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Abstract

Let g be a fixed integer. We show that the set of lens spaces whose second parameter is ¢ and which
are homeomorphic to S3 p(K) for a knot K is finite if and only if ¢ is a non-square number. We partially
solve Teragaito’s conjecture, which is that lens spaces that a Klein bottle cannot be constructed by any
hyperbolic knot. Moreover, we directly show the correction term coincides with Fukumoto and Furuta’s
w-invariant by using a correction term formula, in an appendix. This coincidence has been shown by M.
Ue recently.

1 Introduction

In this paper we define L(p,q) to be S?jp/q(U), which is —p/g-Dehn surgery of the unknot U C S3.
For any lens space L(p,q) we call the parameters p and ¢ the first parameter and the second parameter
respectively. Throughout this paper we assume that the first parameter p is always positive. When a lens
space L(p,q) is homeomorphic to S? p(K) for a knot K, we say that K admits negative lens surgery (or
simply lens surgery).

P. Kronheimer, T. Mrowka, P. Ozsvéth, and Z. Szabé in [6] have shown that if L(p, 1) is homeomorphic
to §% (K) for a knot K, then K must be isotopic to the unknot. J. Rasmussen in [13] proved that if
L(p,2) or L(p, 3) is homeomorphic to Sip(K) for a knot K then the lens space must be L(7,2), L(11,3),
or L(13,3). The author proved in the previous paper [12] that if L(p;,—1), L(ps,—2), or L(ps, —3) is
obtained by a Dehn surgery of a knot K in S, then the p;’s (i = 1,2,3) satisfy p; = 2,5, po = 3,9, 11,
or p3 = 4,7,13,14,19. Combining this classification with the result in [5] we can prove that the knots
K which yield L(p, —1) are either the unknot and p = 2 or the trefoil knot and p = 5. If ¢ is a square
number 72, then there exist infinitely many lens spaces L(rs & 1,72) each of which is —(rs + 1)-surgery of
the (r, s)-torus knot (where r, s > 0). In Section 3 we shall show the converse proposition.

Theorem 1.1 Let g be an integer. The set {p € Z>o|L(p,q) = SEP(K) for a knot K} is an infinite set
if and only if q is a square of an integer.

R. Fintushel and R. Stern’s theorem in [3] says that if a Dehn surgery over a homology sphere yields a lens
space, then ¢ is always the quadratic residue mod p. In Theorem 1.1 we may assume that the condition
0 < |q| < p is satisfied. Here z is said to be reduced positively (or negatively) by mod pif xis 0 <z <p
(or —p < x < 0). This theorem contains the assertion that the lens spaces which have negative second
parameters and which are obtained by negative Dehn surgery are finite.

The result in [6] showed that the lens space L(2,1), which includes the non-orientable surface RP?, can
be obtained by the unknot only. M. Teragaito in [15] determined genus one knots which yield manifolds
containing a Klein bottle. He has also conjectured that lens spaces containing a Klein bottle cannot be
constructed from Dehn surgery of any hyperbolic knot.

Conjecture 1.1 ([14]) If a lens space obtained by Dehn surgery of a knot contains a Klein bottle, then
the knot is non-hyperbolic.



K. Ichihara and T. Saito in [11] have solved this conjecture in the case of doubly primitive knots. The
notion of doubly primitive knots is defined in [1]. It is conjectured that doubly primitive knots are all
knots admitting lens surgery. We shall prove the following theorem in Section 4.

Theorem 1.2 If a lens space obtained by negative or positive Dehn surgery of a knot contains a Klein
bottle, then the lens space is either L(4,+1),L(16,+7) or L(20,+9).

These lens spaces are the same as ones obtained in [11]. But the author does not know whether these
lens spaces, except L(4,=£1), can be obtained from non-doubly primitive, hyperbolic knots.

As the appendix we will show that the correction term by P. Ozsvath and Z. Szabd, using the formulae
proven in [12], coincides with the theta divisor invariant [10] by P. Ozsvath and Z. Szabé and the w-
invariant [16] by Y. Fukumoto and M. Furuta for all lens spaces.

2 The computations of correction term and lens surgery

We shall review Heegaard Floer homology and correction terms of lens spaces and results in [12]. We
define the notations used here. The floor function |«] is the largest integer less than or equal to a. The
bracket [5], stands for the positive reduction of § mod p. We denote by &’ the inverse of = € (Z/pZ)*
and always reduce z’ positively as modp.

Let Y be an oriented closed 3-manifold. P. Ozsvath and Z. Szab6 have defined in [8] Heegaard Floer
homologies HF>(Y,s), HF*(Y,s) and HF~(Y,s), which are topological invariants with respect to spin®-
structure 5. They also gave the long exact sequence

- — HF~(Y,s) — HF>(Y,s) 3 HF"(Y,s) — HE~(Y,s) — --- .

Moreover, for a rational homology sphere Y they introduced a grading of these homologies as in [7]. The
correction term d(Y,s) is defined to be the minimal grading of the image HF>®(Y,s) = HF+(Y,s). If Y
is a lens space, then we can identify Spin®(Y’) with Z/pZ. This is called the canonical ordering in [7] and
is determined by genus one Heegaard decomposition of the lens space. For any integer ¢ the correction
term d(L(p, q),1) can be computed by using the following recursive formula for 0 < i < p+ ¢ in [7]:

_pg—(2i+1-p—q)°

4pq —d(L(q,T)7j),

d(L(p,q),1)

where 0 < ¢ < p, 7 := [p]q and j := [i], are satisfied.
On the other hand, the author defined the non-recursive formula of d(L(p, ¢),%) in [12] as follows:

d(L(p,q), 1) = =3s(q,p) + 12;pp + [ip - Qi (<q,]>) , (1)

P
(an={ 571 7= 022

where s(g,p) is the Dedekind sum.
For each pair of four positive integers p, g, h, and k& we denote @’;ﬂq(h) by

B (h) == #{j € (1.2, W'} 0 < [gj — K], < h},
where h and h' are positively reduced integers satisfying hh’ = 1 mod p. The Alexander polynomial Ak (t)

of K is symmetrized as A (t) = A (t~!) and the i-th coefficient of Ag (t) is denoted by a;(K). We put
a;(K) := K).

j=i¢ mod p a’i(



Proposition 2.1 ([12]) Suppose that a lens space L(p, q) is homeomorphic to SEP(K). Then there exists
an integer h € (Z/pZ)* satisfying h* = q mod p such that
a;(K) = —m + @} +(h)

hh'—1
R

c:i= 7(}‘“'”27)(}‘_1) and m =

holds for any i, where

The h has four choices among {h,h’,p—h,p—h'}. If we replace h with one of them, then the same formula
with respect to the new choice holds. We will prove the following proposition. The second equality was
also proven in [12].

Proposition 2.2 Let p and q be a pair of coprime integers with 0 < q < p. Suppose that the integer
0 < h < p is one of the solutions to x> = ¢ mod p. Let w be the integer with gh' = h + pw. Then we
have

@, 1 (h) = —22 {Zﬂ + (w+1)(W —1). 2)

On the the hand, suppose that the integer 0 < h < p is one of the solutions to x> = —q mod p. Let w be
the integer with gh’ + h = pw. Then we have

oL (h)=2 Z_: [ZZ] — (w—1)(W —=1). (3)

Proof. We prove the first part of the proposition. Let w be the integer with gh/ = h+ pw. Then we have
h
=) [2)
q q

- 19-F- I
- 2)-

We now prove the second part. Let w be the integer with gh’ + h = pw. Then we have

(I);,l_q(h) = #{] € {1727"' ah/}‘o < [*Qj]]? < h}
= #{j € {1727"' ’h/}‘p_h < [QJ]p}

o o1 el R G e G B

- S([E]-[)
- (- [ee2)
- 2w__11 _I;]_f(w—l)(h’fl).




Let a be the quotient of p divided by g and b the remainder. Then we have
— [pj
(I)Zj’é(h) = —22 [] + (w+1)(h —1)
=1L e
w b .
= —2)° [aj + qj] + (w+1)(R —1)
j=1

= —aw(w+1) —QZ [bqj] +(w+1)(h —1)

= —aw(w+1)+ (w+ 1A + ay,

where ay = =237 [%} —w — 1. In the same way
[P
oL (h) = 2 {q} —(w=1)(h =1)
j=1
1

= aw(w—1)— (w—1)h+ as,

where ag = 22;211 {%J} + (w—1).

3 Proof of Theorem 1.1

We shall prove Theorem 1.1 in the cases where the fixed parameter ¢ is positive reduction and ¢ is negative
reduction separately.

Lemma 3.1 Let q be a fized positive integer. Then the number of the lens spaces whose second parameters
are q and which are obtained by a negative (—p)-Dehn surgery is finite, unless q is a square number.

Proof. Let g be a fixed integer. We just have to consider lens spaces satisfying 0 < g < p, where p is
the first parameter and ¢ is the second parameter, because the choices of p are clearly finite otherwise.
Suppose that the lens space L(p, q) is homeomorphic to S?Lp(K). Then by Proposition 2.1 and 2.2 there
exist integers h, c, m,w such that

&,h/c,h/(K) = —m+<1>;é(h)
= —m—aw(w+1)+ (w+1)h + .
From the bound |a;(K)| < 1 in [9] and the genus bound 2g(K) — 1 < p in [6], G—p/c—p (K) has —1,0,1

or 2. We set az := q(a1 — a—pre—p (K)) for the same parameter «; as in Section 2. By the definition the
value a3 is bounded for the fixed integer q. Thus we have

mq = —aqw(w+1)+ (w+1)h'q+ a3
—(p—bdw(w+1)+ (w+1)(pw+ h)+ a3
(w+ Dh+bw(w+ 1) + as.



We set ay := bw(w + 1) + 3. Thus we have
mgp = (w+ 1)hp+ asp.
On the other hand, by the definition of m and w, we have

mqp = q(hh/ —1)
= h(pw+h) —q.

Thus we obtain a quadratic equation h? —hp—ayp—q = 0, and the discriminant of the quadratic equation
is (p + 2a4)? — 4(a3 — q). This value must be a square number X?2. Now suppose that ¢ is not a square
number, in particular ¢ # . Then the solutions (p, X) to the equation (p + 2a4)? — 4(a? — q) = X? are
finite. Therefore the choices of p are finite, unless ¢ is a square number. ([

Lemma 3.2 Let —q be a fized negative integer. Then the number of lens spaces whose second parameters
are —q and which are obtained by a negative (—p)-Dehn surgery is finite.

Proof. For the same reason as in Lemma 3.1 we may assume that 0 < ¢ < p. Suppose that the lens space
L(p, —¢q) is homeomorphic to SEP(K). Then by Proposition 2.1 and 2.2, there exist integers h,c, m,w
such that

a_pre—pn(K)=-m+aw(w—1) — (w— 1A + as.

Let a, b, and ay be the integers defined in Section 2. Setting as := q(a2 — @—pre—p/ (K)), we have that as
is bounded for a fixed integer ¢ by the same argument as for Lemma 3.1.

mqg = (p—bw(w—1)—(w—1)h'q+as
= pww-1)—(w—1)(pw—h)+ a5 —bw(w — 1)
= (w—l)h+a6

Setting a5 — bw(w — 1) as ag, we have

mqp = (w—1)hp + aep.
Thus we have
mgp = q(hh' —1)
= h(pw—h) —q.

Thus we get a quadratic equation h? — hp + agp + ¢ = 0. The discriminant of the quadratic equation is

(p —206)? — 4(a2 + q). This value must be a square number. Such p is bounded for a fixed ¢ by the same

reason as in Lemma 3.1. (]
We shall prove Theorem 1.1 here.

Proof of Theorem 1.1. The positive g case in Theorem 1.1 follows from Lemma 3.1 and the negative

q case follows from 3.2. O

4 Proof of Theorem 1.2

It is known that lens spaces which contain a Klein bottle have the form of L(4n,2n £ 1) for some integer
n (see [2]).

Lemma 4.1 If L(4n,2n+1) (n > 0) is homeomorphic to S3 4, (K) for a knot K, then such lens spaces
are L(4,1), L(20,9) or L(16,9).



Proof. Applying p = 4n and ¢ = 2n — 1 to Proposition 2.1, we can find the integer h satisfying the
condition in Proposition 2.1. By definition of p and ¢ we get the equality 2(¢ + 1) = 4n = p = 0 mod p.
Dividing 2(¢ + 1) = 0 mod p by 2h, we have h+h’ =0 mod p or h+h’ = 2n mod p. If h+ k' = 0 mod p,
then ¢ = h? = —hh/ = —1 mod p, hence this contradicts n > 0. Hence we have h + h/ = 2n mod p.
By replacing, if necessary, h,h’ with p — h,p — h’ we have h + h’ = 2n in Z. Then <I>;,é(h) =#{j €
{1,2,--- ,h'}|0 < [(2n — 1)j 4+ 1], < h}. The sequence [(2n — 1)j + 1], (j = 1,2,--- , k') falls into either
of the two sequences:

2n, 4n—1,2n—2,4n -3, ---, 2n—h +2, 4n —h +1,
or

on, 4n—1, 2n—2, 4n—3, .-+, dn—h' +2, 2n—h' + 1.
The sequences correspond to the even I/ case and the odd k' case respectively. None of 1, 2, ---, and h
is contained in these sequences. Hence we get ®, 1 (h) = 0. The coefficient a_ps.p (K) = —m is 0 or —1

by [12]. Thus we have m =0 or 1. If m = 0, then h+ A/ = 2n and hh' = 1. This impliesn =1. If m =1,
then h + h' = 2n and hh' = 4n + 1. This implies n = 5.
Second, applying p = 4n and ¢ = 2n 4+ 1 to Proposition 2.1, we can find the integer h satisfying

the condition in Proposition 2.1. By definition of p and ¢ we get 2(¢ — 1) = 4n = p = 0 mod p. We

have h/ —h = 2n and 0 < h < 2n by the same argument as above. Then we have ®, 1 (h) = #{j €

{1,2,--- ,n'}|0 < [(2n+1)j + 1], < h}. If B is even, then the sequence [(2n + 1)j + 1], is the following:
2n+2],, 3, 2n+4]p, 5 -, 2n+ 1], B+ 1.
Renumbering the sequence, we have
3,5 7, - A +1,2n+2, 2n+4,---,4n—2, 0, 2, 4, ---, h.
Then the intersection with 1,2,--- , A is
{2, 3,4, 5, --- ,h}.
If 1/ is odd, then the sequence [(2n + 1)j + 1], is the following:
2n+2],, 3, 2n+4]p, 5 -, B, 2n+ k' +1],.
Renumbering the sequence, we have
3,5 7, - h,2n+2 2n+4,---,4n—2,0, 2, 4, ---, h+ 1.
Then the intersection with 1,2,--- , A is
{2, 3,4, 5, --- ,h}.

Hence in the both cases ®, ! (h) = h — 1. The coefficient a_jc_p(K) = —m +h —11is 0 or —1 by [12].
Thus we have m = h —1 or m = h. If m = h, then b’ — h = 2n and hh/ = 4nh + 1. This implies n = 0.
If m=h—1, then B’ — h = 2n and hh' = 4n(h — 1) 4+ 1. This implies n = 4.
Similarly, when L(4n,2n + 1) = S3(K) for a knot K, such lens spaces are L(4,3), L(20,11), and
L(16,7). O
Lens spaces L(4,%1), L(20,49), and L(16,+7) can be constructed by torus knots. It is an open
problem whether these lens spaces are obtained by Dehn surgery of knots other than torus knots.



Appendix: the representation of the correction term by trigono-
metric functions

In this appendix we show that the theta divisor invariant and the w-invariant coincide with the correction
term for any lens space, by using Formula (1). Here we introduce the following well-known formulae:

()15 (5 1) 2

and

1 1
R PN ST “

where the summation with the prime / means that ¢ runs over complex numbers satisfying (¥ = 1 and

CH#1L.
By using Formula (4) and (5),

a5 f 2y (1)) - i;lmﬁ‘iiz'(&—i)w

Jj=1 ¢

!/

- 22 q_1 1)+£_721_<qzcj ZZCj

(6)
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Here, using the following equality

/ 1_C B /L
DI s R D e
p

from (6) and (7) we have

1— . i /- 2 , i+1
ton et -1 () =5 Y wmnen

Jj=1 ¢
Thus from Formula (1),
2 ’ Ci—i—l
d(L(p,q),i) = —=s(@:p)+ =) o
(Hpa). ) @+ 22 @
188 ayenss {4
= —s(¢,p) — — =15 ﬁecosec(l)cosec(qi)
2p = p p
15 ¢ ¢ —1 27 ¢ ¢
= —— (cot(ﬂ) cot(ﬂ) + 2cos {(z - q)ﬁ} cosec(ﬂ—) cosec(qﬂ)) .
S et p P 2 °p p p



After shifting 7 in this equality appropriately, the right hand side coincides with the theta divisor invariant
of L(p,q) in [10] and moreover, it also coincides with the w-invariant by Y. Fukumoto and M. Furuta for
L(p, q), which was originally defined for any homology 3-sphere in [4].

Recently M. Ue showed via various eta invariant formulae that for any spherical manifold the correction
term and Fukumoto and Furuta’s w-invariant are the same invariant [16].
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