p<m≤iq−p+δ

(φTp,q(m)− tm/2)− tgp,q

= −2 min
(p−1−i)q−δ<m≤(p−1−i)q

(φTp,q(2gp,q −m)− t(2gp,q −m)/2)− tgp,q

= −2 min
(p−1−i)q−δ<m≤(p−1−i)q

(
gp,q −m+ φTp,q(m)− t(2gp,q −m)/2

)
− tgp,q

= −2 min
(p−1−i)q−δ<m≤(p−1−i)q

(φTp,q(m)− (2− t)m/2)− (2− t)gp,q.

= Υδ,1
p,q(2− t)

In the same way, we have

Υδ,4
p,q(t) = Υδ,2

p,q(2− t).

2

5.4. Theorem 5. Here we give a proof of Theorem 5.
Proof. Suppose that 0 < i < p−1 and 2i/p ≤ t ≤ 2(i+1)/p. By applying
the equalities (11) and (12) in the case of 2gp ≤ q we obtain the below
computation.

We suppose 0 < s < µK . We consider the minimal value of (i+1)q− δ <
m ≤ (i + 1)q. Since s < 2− µK , if 1 ≤ ν ≤ 2g − 1 and (i + 1)q − δ < m ≤
(i+ 1)q − δ + p then there exists 1 ≤ ν ≤ 2g − 1 such that

Φi(t,m)− Φi(t,m− νp) = #(S̄K ∩ [0, ν))− νs/2 = −Φ(2− s, ν) > 0.



16 MOTOO TANGE

Then

min
iq−δ<m≤(i+1)q

Φ(t,m) = min
iq−δ<m≤(i+1)q−δ

Φi(t,m)

= min

{
min

ν=0,1,··· ,2g−1

(
min

iq−δ+νp<m≤iq+νp
Φi(t,m)

)
,

min
ν=1,2,··· ,2g−1

(
min

iq+(ν−1)p<m≤iq−δ+νp
Φi(t,m)

)}
,

min
ν=0,1,··· ,2g−1

(
min

iq−δ+νp<m≤iq+νp
Φi(t,m)

)
= min

ν=0,1,··· ,2g−1

(
ΦK(s, ν) + µ1

i (t)
)

= min
ν=0,1,··· ,2g

ΦK(s, ν) + µ1
i (t),

and

min
ν=1,2,··· ,2g−1

(
min

iq+(ν−1)p<m≤iq−δ+νp
Φi(t,m)

)
= min

ν=1,··· ,2g−1
(ΦK(s, ν) + µ2

i (t))

= min
ν=1,2,··· ,2g−1

ΦK(s, ν) + µ2
i (t).

Here µ1
i (t) µ2

i (t) are the minimal values of Φi(t,m) over iq − δ < m ≤ iq
and iq − p < m ≤ iq − δ respectively.

−2µ1
i (t) = −2 min

iq−δ<m≤iq
Φi(t,m) = −2 min

iq−δ<m≤iq
Φp,q(t,m) + 2ig

= Υδ,1
p,q(t) + 2ig + tgp,q

−2µ2
i (t) = −2 min

iq−p<m≤iq−δ
Φi(t,m) = −2 min

iq−p<m≤iq−δ
Φp,q(t,m) + 2ig

= Υδ,2
p,q(t) + 2ig + tgp,q

ΥKp,q(t) = −2 min
iq−δ<m≤(i+1)q

Φ(t,m)− tgKp,q

= max

{
−2 min

ν=0,1··· ,2g
ΦK(s, ν)− tgKp,q − 2µ1

i (t),

−2 min
ν=1,2,··· ,2g−1

ΦK(s, ν)− tgKp,q − 2µ2
i (t)

}
= max

{
max

ν=0,1··· ,2g
Υ̃K(s, ν) + sg − t(pg + gp,q) + Υδ,1

p,q(t) + 2ig + tgp,q,

min
ν=1,2,··· ,2g−1

Υ̃K(s, ν) + sg − t(pg + gp,q) + Υδ,2
p,q(t) + 2ig + tgp,q

}
= max

{
ΥK(s) + Υδ,1

p,q(t),Υ
tr
K(s) + Υδ,2

p,q(t)
}
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We suppose 2− µk < s < 2. Then we have

min
iq−δ<m≤(i+1)q

Φ(t,m) = min
iq<m≤(i+1)q

Φi(t,m).

= min

{
min

i=1,2,···2g

(
min

iq+(ν−1)p<m≤iq+(ν−1)p+δ
Φi(t,m)

)
,

min
ν=1,2,··· ,2g−1

(
min

iq+(ν−1)p+δ<m≤iq+νp
Φi(t,m)

)}
,

min
ν=1,2,··· ,2g

(
min

iq+(ν−1)p<m≤iq+(ν−1)p+δ
Φi(t,m)

)
= min

ν=1,2,··· ,2g

(
ΦK(s, ν) + µ3

i (t)
)
= min

ν=0,1,··· ,2g
ΦK(s, ν) + µ3

i (t),

and

min
i=1,2,···2g−1

(
min

iq+(ν−1)p+δ<m≤iq+νp
Φi(t,m)

)
= min

ν=1,2,··· ,2g−1

(
ΦK(s, ν) + µ4

i (t)
)
= min

ν=1,2,··· ,2g−1
ΦK(s, ν) + µ4

i (t).

Here µ3
i (t) and µ4

i (t) are the minimal values of Φi(t,m) over iq − p < m ≤
iq − p+ δ and iq − p+ δ < m ≤ iq respectively.

Here we compute −2µ3
i (t) and −2µ4

i (t).

−2µ3
i (t) = −2 min

iq−p<m≤iq−p+δ
Φi(t,m) = −2 min

iq−p<m≤iq−p+δ
Φp,q(t,m) + 2ig

= Υδ,3
p,q(t) + 2ig + tgp,q

−2µ4
i (t) = −2 min

iq−p<m≤iq
Φi(t,m) = −2 min

iq−p+δ<m≤iq
Φp,q(t,m) + 2ig

= Υδ,4
p,q(t) + 2ig + tgp,q

Applying these terms to ΥKp,q(t), we get the following:

ΥKp,q(t) = max

{
max

ν=0,1,··· ,2g
Υ̃K(s, ν) + sg − t(pg + gp,q)− 2µ3

i (t)

max
ν=1,2,··· ,2g−1

Υ̃K(s, ν) + sg − t(pg + gp,q)− 2µ4
i (t)

}
= max

{
ΥK(s) + sg − tpg +Υδ,3

p,q(t) + 2ig

Υtr
K(s) + sg − tpg +Υδ,4

p,q(t) + 2ig
}

= max
{
ΥK(s) + Υδ,3

p,q(t),Υ
tr
K(s) + Υδ,4

p,q(t)
}
.

By using Lemma 14, we get the required formulas. 2

Here we prove a corollary stated in Section 1.
Proof of Corollary 6. If 0 < s < µK or 2 − µK < s < 2 hold, then for
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all ν ∈ {1, 2, · · · , 2g − 1} ΦK(s, ν) > 0 = ΦK(s, 0) = Φ(K, 2) holds. Thus
Υtr

K(s) < ΥK(s) holds. Therefore, we have

ΥKp,q(t) ≤ max
{
ΥK(s) + Υδ,1

p,q(t),ΥK(s) + Υδ,2
p,q(t)

}
= ΥK(s) + max

{
Υδ,1

p,q(t),Υ
δ,2
p,q(t)

}
= ΥK(s) + ΥTp,q(t)

Since for any 1 < ν < 2g − 1, the inequality Φi(t,m) < Φi(t,m + νp) for
iq− p < m ≤ iq− δ holds. This means that ΥKp,q(t) ≤ ΥK(s) +ΥTp,q(t). 2

6. The example (T3,7)3,35.

6.1. Computation of Υ(T3,7)3,35. We come back to the example K3,35 ob-
served in the previous section again, where K = T3,7. We apply the ca-
bling formula in Theorem 5 to this example. The genera are computed as
g = 6 and g3,35 = 34. Then SK = {0, 3, 6, 7, 9, 10} ∪ Zn≥12 holds. When
ν = 0, 1, 2, · · · , 12, the sequence φK(ν) is as follows:

φK(ν) : 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6.

Hence, we have µK = 2/3 and δ = 2.
First, we consider 2/3 < t < 4/3, namely this corresponds to the case of

i = 1 in Theorem 5. Furthermore we assume 2 + s = 3t and 0 < s < 2/3.
This means 2/3 < t < 8/9. Then we have

Υ̃T3,35(t,m) = −2φT3,35(m)− (34−m)t.

Since φT3,35(34) = φT3,35(35) = 12, we have

Υδ,1
3,35(t) = max

33<m≤35
Υ̃T3,35(t,m) = max{−24,−24 + t} = −24 + t.

Since φT3,35(33) = 11, we have

Υδ,2
3,35(t) = max

32<m≤33
Υ̃T3,35(t,m) = −22− t.

If 0 < s < 2/3, then we have

Υtr
K(s) = max

ν∈{1,··· ,11}
{−2φK(ν)− (6− ν)s}

= max
ν∈{3,6,9}

{−2φK(ν)− (6− ν)s}(13)

= −2φK(3)− (6− 3)s = −2− 3s

and while we have ΥK(s) = −6s.
Here we explain the second equality (13). We consider several candidates

of functions which give the maximal in {−2φK(ν)−(6−ν)s|ν = 1, 2, · · · 11}.
During the set of Ni := {s ∈ {0, 1, · · · , 11}|φK(s) = i} for i ∈ N the maximal
function −2φK(ν)−(6−ν)s is the one of the maximal ν in Ni. This coincides
with SK ∩ [1, 11] = {3, 6, 7, 9, 10}.

Suppose that φK(ν−1) < φK(ν). Then since −2φK(ν−1)−(g−ν+1)s >
−2φK(ν) − (g − ν)s for any 0 < s < 2. The function for such ν ∈ SK is
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not a candidate of the maximal function. Thus we have only to consider
{3, 6, 7, 9, 10} − {4, 7, 8, 10, 11} = {3, 6, 9}.

As a result, we have

Υδ,1
3,35(t) + ΥK(s) = −12− 17t

and
Υδ,2

3,35(t) + Υtr
K(s) = −18− 10t.

Hence, when 2/3 < t < 8/9, the ΥKp,q(t) is the following:

ΥK3,35(t) = max {−12− 17t,−18− 10t}

=

{
−12− 17t 2/3 < t < 6/7

−18− 10t 6/7 ≤ t < 8/9.

Secondly, in 4/9 < t < 2/3, applying (5) in Theorem 5, we compute ΥK3,35(t)
as follows:

ΥK3,35(t) = max{−35t+ (−12 + 18t),−34t+ (−8 + 9t)}
= max{−12− 17t,−8− 25t}

=

{
−8− 25t 4/9 < t < 1/2

−12− 17t 1/2 ≤ t < 2/3.

7. Toward a further cabling formula

Let K be an L-space knot. When integers p, q satisfy q < (2g(K) − 1)p,
the cable knot Kp,q is not an L-space knot. In this case, to compute the
ΥKp,q , we require the different formula. For example, consider the family
ΥK2,q for K = T2,3 and q ∈ 2Z + 1. Then the paper can give the following
equalities

ΥK2,2n+1(t) = ΥK(2t) + ΥT2,2n+1(t) (n > 1).

Furthermore, since we have ∆K2,3(t) = ∆T3,4(t), we obtain

ΥK2,3(t) = ΥT3,4(t).

Furthermore, we obtain ΥK2,1(t) as the graph in Figure 8. This is due to
Hedden’s formula in [6]. This graph coincides with

ΥK2,1(t) = ΥT3,4(t)−ΥK(t),

because K2,1 is ν+-equivalent to T3,4#(−K). These equalities can be gener-

2

−4
3

Figure 8. Υ(T2,3)2,1
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alized in other cases of cable knots of torus knots. For example, for K = T2,5

and g = 2 we have

ΥK2,2n+5(t) = ΥK(2t) + ΥT2,2n+5(t) (n > 1)

However, ΥK2,7(t) does not equal to the Υ-invariant of either of any torus
knot or L-space cable knot of torus knot but K2,7.

Here we raise the following question.

Question 15. Let K be an L-space knot. Suppose that the integers q,Q
satisfy q < (2g(K) − 1)p < Q. Does there exist the method to compute the
ΥKp,q(t) by using ΥKp,Q

(t) and so on?
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