UPSILON INVARIANTS OF L-SPACE CABLE KNOTS

MOTOO TANGE

ABSTRACT. We compute the Upsilon invariant of L-space cable knots
Kp 4 in terms of p, Tx and Yz, ,. The integral value of the Upsilon
invariant gives a Q-valued knot concordance invariant. We also compute
the integral values of the Upsilon of L-space cable knots.

1. INTRODUCTION

1.1. Y-invariant. In [14], Ozsvath, Stipsicz and Szabé defined a knot con-
cordance invariant Y : C — C([0, 2]) where C(]0,2]) is the set of continuous
functions over the closed interval [0, 2]. After [14], Livingston in [12] gave a
simpler definition of Y.

This invariant is defined by extracting a “7-like” information coming from
the knot filtration of the (whole) knot Floer chain complex CFK*(S3, K).
Recall that Ozsvath-Szabd’s T-invariant is defined by using the knot filtra-
tion over the subcomplex CFK>®(S% K){i = 0} ¢ CFK>*(S3,K). Natu-
rally, this invariant T g is a refinement of the T-invariant and has properties
analogous to 7. In fact, 7 is computed by the formula 75 = =Y (0).

K is called an L-space knot if a positive surgery of K is an L-space, which
is defined to be a rational homology sphere with the same Heegaard Floer
homology as S for any spin® structure of the rational homology sphere.
Borodzik and Livingston wrote down a Y-invariant formula for any L-space
knot K by use of the formal semigroup Sk for any L-space knot K. The
formal semigroup is explained in Section 2.2.

Proposition 1 ([2]). Let K be an L-space knot with genus g. Then for any
t € [0,2] we have

Trelt) = max {2450 [0.m) — g —m)}.

RTEN

In this paper we consider the following invariant TK(t, m) = —2#(Skg N
[0,m)) —t(g—m) for the formal semigroup Sk of an L-space knot K. Hence

the Y-invariant is written as T () = max  Yx(t,m).
me{0,-++,2g}
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1.2. A cabling formula of the Y-invariant. Let K be a knot in S3. Let
V' be a tubular neighborhood of K. For integers p, g, the (p, g)-cable K,
of K is defined to be the simple closed curves on 9V whose homology class
isp-14¢-min H;(90V), where m and 1 are represented by a meridian and
longitude curves on V. If p, ¢ are coprime integers, then K, ; is a knot and
we call it the (p, q)-cable knot.

We consider the T-invariant of the cable knot. W. Chen in [3] gives an
inequality for the T-invariant of any cable knot. Our purpose of this article
is to give a cabling formula for any L-space knots.

Here we recall, to compare our cabling formula of T, , in this paper, two
cabling formulas for two invariants: Alexander polynomial and Tristram-
Levine signature.

The Alexander polynomial of the (p, ¢)-cable knot is computed as follows:

(1) Ag, . (t) = Ag(tP)Ar, (1)
The Tristram-Levine signature o (w) is defined as the signature of the
matrix
(1-w)S+(1-w)Ts,
where S is the Seifert matrix of K and w is any unit complex number. Due

o [11], the Tristram-Levine signature of the (p,q)-cable knot is computed
as follows:

(2) UKM(w) =ox(WP) + an,q(w).
Here we recall Hedden and Hom’s necessary and sufficient condition for
a cable knot K, to be an L-space knot.

Theorem 2 (Hedden [6] and Hom [9]). Let K be a knot with the Seifert
genus g. Ky 4 is an L-space knot if and only if K is an L-space knot and

(29 —1)p <gq.

1.3. The L-space cabling formula of Y. The first main theorem is the
following.

Theorem 3 (The case of 2gp < q). Let K be an L-space knot with the
Seifert genus g. Let p,q be relatively prime positive integers with 2gp < q.
Then the T-invariant of K, 4 is computed as follows:

(3) Tk,,(t) = Tk (pt) + Y, ,(0)-

Here Y g (pt) means the p-fold amalgamated function of Y i (¢) in the sense
of the deformation as in FIGURE 1. In other words, the p-fold amalgamated
function is presented by T (s) for 2i/p <t <2(i+1)/p (i=0,1,--- ,p—1)
and 2¢ + s = pt.

This formula (3) is similar to the cabling formula (2), however (3) does
not always hold even L-space cable knots. In fact, in the case of (29 —1)p <
q < 2gp, which is the remaining one, a different formula holds as mentioned
in the below.

We set

[F = min
0<m<2g m
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TK(t) TK(?)t)
FIGURE 1. The amalgamated function of 3-copies of YT ().

and

0:=q— (29— 1)p.
Let gp 4 denote g(T},4) = (p — 1)(¢ — 1)/2. The following theorem gives the
region of ¢ that Y,  (t) satisfies the same formula as the one in the first
case.

Theorem 4 (The case of (29 — 1)p < q < 2gp). Let K be an L-space
knot with the Seifert genus g. Let p,q be relatively prime integers with

(29— 1)p <p < 29p.

Let t be a real number with 0 <t < 2. Let i be an integer with 2i/p <t <
20+ 1)/p and 0 < i < p. We set the real number s satisfying 2i + s = pt.
Suppose that s satisfies either of the following conditions:

0<s<2—ug 1=20
PR <s<2—pg 1<i<p-—-2
pr <s<2 1=p—1.
Then
TKp,q (t) = TK(S) + Tprq (t)
holds.

In the region of ¢ other than for the condition in Theorem 4, the formula
Tk,,(t) = Yk (s)+YT, () fails. Here we observe this failure by an example.

1.4. Example (T3 7)335. Consider the (3,35)-cable knot of K = T3 7. Then
p=3,qg=35 g(K)==6and (2g — 1)p < ¢ < 2gp hold. Therefore K3 35 is
an L-space knot from the Hedden and Hom’s criterion. Then the value pg
defined above is 2/3. We compare the functions Y, ,;(t) — Ty ,;(t) and
T (3t). See FIGURE 2. Let ¢,s and t be i = 0,1,2, 2i + s = 3t and

0<s<4/3 1=0
2/3<s<4/3 i=1
2/3<s<2 7=2.
Then Y, ,;(t) = Y1y 45 (t) + T (s) holds, as indicated in FIGURE 2.
On the other hands, for the remaining regions, e.g., i =1l and 0 < s < 2/3

or 4/3 < s < 2, the Tk, ,,(t) violates the formula (3). Theorem 5 gives a
cabling formula on the such regions. As an example, in Section 6, we try to
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compute some of the actual functions of Y, ,; (¢) over the following regions:
i=land 0<s<2/3andi=0and 4/3 <s<2.

2 4 8
9 9 9

T os
'

Tx(3t)
— Yk, ,(t) = T1, (1)

FIGURE 2. The red graph is T (3t). The blue graph is the
different part of Y, ,;(t) — Yy 45 (t) from Y (32).

1.5. An L-space cabling formula of T over 0 < s < g or 2—pug < s <
2. The behaviors of T, ,(t) over the region of 0 < s < g (0 <i <p—1)
or2—pug <s<2(0<i<p-—1)are more complicated.

Here for any real number ¢ with 2i/p <t < 2(i + 1)/p we define Tg’é(t)
and Tg’fl(t) to be

5,1 . 3 5,2 _ o
Ty,t) = iquriar)n(giqTTp’q (t,m), Tpot) = iquinrg)g(iqfaTTp’q(t’m)'
Then,
6,1 0,2
max { T4 (6), Th2(0) | = T, (1)
holds. In general, we have Y7, () = max prq(t, m), due to Proposition

ig—p<m=iq
12. For any L-space knot K we define the truncated Y-invariant as follows:
T (s) = max Tk(s,v).
K( ) V€{172772971} K( 7 )

Actually, this invariant satisfies T (s) = Tk(s) for up < s < 2 — ug
(Lemma 14).

Theorem 5. Let K be an L-space knot with the Seifert genus g. Let p,q be
relatively prime integers with (29 — 1)p < q < 2gp. Let t be a real number
with 0 < t < 2. We assume that i and s € R satisfy 2i/p <t < 2(i+1)/p
and 2i + s = tp.
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Suppose that 0 < i < p. If 0 < s < ug, then Yk, (t) is computed as
follows:

(4) Ty, ,(t) = max {TK(S) +YBL(E), T (s) + T;;%,(t)} .

Suppose that 0 < i <p—1. If2 —pux < s <2, then Yk, (t) is computed
as follows:

(5) Tk, (t) = max {TK(S) B2 — 1), T (s) + TH2(2 — t)} .

We note that the equalities (4) and (5) hold for 0 < s <1land 1 < s < 2
respectively. Because, since T%(s) = Yk(s), these equalities (4) and (5)
become (3).

Corollary 6. Let K be an L-space knot. We assume that (2g9(K) — 1)p <
q < 29(K)p. For0<t<2,leti and s be an integer and a real number with
2i/p<t<2(i+1)/p, 2i+s=pt and 0 < s < 2. Then

Tr,,(t) + Ti(s) > Tk, (t) > Tr, (t) + TE(s)
holds.

In particular if ux < s < 2 — pg, then the inequalities become the
corresponding equalities. This means Theorem 4.

1.6. The integral value of Y i (t). We compute the integral value of T g ()
over [0, 2], which is also a concordance knot invariant:

2
I(K) = /0 Y (t)dt.

Then the values of torus knots are computed as follows:

Proposition 7. Let p,q be relatively prime positive integers. Let a; be the
i-th non-negative continued fraction of q/p:

1
(6) q/p=a1+ ———7— =:[a1, -, ap]
as + ..‘_;,_L
Then we have
1 n
2I(Tpq) = —g(pq - Zai)-
i=1

We can compare I (T}, ) with the S'-integral [q, o7, ,(w) of the Tristram-
Levine signature as follows:

oot =—5 (m=2= T4 ) = atsta.0) + s(p.0) - s(1.p0)

where the function s is the Dedekind sum. This computation has been done
by many topologists for example [10], [13], [1] and [4].

Here we give a formula of I(L) with L = (- (Kp, ,q1)pa.g2 * * * )pn,qn Of any
iterated cable L-space knot. We denote the iterated cable L-space knot

(' e (Kp1,q1)p27qz T )pi,qi by L;.
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Theorem 8. Let (p;,q;) be positive coprime integers. Let K be an L-space
knot. Let denote L := Ly,. If (p;,qi) satisfies q¢; > 2g(L;)p; for any i, then
the integral I1(L) is computed as follows:

I(L) = I(K) + ZI(Tpi7Qi)‘
i=1

The similar formula to the S! integral of o (w) for iterated torus knot L
is given in [1].
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2. PRELIMINARIES

In this section we introduce the tools to prove our main theorem (Theo-
rem 3).

2.1. L-space cable knot. We skip all the definitions relating to the Hee-
gaard Floer homology, e.g., HF and HFK. The set of L-space knots, whose
definition is given in the previous section, forms a class of the most simple
knots in terms of the property that OFK (83, K, j) is at most 1-dimensional
at each j, see [18]. To study the definitions we recommend the papers [15],
[16] and [17].

Recall Theorem 2 in the previous section, proven by Hedden and Hom.
These results give the necessary and sufficient condition for the cable knot
K, 4 to be an L-space knot as follows:

K, , is an L-space knot < K is an L-space knot and (2¢g(K) —1)p < q.

2.2. Formal semigroup. Suppose that K is an L-space knot. Then due
to [18], the Alexander polynomial Ag(t) of K is flat and has an alternating
condition on the non-zero coefficients. Here a polynomial is called flat if any
coefficient a; of the polynomial satisfies |a;| < 1.

Expanding the following rational function Ag(¢)/(1 —t) as follows:

AK(t)_ s
11—t 21

seSK

we obtain a subset Sg C Z>g. This subset Sk is called the formal semigroup
of K. According to [20], if K is an algebraic knot, then Sk is a semigroup. In
particular, if K is a right-handed torus knot 7}, 4, then St, , is the semigroup
generated by the positive integers p, ¢, namely, Sz, , = (p,q) = {pa + gb €
Z | a,b € Z>o} holds. If K is an L-space knot, the knot is not always
an algebraic knot because there exists an L-space knot K whose formal
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semigroup Sk is not semigroup. For example, the formal semigroup of the
(—2,3,2n + 1) pretzel knot K,, for n > 1 is an L-space knot and the formal
semigroup is as follows:

Sk, =1{0,3,5,7,--- ,2n —1,2n+ 1,2n+ 2} U Zp>o2pn14.

Furthermore K| = T34, Ko = T3 5 hold. It can be easily seen that if n > 3,
then the Sk, is not a semigroup. The Alexander polynomials of (-2, 3,2n+
1)-pretzel knots can be found, for example, in [8].

Wang, in [21], proved that the cabling formula of the formal subgroup of
any L-space knot as follows:

Proposition 9 (A cabling formula of formal semigroup [21]). Let K be
a nontrivial L-space knot. Suppose p > 2 and q > p(29(K) — 1). Then
SKpq =PSK +qZ>0 :={pa+qb|a € Sk,b € Z>o}.

Here we prove the following lemma.

Lemma 10. Let Sk be a formal semigroup coming from non-trivial L-space

knot. Then 1 € Sk holds.

Proof. If 1 € Sk, then the Alexander polynomial of the L-space knot
is computed as follows:

Agt) =1 —t) A+t +tf(1) =1 -2 +t5(1 — ) f(1),

where s > 2 and f(t) is a series. Thus the coefficient of ¢ in Ag (t) vanishes.
The coefficient of ¢ of the Alexander polynomial of a non-trivial L-space
knot is —1 due to [7]. Thus K must be the trivial knot. O

In the case of lens space knots, there would be some restrictions to Sk.
The results in [19] can give some restrictions.

3. PROOFS OF PROPOSITION 7 AND THEOREM 8.

In [5] Feller and Krcatovich proved that the recurrence formula Y7,  (t) =
Yr,,,(t)+ Y7, ., (t). By using this formula, they proved the following -
invariant formula of torus knots.

Proposition 11 (Proposition 2.2 in [5]). Let a; be the same coefficient

defined in (6) and p; the denominator of [a;,a;t1,- - ,an]. Then we have
(7) TTp,q (t) = Z aiTTpi,pi+1 (t)
i=1

Note that the formula depends on the way of taking the continued fraction
in general, but it does not depend on the way to take the non-negative
integral continued fraction expansions ¢/p = [a;, - - , ay], i.e., a; > 0 for any
i. Here we prove Proposition 7 by using the formula (7).

Proof. From the torus knot formula, we immediately have

n
I(Tpq) = Z ail (T, pi+1)-
i=1
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Comparing the first derivative of (7) at ¢ = 0, we have

(8) ( q_l Zazpz 1_1

The direct computation for 7}, ,41 implies the following:

I(Tp,pﬂ) = -

Thus, we have

n n

1 1
2(Tyq) = —3 > aipi—1) = —3 > (aipi(pi — 1) — a; + aipy).
=1 =1

Since p;—1 = a;p; + Pi+1,

Zazpz—ZpH—pm) =q+pi—pn=q+p—1.
i=1

Thus using (8) we get the following:

n

21(Tpq) = —é <(P—1)(q—1)—zai+q+p—1> = —% (pq—zaz) :

i=1 =1
O
Next, we prove Theorem 8 using Theorem 3.
Proof. Let denote L' = L,,_1. First we obtain the equality:

2 2p 1 2 1
/ Ty, (pt)dt = / T (s)Lds = p / T, (s)Lds = (1),
0 0 p 0 p

This equality can be justified by regarding Y (pt) as a function which is
naturally expanded to the periodic function over R with the period 2/p.
Using Theorem 3 and this computation we have

2
(L) = /O (Yoo(pt) + T, ()dt = I(L') + I(Ty, ).

By iterating this relationship we have

I(L) = I(K) + ZI(Tm,qi)-
i=1

4. PROOF OF THEOREM 3.

Let K be an L-space knot with the Seifert genus g. Throughout this
section we assume that the relatively prime positive integers p,q satisfy
2gp < p. In particular, K, 4 is also an L-space knot.
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For any L-space knot K we denote #(Sx N [0,m)) by ¢x(m). Let
O i (t, m) denote g (m)—tm/2. According to Proposition 1, the Y-invariant
of an L-space knot K is rewritten as follows:

Tr(t) = —2 min  {ex(m)—tm/2} —tg(K).
me{071772g}
9) = —2me{(1ﬁ17.r}.72g}(1>;((t,m) —tg(K).

Extending the function px(m) as ¢x(m) = 0 if m < 0, we can define
P (t,m) over m € Z. We note that the function @ (¢,m) satisfies the
following:

(1—-t/2)m—g m > 2g.
Thus if a subset S C Z includes {0,1,---,2¢} then we have

{—tm/2 m <0

in® g (t,m) = i D (t,m).
L
The genus g(Kp,) coincides with the degree of Ak, (t) and K is an
L-space knot. Thus from the cabling formula (1), we have

9(Kpq) = P9+ 9pag-
We denote ¢k, ,(m) by ¢(m). Let ®(t,m) denote @, (t,m).

Lemma 12. Let K be an L-space knot with g = g(K). Let p,q be relatively
prime integers with 2gp < q. Let i be an integer with 0 < i < p. Suppose
that t is any real number with 2i/p <t <2(i+ 1)/p. Then we have
min  ®(t,m) = min O(t,m).
0<m<2g(Kp,q) ig—p<m<iq+2gp

Proof. We can extend the range 0 < m < 2¢g(K), ) in the minimality
to all integers. We fix a real number ¢ with 0 <t < 2. Let ¢ be an integer
with 2i/p <t < 2(i+1)/p and 0 < i < p. Suppose that m is any integer
with m < iq — p.

O(t,m +p) — @(t,m) = @(m+p)—t(m+p)/2—e(m)-+tm/2
= #(Sk,,N[m,m+p)) —tp/2

Since #(Sk, ,N[m, m+p)) < i, we have &(t,m+p)—2(t,m) <i—tp/2 <0.
Thus the minimal value of ®(¢, m) over m € [0, ig] is the same as the minimal
value over m € (iq — p, iq]. See FIGURE 3 for the aid of our argument. This
graph stands for elements in Sk, , with pSk +{0,1,2,---i—2}Z>o omitted.
All the circles mean the elements in St,, , the black circles mean the elements
in Sk, , and white circles mean the elements not in Sk, .

Suppose that m is an integer with ig + (29 — 1)p < m < 2g(K, 4). Since
o(m+p) — ¢(m) = #(Sk,, N [m,m +p)) > i+ 1 holds, we have ®(t,m +
p) — ®(t,m) > i+ 1—tp/2 > 0. Thus the minimal value of ®(¢,m) over
(tg+ (29 —1)p, 2¢9(Kp )] coincides with the minimal over (ig+ (29 —1)p, iq+
2gp].

Therefore the minimal value of ®(t,m) over 0 < m < 2¢g(K,,) attains
over iq —p < m < iq + 2gp. O
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(i—1)g+ (29 —1)p uq 1q+p
(i —1)g+2gp
FI1GURE 3. Sk without pSk + jq with j <i — 1.

As a corollary of this lemma, if K is the unknot, then we have

min ®p ((,m)= min &y (t,m).
0<m<2gp,q p’q( ’ ) ig—p<m<iq p’q( ’ )

Next, we investigate the minimal values of ®(¢,m) in the region
Li={meZ|ig—p<m <iq+ 2gp}.
The minimal value of ®(¢, m) over I; coincides with
min { min d(t, m)} .

veSk ,v—1€Sk |ig+(v—1)p<m<ig+vp

This minimal value can be rewritten as follows:
m .
it+ell)+1 ¢t

where p; is the minimal value of ®(¢,m) over (ig — p,ig]. The function €(l)

is defined as follows:
0 Ve SK
€(v) =
-1 v¢&Sk

Here in the case of m = —1 the sum means 0. Since > " (e(l) + 1) =
#(SK N [0,m + 1)) holds, the summation in (10) is computed as follows:

_1§I,Inli§n29_1 {#(SK N[0,m+1)) — <t§ _ Z) (m + 1)}

= ogr?ni%g {#(Sk N[0,m)) —sm/2} = 0312229(1)[{(8’ m).

Then we have

(11) min®(¢t,m) = min P (s,m) + w;.

mel; 0<m<2g
Hence, we obtain

Tg,, () = _20%23229(1)1((5’7”)_2Ni_tg(Kp,q)

= Tk(s)+ 59 — 2 — t(pg + Gp.q)-
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TR ey .
: @
1 1
iqg—p ig+p
iq iq+ 2p
FIGURE 4. The places of local minimal points of ®(¢, m) over
m € I;.

Sk, , is the semigroup obtained by removing several copies of [0, 2g]NZ —
Sk from St, . Taking K as the unknot in Lemma 12, we have the following:

i = iq—;?ilggiqq)p’q(t’ m) — ig
12 = i d —1g.
(12) o in  pglt,m) —ig

Here ®, ,(t,m) means ®r, (t,m).
Therefore the formula (9) for L-space knots, we obtain the following;:

Tk,,(t) = Yi(s)+sg— QOSTrnngin D, q(t,m) +2ig — (pg + gp.g)t

29p,q
= Yg(s)+ 7T, ().

5. THE CASE OF (29 — 1)p < q < 2gp.

5.1. The minimal value of ®(¢,m). Let K be an L-space knot with the
Seifert genus g. Throughout this section we assume that the relatively prime
positive integers p, ¢ satisfy (29 — 1)p < ¢ < 2gp. In particular, K, is an
L-space knot. We consider ®(t,m) = #(Sk,, N [0,m)) —tm/2. We set the
difference ¢ — (2g — 1)p as 9.

We denote {m € Z | ig — 6 < m < (i + 1)q} by I?. Here we prove the
following lemma.

Lemma 13. Suppose that t is any real number with 2i/p <t < 2(i+1)/p
for 0 <i < p. Then we have

min  ®(¢,m) = min ®(t,m).
0<m<2g(Kp,q) mE[f

Proof. We consider the following difference in the same way as Lemma
12
O(t,m + p) — ®(t,m) = p(t,m + p) — p(t,m) — tp/2.

If m <iq— 4, then the difference ©(t,m +p) — ¢(t,m) = #(Sk, , N [m, m+
p)) < i holds. Hence we have ®(t,m +p) — ®(t,m) <i—1tp/2 <O0.

11
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Thus the minimal value of ®(¢,m) over (—oo,iq — § + p| coincides with
the minimal value over (ig — d,iqg — § + p).

In the case of (i +1)g —p < m < 2g(K, 4) — p the difference is computed
as follows: @(m +p) — ¢(m) = #(Sk,, N [m,m + p)) > i+ 1. Hence we
have ®(t,m + p) — ®(t,m) > i+ 1 —tp/2 > 0. Thus the minimal value of

®(t,m) coincides with the minimal value over I?. O
oo
...... o =
. L m
iq iqg+p
(i—1)g+ (29— 1)p
(i —1)g+2gp

FIGURE 5. Sk, , with pSk + jq with j =14 —1,4.

T i ' ' : i
iq—|p iq ig+p ig+ (29 —1p

(1—1)g+ (29— 1)p (i+1)q
FIGURE 6. The places of local minimal points of ® (¢, m) over
m € [(i = 1)q+ (29 — 1)p,iq + (29 — 1)p].

5.2. Proof of Theorem 4. Let p,q be relatively prime positive integers
with (29 — 1)p < ¢ < 2gp. For a real number ¢t with 0 < ¢ < 2, let i be an
integer with 2i/p <t < 2(i+ 1)/p for some integer 0 < i < p. We set s as a
real number with 2i 4+ s = pt.

A real number ¢ satisfies T, (1) = Tk (s) + YT, (t) if and only if

min ®(t,m)= min Pxr(t,m)+
0§ms2g(Kp,q)( ) 0=m=2g selbym) +

holds, where we recall 1 = min &, ,(t,m) — ig. In other words, such ¢
1q—p<m<iq '
satisfies either of the following conditions. Let S}(p ; be

(Skpq Utia — 6} = {(i + 1)a}) N[0,29(Kpg)) U Zsog(xc,, -
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Let ®'(t,m) be

min (#(Sk,,, N [0,m)) —tm/2) + {—1 0<i<p-—-1

The functions ®i(t,m) and ®(t,m) coincide on ig — & < m < (i + 1)g, while
®*(t,m) is the shift of ®(¢,m) by —1 on the regions 0 < m < ig — § and
(i+1)g < m as in FIGURE T.

Condition 1. The minimal value of ®'(t,m) over iqg < m < iq+ (29 — 1)p
is not greater than the minimal value of ®(t,m) over iq—p < m < iq. This
1s equivalent to the condition
min ®(¢,m) = min ®'(t,m).
iq—o<m ig—p<m

Condition 2. The minimal value of ®'(t,m) over iqg < m < iq+ (29 — 1)p
is not greater than the minimal value of ®(t,m) over iq+ (29 — 1)p <m <
iq 4+ 2gp. This is equivalent to the condition

min  ®(t,m) = min (¢, m).
m<(i+1)q m<iq+2gp

) ; i ' |
=P " iq+p (i—i—l)q—é‘ iq + 2gp
iq— 9 (i+1)q

i (t, m)

FIGURE 7. The functions ®(t,m) and ®'(¢,m) (in case of
0<i<p-—1).

If m is an integer with ig — p < m < iq — §, then we have
' (t,m +vp) — ' (t,m) = #(S}'(p‘q N [m, m+ vp)) — vpt/2
= v+ #(Sk N [0,v) = vli+3)
= #(SkN[0,v)) —vs/2 = Pg(s,v).
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Condition 1 is satisfied if and only if there exists v satisfying ®x(s,v) <0
(1 <v <2g—1). This is equivalent to
20k (V)

s> min = UK.
1<v<2g—-1 14 H

If m is an integer with (i + 1)g < m < (i + 1)g — 6 + p, then we have

d'(t,m) — ®'(t,m —vp) = #(S}‘(p’q N[m —vp,m)) —vpt/2
= i+ #SkN[0,0) — (i + g)

= v—#(SkN[0,v)) —vs/2=—-Dg(2—s,v).

Here Sk is the complement of Sk in Z. Condition 2 is satisfied if and only
if there exists v satisfying —®x(2 —s,v) > 0 (1 < v < 2¢g —1). This is
equivalent to

2
2—s> min Pr(v)

= = UK.
1<m<2g—1 14 H

Suppose that 0 < ¢ < p—1. The region pux < s < 2— i holds if and only
if there exist 1 < v,/ < 2¢g—1 such that @ (s,v) < 0and Px(2—s,0/) <0
hold. Namely, this means that

min ®(¢,m) = min®*(t, m).
melf mel;

Thus for such an s we have
Tg,,(t) =", (t) + Tk(s).
Suppose that ¢ = 0. Then we have

min®(¢,m) = min D(t,m).
meld —p<m=<gq
Furthermore if s < 2 — pg, then min ®(t,m) = min ®°(t,m) =
—p<m=<gq —d<m<2gp
min ®°(¢,m) holds. Thus s < 2 — ux means that

mely
Tr,,(t) = Tr(s) + Y, , (1)
Suppose that ¢ = p — 1. Then we have

min ®(t,m) = min O(t,m).
meld_, (p—1)q—6<m=(p—1)g+2gp

Furthermore if px < s, then

min O(t,m) = min dP~L(t,m)
(p—1)g—6<m<(p—1)q+2gp (p—1)g—p<m<(p—1)g+2gp
= min " (t,m)

mel,_1

holds. Thus if px < s, then we have
Tg,,(t) =Tk(s)+ T, (1)
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5.3. The variations Y%, Tg’fq (i = 1,2,3,4). Recall the definitions of
Tg’fq (i = 1,2) in Section 1.5. Here we also define Tg’z(t) and Tf,’f;(t) for
0 < 0 < p as follows. Let ¢t be a real number with For 2i/p <t <2(i+1)/p
0 <t < 2. Then we define Tg’z and Tg’f] to be

o3 (t) = Yo, (t T3 (1) = Yt
pa)=,  max  Tr, (tm), Tg, ()= max  Tp(t,m)

Here we prove properties of T%(s), Tgﬁl (t).
Lemma 14. Let K be an L-space knot. Then,
Yh(s) = Yi(2—s), YO3(t) =)L (2—1t), and YY5(t) = Y2 (2 — t)
hold.
Proof. By using the equality
¢r(29-v) =g #(SkN[29—1,29) = g = #(Sk N[0, v) = g — v+ K (v),

we have

T(s) = T = T -
ic(s) B, Trley) = max  Tr(s2g-v)

= -2 min (9—v+erx(v)—s(2g —v)/2) — sg
v=1,2--2g—1
min  (pr(v) — (2 —8)r/2) — (2 — s)g = YE(2 — s).
v=1,2,--- ,2g—1
We assume that 2¢ 4+ s = pt and 0 < s < 2.

T3 (t) = —2 min B, (t,m) —t
pa(t) iq_p<m£iq_p+5 pa(t;m) —tgpq

= -2

= 2 i —tm/2) —t
iqu<g¢1£qu+5(@T”’q(m) m/2) —tgpq

- <P*1*i)qu£§(pf1fi)q(ng”*q(291“1 —m) = t(2gpq —m)/2) = tgpq
- (p—l—i)q—giﬁg(p_l_i)q (9pq — m+ o1, (M) — t(2gp.g — M) /2) — tgpgq
- (p—l—i)q—?iiﬁg(p_l_i)q(%,q(m) —(2—=t)m/2) — (2 —t)gp-

= Thi(2-1)

In the same way, we have
0,4 _ .2
Tpﬁq(t) = Tp’q(Q —t).

5.4. Theorem 5. Here we give a proof of Theorem 5.
Proof. Suppose that 0 <i < p—1and 2i/p <t < 2(i+1)/p. By applying
the equalities (11) and (12) in the case of 2gp < ¢ we obtain the below
computation.

We suppose 0 < s < pux. We consider the minimal value of (i +1)g— ¢ <
m < (i+1)g. Since s <2 —pg,if 1 <v<29g—1land (i+1)g—5d<m<
(i +1)g — 6 + p then there exists 1 < v < 2g — 1 such that

O'(t,m) — ®'(t,m —vp) = #(Sk N [0,v)) —vs/2 = —B(2 — 5,v) > 0.

15
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Then
min O(t,m) = min i (t, m)
ig—d<m<(i+1)q ig—o<m<(i+1)g—9
= min min min di(t,m) ),
v=0,1,---,29g—1 \ig—d+vp<m<iq+vp
min min d'(t,m) | ¢,
v=1,2,--,2g—1 \ig+(v—1)p<m<ig—35+vp
min min O (t, m = min Br(s,v)+ pl(t
V:0717"'72g71 <7’q_5+Vp<m<1q+Vp ( ’ )> V:O717"'72971( K( ’ ) Hz( ))

= min  ®g(s,v) + p(t),
g

v=0,1,,2

and

min min di(t,m = min Pre(s,v)+ p(t

= in @ (1)
oy i Prc(s,v) 4 4 ()
Here p}(t) p2(t) are the minimal values of ®¢(t,m) over ig — 6 < m < iq
and ig — p < m < iq — & respectively.
—2ul(t) = —2 min @ (t,m)=-2 min D,,(t 2i
i (1) g min_ @*(t,m) g min_ ®@pq(t,m) + 2ig
YL (t) + 2ig + tgpq

—2u2(t) = =2 i di(t,m) = —2 i D, (t 2
'ul( ) iq—pinn%}%iq—é ( ,m) iq—pinnlz%iq—é p,q( 7m) + K

S .
= T)2(t) + 2ig + tgpq

T t) = —2 min d(t,m)—t
Kp,q() ig—8<m=(i+1)q ( ) 9Kp.q

) )

— ; 1
= max {—2 ,min (s, v) —tgx,, — 2 (1),

21/:1,5?.1.{129—1(1)[((5’”) t9Kc,. — 214 (t)}

= max { max Tx(s,v) + sg — t(pg + Gp,g) + Tg’}](t) +2ig +tgpq,
v=0,1-,2g

s

- 51}?1129_1 'TK(S, v) +sg —t(pg + gpq) + Tgf](t) + 2ig + tgm}

= max {TK(S) + Ti’,};(t), Ti(s) + Tgfz(t)}
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We suppose 2 — up < s < 2. Then we have

min d(t,m)= min  D'(¢t,m).
ig—d<m<(i+1)q ig<m<(i+1)q

= min<{ min min d'(t,m) ),
i=1,2,--29 \ig+(v—1)p<m<iq+(v—1)p+5

min min d'(t,m) | ¢,
v=1,2,+,2g—1 \ig+(v—1)p+d<m<ig+vp

min min (t,m)
v=1,2,- 29 \ig+(v—1)p<m<iq+(v—1)p+d

- i 3(4)) = i 3
= min (Pr(s,v) + p(t)) i O (s,v) + p;(t),

l/:172"" ’

=YLty

and

- min min ' (t, m)
1=1,2,---2g—1 \ig+(v—1)p+d<m<iq+vp

_ : ) = mi 1
= 1/:1,51}-1-1,12g71 (q)K(Sa V) + u; (t)) l/:l,;?-l-lbgfl (I)K(S’ V) + 1y (t)

Here £3(t) and p(t) are the minimal values of ®%(t,m) over ig —p < m <
iqg—p—+ 06 and iq — p + J < m < iq respectively.
Here we compute —243(t) and —24} (t).

—2u3(t) = =2 i (¢ =2 i o, (t 2i
i (t) gpcmin 2 tm) apmin s Poalt,m) +2ig

5 .
Tp’,?;(t) +2ig +tgpq

—2dt) = -2 i Ot =2 i o, (1 2i
Mz( ) iq—;n<1nr’lbgiq ( vm) iq—p—I}—Itl§1<nm§iq pr( )m) + g

6, .
Tpf;(t) +2ig +tgpq

Applying these terms to Y, (), we get the following:

=0,1,---,

Tk,,(t) = max {V max 2 TK(S, v)+sg—t(pg + gpq) — 2,u§’(t)

- max  Tg(s,v)+ 89 —t(pg + gpg) — 2#?(75)}
v=1,2,---,2g—1

= max {TK(S) + sg — tpg + Tf,’fé(t) + 2ig
T (s) + 59 — tpg + Y04(t) + 2ig}
— max {TK(S) 5 (1), T (s) + Tgf;(t)} .

By using Lemma 14, we get the required formulas. O
Here we prove a corollary stated in Section 1.
Proof of Corollary 6. If 0 < s < pux or 2 — uxg < s < 2 hold, then for
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all v € {1,2,---,29 — 1} ®g(s,v) > 0 = Pg(s,0) = ®(K,2) holds. Thus
T (s) < Tk (s) holds. Therefore, we have

Tho () < max{Tre(s) + Thh (), Tr(s) + THA(0)}
= Ti(s) + max {THE(0), Tp2(6) } = Ti(s) + Y., (1)

Since for any 1 < v < 2g — 1, the inequality ®(t,m) < ®(t,m + vp) for
ig —p < m <ig— ¢ holds. This means that Yr, (t) < Yx(s)+Tr, (). O

6. THE EXAMPLE (73 7)3,35.

6.1. Computation of Y (g, ), ,,. We come back to the example K3 35 ob-
served in the previous section again, where K = T37. We apply the ca-
bling formula in Theorem 5 to this example. The genera are computed as
g = 6 and g3 35 = 34. Then Sk = {0,3,6,7,9,10} U Zy,>12 holds. When
v=20,1,2,---,12, the sequence px(v) is as follows:

er(r):0,1,1,1,2,2,2,3,4,4,5,6,6.

Hence, we have ux = 2/3 and 6 = 2.

First, we consider 2/3 < t < 4/3, namely this corresponds to the case of
i =1 in Theorem 5. Furthermore we assume 2 + s = 3t and 0 < s < 2/3.
This means 2/3 < t < 8/9. Then we have

TT3,35 (tvm) = _24PT3,35 (m) — (34 — m)t.
Since ¢T3’35 (34) = @Tg 35 (35) = ].2 we have

Tg’}%(t) = 33ma><<35TT3 45 (t,m) = max{—24, —24 +t} = —24 + ¢.

Since 7, ,;(33) = 11, we have

5,2
T335(t) = 321<T17g><<33TT3 4 (t,m) = =22 —t.

If 0 < s < 2/3, then we have

tr — _ —_ —
Tl = | max {~2px(v) (6 1)s)
(13) = {=20() = (6= v)s)
= —2¢pg(3)—(6—-3)s=—-2-3s
and while we have YT g (s) = —6s.

Here we explain the second equality (13). We consider several candidates
of functions which give the maximal in {—2px(v)—(6—v)s|lv =1,2,---11}.
During the set of N; := {s € {0,1,--- ,11}|pk(s) = i} for i € N the maximal
function —2¢x (v)—(6—v)s is the one of the maximal v in NV;. This coincides
with Sk N [1,11] = {3,6,7,9,10}.

Suppose that i (r—1) < g (v). Then since —2pg(v—1)—(g—v+1)s >
—2pK(v) — (9 —v)s for any 0 < s < 2. The function for such v € Sk is
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not a candidate of the maximal function. Thus we have only to consider
{3,6,7,9,10} — {4,7,8,10,11} = {3,6,9}.
As a result, we have

Toss(t) + Tr(s) = —12 — 17t
and

T335(8) + T (s) = —18 — 10t.
Hence, when 2/3 <t < 8/9, the Tk, (t) is the following:

Yrys5(t) = max{—12—17t,—-18 — 10t}

) -12-17t 2/3<t<6/7
| -18—-10t 6/7<t<8/9.
Secondly, in 4/9 <t < 2/3, applying (5) in Theorem 5, we compute Y f, ;- ()
as follows:
Yy 35(t) = max{—35t + (—12 + 18t), —34¢ + (-8 + 9t)}
= max{—12 — 17¢t,—8 — 25t}
—-8—-25t 4/9<t<1/2
1217t 1/2<t<2/3.

7. TOWARD A FURTHER CABLING FORMULA

Let K be an L-space knot. When integers p, g satisfy ¢ < (29(K) — 1)p,
the cable knot K, , is not an L-space knot. In this case, to compute the
Tk, ,,» we require the different formula. For example, consider the family
Yk,, for K =Ts3 and q € 2Z + 1. Then the paper can give the following
equalities

TK2,2n+l(t) = TK(zt) + TT2,2n+1 (t) (n > 1)'

Furthermore, since we have Ak, ,(t) = At ,(t), we obtain
TK2,3 (t) = TT3,4 (t)

Furthermore, we obtain Yg,, (t) as the graph in FIGURE 8. This is due to
Hedden'’s formula in [6]. This graph coincides with

TK2,1(t) = TT3,4 (t) - TK(t)a

because K3 ; is v -equivalent to T3 4#(—K). These equalities can be gener-

2

|
ol
.

FIGURE 8. T(7,,),,
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alized in other cases of cable knots of torus knots. For example, for K =T 5
and g = 2 we have

TK2,2n+5 (t) = TK(Qt) + TT2,2n+5 (t) (n > 1)

However, Tk, ,(t) does not equal to the Y-invariant of either of any torus
knot or L-space cable knot of torus knot but K 7.
Here we raise the following question.

Question 15. Let K be an L-space knot. Suppose that the integers q,Q
satisfy q < (29(K) — 1)p < Q. Does there exist the method to compute the
Tk, ,(t) by using Tk, ,(t) and so on?
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