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Abstract. Suppose that X,X ′ are simply connected closed exotic 4-
manifolds. It is well-known that X ′ is obtained by an order 2 cork twist
of X. We show that in the case of infinite order cork, this existence
theorem does not always hold.

1. Introduction

1.1. A fact for cork twist. In smooth 4-manifolds the following existence
theorem of a cork is well-known.

Fact 1.1 ([9],[4]). Let X,X ′ be simply-connected closed exotic smooth 4-
manifolds. Then there exists a contractible 4-manifold C in X such that
X ′ = (X − C) ∪τ C and τ2 = id.

Furthermore, as such a manifold C we can take a Stein manifold [1]. ‘Ex-
otic’ means that manifolds are homeomorphic but non-diffeomorphic each
other. The manifold obtained by removing a submanifold Y ⊂ X with em-
bedding i and regluing Y via τ is denoted by X(i, Y, τ). We may omit the
embedding map i in the notation, if the map is understood in that context.
Here we call such a surgery simply twist. Hence, cork means a localization
of exotic structure.

1.2. Motivation and results. As Fact 1.1 mentioning, any exotic two 4-
manifolds X and X ′ have an involutive relationship with respect to a cork
twist. What we issue is the point of whether the existence holds for an
infinite family. In this paper we give a negative answer (Main theorem 1) for
this question. In the local situation we have a natural question of whether
a (generalized) cork twist is a result of an inner cork or not. We give a
negative answer (Main theorem 2) for this question as well.

1.3. Finite, infinite order cork, and Main theorem 1. Let (C, τ) be
a pair of a smooth manifold C and a boundary diffeomorphism τ : ∂C →
∂C. If τ extends to a homeomorphism on C but cannot extend to any
diffeomorphism on C, then τ is called non-trivial (otherwise trivial). If C
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is a contractible and τ is non-trivial, then the pair (C, τ) is called a cork.
Freedman’s result [6] says that C is a contractible and τ cannot extend
to any diffeomorphism on C, then (C, τ) is a cork. When we replace the
contractible condition with the non-contractible one, we call (C, τ) a non-
contractible cork. Then the map τ is called cork map or non-contractible
cork map. The order of a cork (or non-contractible cork) is the minimal
positive number of n that τn can extend to a diffeomorphism on C.

The author in [14] illustrates an example of a non-contractible cork. Re-
cently, by the author [13] and Auckly, Kim, Melvin, and Ruberman [2] finite
order corks are found. Right after the discoveries, Gompf in [7] found infinite
order corks.

Theorem 1.2 ([7]). Suppose that Kn is the 2n-twist knot. Then there exists
an infinite order cork (C, f) satisfying XKn = X(C, fn).

Here the 4-manifold X need have 2 vanishing cycles isotopic to the merid-
ian of the knot-surgery. At the point that (C, f) produces Fintushel-Stern’s
knot-surgeries, this cork is very exciting object.

We prove the following non-existence theorem on infinite order cork. Here
we denote by F the order 2 field Z/2Z.

Main theorem 1. Suppose that {Xn} is a Z-family of exotic oriented closed
4-manifolds with b+2 > 1 giving infinite OS-invariants with F-coefficient.
Then, there exists no infinite order cork (C, τ) such that {Xn} = {X(C, τn)}.

This theorem would be true even if one replaces OS-invariant with Seiberg-
Witten invariant with F-coefficient, because of the equivalence of the OS-
invariant and the Seiberg-Witten invariant. This equivalence for 4-manifolds
is still open now.

For a closed spinc 4-manifold (X, s) the OS-invariant ΦX,s is a smooth
4-manifold invariant

ΦX,s ∈ F.
Then we have a polynomial∑

s∈Spinc(X)

ΦX,s · ePD[c1(s)] =: ΦX .

We call the polynomial OS-invariant. As an application, the following corol-
lary holds.

Corollary 1.3. Suppose that Tn is the (2, 2n+1)-torus knot. Then for any
integer m with m ≥ 2 the family {E(m)Tn} cannot be constructed by twisting
an infinite order cork.

Compared this corollary with Theorem 1.2, we know that the two situa-
tions are contrasting. The F-reductions of {∆Tn(t)} are infinite, i.e.,

#

{
n∑

k=1

tk|n ∈ Z

}
= ∞,
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while the F-reductions of {∆Kn(t)} are finite, precisely saying

#{1, t− 1 + t−1} = 2.

Here we denote by ∆K(t) the Alexander polynomial of K. Depending on the
knot, the existence of infinite order cork for Fintushel-Stern’s knot-surgery
changes.

This theorem means that the OS-invariants with F-coefficient of 4-manifolds
obtained from a single (finite or infinite order) cork are finite variations.
Thus, immediately, we have the following corollary:

Corollary 1.4. Let C be a contractible 4-manifold. Let r be a rank of
HF−(∂C,F)/(U = 0). If C admits a G-cork with a G-effective embedding

with distinct F-coefficient OS-invariants, then |G| ≤
∏r−1

k=0(2
r − 2k) holds.

Question 1.5. Let {Xn} be an exotic family of 4-manifolds (e.g., with
distinct Z-coefficients OS-invariants). Suppose that {Xn} have finite F-
coefficients OS-invariants. Then does there exist an infinite order cork (C, τ)
which produces {Xn}?

A remaining question is a characterization of the finite family which is
produced by a finite order cork (C, τ).

Question 1.6. Let {Xk|k = 0, · · · , n − 1} be a finite family of exotic 4-
manifolds. When does there exist an order n cork (C, τ) such that the family
is obtained by cork twists of (C, τ).

Let C be a 4-manifold and D a contractible submanifold of C with dim C =
dimD and with ∂D smoothly embedded in the interior of C. Let i be the
identity map ∂C → ∂C. Thus, (C, i) is a trivial twist. Let g be a boundary
diffeomorphism of D. Suppose that there exists a diffeomorphism F from
the twist C(D, g) to C. Then i induces a diffeomorphism ∂C → ∂C(D, g). We
define the composition F−1|∂C ◦ i by j. We call (C, j) (or (D, g)) an induced
twist of (D, g) (or core twist of (C, f) respectively).

C F−−−−→ C(D, g)xinclusion

∂C i−−−−→ ∂C(D, g)
It is already not clear whether (C, j) is trivial. Then we denote it by

(D, g) ⊂ (C, f).

Definition 1.7 (Core cork and induced cork.). Suppose that (D, g) ⊂ (C, f).
If (C, f) is a cork, then the twist (D, g) is also a cork. In this case we call
(D, g) a core cork of (C, f).

For the case where (C, f) or (D, g) is a plug or non-contractible cork we use
the same terminology ⊂ in the similar situation. Even if a cork twist (D, g)
induces a twist (C, f), then (C, f) is not always a cork (or non-contractible
cork) twist. The orders of (C, f) and (D, g) do not always agree with each



4 MOTOO TANGE

other. For example, in [14] the author proved cork-ness of (Dn,m, τ
D
n,m)

(order n) by using an induced twist (Dn,m, τ
D
n,m) ⊂ (C(m), τ(m)) and what

(C(m), τ(m)) is an order 2 Stein cork.
Furthermore, we consider the following concept for a family version of

core (and indued) cork.

Definition 1.8 (Core G-cork, induced H-cork). Let (D, G) be a G-cork
and a submanifold in a 4-manifold C with boundary and ∂D ⊂ C smoothly
embedding. Assume that C − D is not diffeomorphic to a cylinder of ∂C.
If any g ∈ G gives an induced twist (D, g) ⊂ (C, h) and the correspondence
g 7→ h produces an isomorphism

G
∼=→ H ⊂ Diff(∂C)

into a subgroup H, then (D, G) is called a core G-cork of (C,H) and (C,H)
is called an induced H-cork of (D, G). Then we denote it by

(D, G) ⊂ (C,H).

In [13], we prove the Z2-cork (C(1), {τ(1)}) contains a core Z2-cork

(C2,1, {τC2,1}) ⊂ (C(1), {τ(1)}),

because, ∂C2,1 and ∂C(1) are not diffeomorphic homology spheres because
of SnapPea computation. Therefore, C(1)−C2,1 is not diffeomorphic to the
cylinder. It is an open question whether ∂C2,m ̸∼= ∂C(m) or not for any
m. The motivation of core cork is to replace a cork or non-contractible cork
twist with a new (or possible ‘universal’) reasonable cork.

To find a cork in a wider situation we would like to search a cork in a
non-contractible cork. As an application of Main theorem 1 we show the
following theorem.

Main theorem 2. There exists a non-contractible Z-cork (P,Z) such that
(P,Z) never contain any core Z-cork.

We give a natural question:

Question 1.9. Let H be a finite group. Does any non-contractible H-cork
contain a core G-cork D with (D, G) ⊂ (C,H)?

1.4. A Stein plug (Q,ϕ) with b2(Q) = 1 changing any crossing of
Fintushel-Stern’s knot-surgery. Let (P,φ) be a plug with b2 = 2 which
is defined in [14]. The last assertion in this paper is that it is not a plug with
the minimal b2 which gives rise to any crossing change of Fintushel-Stern’s
knot-surgery. Let Q be a 4-manifold obtained by attaching a 2-handle along
52 with 0-framing. The 4-manifold Q is a submanifold in P naturally. See
the first handle diagram of Q in Figure 4. Hence, we have ∂Q ∼= S3

0(52).
Then we prove the following:

Proposition 1.10. There exists a diffeomorphism ϕ : ∂Q → ∂Q such that
(Q,ϕ) is a Stein core Z-plug of (P,φ).
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Figure 1. A Stein structure on Q.

A Stein structure on Q is presented in Figure 1. This Z-plug (Q,ϕ) pro-
duces infinitely many exotic Fintushel-Stern’s knot-surgeries. This means
that the action on the Heegaard Floer homology should admit infinite order.

Let sk be a spinc structure with ⟨c1(sk), h⟩ = 2k, where h is a generator
in H2(∂Q).

The Heegaard Floer homology of ∂Q is as follows:

HF−(∂Q, sk) ∼=

{
T−
(− 5

2
)
⊕ T−

(− 7
2
)
⊕ F(− 5

2
) k = 0

F[U ]/(Uk − 1) k ̸= 0.

This computation will be done in Section 3.2. The action on the Hee-
gaard Floer homology of ∂Q should be effective. This fact is contrast to
Main Theorem 1. To investigate the mechanism that any crossing change of
Fintushel-Stern’s knot surgery changes the differential structures in terms of
Heegaard Floer homology might become a help to understand exotic struc-
tures on 4-manifolds.
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2. Preliminaries and proofs of Main theorem 1 and 2

2.1. Knot-surgery. Let K be a knot in S3. Let X be a 4-manifold with a
square zero embedded torus T . Then the performance

XK = [X − ν(T )] ∪ [(S3 − ν(K))× S1]

is a (Fintushel-Stern’s) knot-surgery along K. The gluing map is indicated
in [5]. The notation ν(·) stands for an open neighborhood of a submanifold.

T. Mark in [8] proved the knot-surgery formula of (F-coefficient) Ozsváth-
Szabó’s 4-manifold invariant.

(1) ΦXK
= ΦX ·∆K(t).
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This is an Ozsváth-Szabó’s invariant counterpart of the Seiberg-Witten
formula of Fintushel-Stern’s knot-surgery in [5]. Here we have to notice
Sunukjian’s result [12] that the Alexander polynomial distinguishes smooth
structures of Fintushel-Stern’s knot surgeries.

2.2. Proof of Main theorem 1. Suppose that {Xn} is an exotic Z-family
of closed 4-manifolds with b+(X) > 1 having infinite OS-invariants with F-
coefficient and these are produced by cork twists by an infinite order cork
(C, τ). If Xn are not closed, then the same argument works by the relative
OS-invariant.

By permuting the order of Xn, we have X(C, τn) = Xn. The group
⟨τ⟩ ∼= Z acts on ∂C and the action induces a homomorphism on HF−(∂C).

The induced isomorphism τ∗ on HF−(∂C) keeps the absolute grading.
The grading shift of the action is calculated from the Euler number and the
signature of the cylinder I × ∂C. These invariants of the cylinder are all
zero. HF−

d (∂C) with a fixed grading d is a finite abelian group which is
isomorphic to F for sufficient small d’s. Hence there exists a positive integer
m such that τm∗ is the identity.

Here we consider Xn as the gluing of three 4-manifolds {C,M, Ṽ }, where
Xn = [C ∪τn M ] ∪N Ṽ and M is a cobordism ∂C → ∂Ṽ . Furthermore,
we assume that N is an admissible cutting of Xn (defined in [11]). The
existences of these cuttings N are guaranteed in [11]. Deleting two 4-balls
in the interior in Xn, we give the composition Wn of three cobordisms:

Wn : S3 C0→ ∂C M→ N
V→ S3,

where actually the cobordism Wn is twisted on ∂C by action τn and V is Ṽ
with a 4-ball deleted. Here the mixed invariant on Wn becomes as follows:

Fmix
Wn,s0 = F+

V,s3
◦ F−

M,s2
◦ τn∗ ◦ F−

C0,s1 : HF−(S3) → HF+(S3),

where s|Wn = s0, s|C0 = s1, s0|M = s2 and s0|V = s3. Recall the OS-
invariant ΦXn,s ∈ F is defined by Fmix

Wn,s
(Ud · Θ−) = ΦXn,s · Θ+, where

d = (c21(s)−2χ(Xn)−3σ(Xn))/4. Since {τn∗ |n ∈ Z} has a finite variation, the
mixed invariant Fmix

Wn,s0
is also finite variations with respect to n. Thus the

sets {ΦXn,s|s ∈ Spinc(Xn)} are also finite variations only with respect to n.
This contradicts that {Xn} has infinite OS-invariants with F-coefficient. □

By a corollary we have the following:

Corollary 2.1. Regardless of the order of the cork, the variations of F-
coefficient OS-invariants by a single cork are at most finite.

In the case of the Z-coefficient invariant, the variations are not always
finite as a Gompf’s example in [7] implies.

Proof of Corollary 1.3. Let Tn be the (2, 2n + 1)-torus knot. Due to
the OS-invariant formula (1) of E(m)Tn with the F-coefficient, we have

ΦE(m)Tn
= (t− t−1)m−2(tn − tn−1 + · · · − t−n+1 + t−n) mod 2.

These give infinite OS-invariants. FromMain theorem 1, the family {E(m)Tn |n ∈
Z} never be produced by cork twists of an infinite order cork. □
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This proof means that for a family {Kn} of knots, if E(m)Kn is constructed
by an infinite order cork, then #{∆Kn mod 2} < ∞. In fact 2n-twist knot
Kn in [7] is {∆Kn(t) mod 2} = {1, t− 1 + t−1}.

Proof of Corollary 1.4. If a G-cork twist gives distinct F-coefficient
OS-invariants, then the action is effective on HF−(∂C,F)/(U = 0) = Fr.
We note that the action is U -equivariant. The induced action become an
invertible linear action on Fr. Hence, we obtain G ⊂ GL(r,F). Then we

have |G| ≤ |GL(r,F)| =
∏r−1

k=0(2
r − 2k). 2

2.3. Proof of Main theorem 2. Let (P,φ) be the plug defined in [14].
Namely, P and φ are described in Figure 2 and 3 respectively.

Figure 2. P .

Figure 3. The diffeomorphism φ.

Taking ψ = φ2, we obtain a non-contractible cork (P, ψ) by [14]. Lemma
3.2 in [14] says that ψ induces the trivial map on the homology group.

Since (P,φ) changes any crossing for Fintushel-Stern’s knot-surgery, there
exists an embedding P ↪→ E(2) such that the twist obtains E(2)(P, ψn) =
E(2)T2n as proven in [14].

Suppose there exists a core Z-cork (D, f) ⊂ (P,ψ) which (D, fk) induces
(P, ψk). Since D is a contractible, clearly P − D is not diffeomorphic to
a cylinder. This setting says that this infinite order cork twist gives the
following twist:

E(2) ; E(2)(D, fk) = E(2)T2k
.
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However, the manifolds E(2)T2k
have infinite OS-invariants with F-coefficient.

This is a contradiction on Main theorem 1. □

3. A core plug of (P,φ).

3.1. Proof of Proposition 1.10. The first picture (denoted by Q) in Fig-
ure 4 is P deleting an embedded disk. The diffeomorphism Figure 3 works

Figure 4. From the 2-handle deleted P to 0-framed 52

even for this submanifold Q. We denote the diffeomorphism ∂Q → ∂Q by
ϕ. Thus we obtain (Q,ϕk) ⊂ (P,φk) for any k.

Since the twisted double Q ∪ϕk (−Q) by (Q,ϕk) is homeomorphic to

CP 2#CP 2 (k: odd) and S2 × S2 (k: even) by easy calculation. The dif-
feomorphism ϕ2k+1 cannot extend to a homeomorphism on Q by [3]. Thus
(Q,ϕ2k+1) is a plug and (Q,ϕ2k) is a non-contractible cork. Hence (Q, {ϕk})
is a core Z-plug of (P, {φk}).

Therefore, for an unknotting number 1 knot K, there exists an embedding
Q ↪→ E(2) such that E(2)(Q,ϕ) = E(2)K . Thus (Q,ϕ) is infinite order.

The handle diagram of Q can be reduced to 52 with framing 0. The
maximal Thurston-Bennequin invariant of 52 is 1. Thus the manifold is
Stein manifold. For example see Figure 1. □
The presentation in Figure 1 is the famous Chekanov-Eliashberg knot.
Q ∪ϕ (−Q) and Q ∪ϕ2 (−Q) is diffeomorphic to CP 2#CP 2 and S2 × S2

respectively.

Conjecture 3.1. For k ̸= 1, 2 any double Q ∪ϕk (−Q) is a standard 4-
manifold.

3.2. An action ϕ∗ on HF−(∂Q, sk). Finally we compute the Heegaard
Floer homology of ∂Q and consider the action on the homology induced by
ϕ. Since 52 is an alternating knot, we have the following computation:

ĤFK(52, i) =


F2
(0) i = 1

F3
(−1) i = 0

F2
(−2) i = −1.
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Now, the Heegaard Floer homology of −Σ(2, 3, 11) is as follows:

HF+(S3
1(52)) = T+

(−2) ⊕ F(−2).

By using the surgery exact sequence in [10] among S3, S3
0(52) = ∂Q, and

S3
1(52) = −Σ(2, 3, 11) we compute

HF+(∂Q, sk) =

{
T+
(− 1

2
)
⊕ T+

(− 3
2
)
⊕ F(− 3

2
) k = 0

0 k ̸= 0.

By using the exact sequence among HF−, HF∞, and HF+, we have the
following computation:

HF−(∂Q, sk) ∼=

{
T−
(− 5

2
)
⊕ T−

(− 7
2
)
⊕ F(− 5

2
) k = 0

F[U ]/(Uk − 1) k ̸= 0.

The twist ϕ induces an action onHF−(∂Q) with spinc structures preserving,
because Spinc(∂Q) is equivalent to Spinc(∂Q × I) naturally. Here we state
the following question:

Question 3.2. How does the diffeomorphism ϕ on Heegaard Floer invariants
affect?

To analyze the action would be significant to study the exotic structures
that Fintushel-Stern’s knot surgery gives.
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