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Abstract

Let q be a fixed integer. We show that the set of lens spaces whose second parameter is q and which
are homeomorphic to S3

−p(K) for a knot K is finite if and only if q is a non-square number. We partially
solve Teragaito’s conjecture, which is that lens spaces that a Klein bottle cannot be constructed by any
hyperbolic knot. Moreover, we directly show the correction term coincides with Fukumoto and Furuta’s
w-invariant by using a correction term formula, in an appendix. This coincidence has been shown by M.
Ue recently.

1 Introduction

In this paper we define L(p, q) to be S3
−p/q(U), which is −p/q-Dehn surgery of the unknot U ⊂ S3.

For any lens space L(p, q) we call the parameters p and q the first parameter and the second parameter
respectively. Throughout this paper we assume that the first parameter p is always positive. When a lens
space L(p, q) is homeomorphic to S3

−p(K) for a knot K, we say that K admits negative lens surgery (or
simply lens surgery).

P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó in [6] have shown that if L(p, 1) is homeomorphic
to S3

−p(K) for a knot K, then K must be isotopic to the unknot. J. Rasmussen in [13] proved that if
L(p, 2) or L(p, 3) is homeomorphic to S3

−p(K) for a knot K then the lens space must be L(7, 2), L(11, 3),
or L(13, 3). The author proved in the previous paper [12] that if L(p1,−1), L(p2,−2), or L(p3,−3) is
obtained by a Dehn surgery of a knot K in S3, then the pi’s (i = 1, 2, 3) satisfy p1 = 2, 5, p2 = 3, 9, 11,
or p3 = 4, 7, 13, 14, 19. Combining this classification with the result in [5] we can prove that the knots
K which yield L(p,−1) are either the unknot and p = 2 or the trefoil knot and p = 5. If q is a square
number r2, then there exist infinitely many lens spaces L(rs± 1, r2) each of which is −(rs± 1)-surgery of
the (r, s)-torus knot (where r, s > 0). In Section 3 we shall show the converse proposition.

Theorem 1.1 Let q be an integer. The set {p ∈ Z≥0|L(p, q) = S3
−p(K) for a knot K} is an infinite set

if and only if q is a square of an integer.

R. Fintushel and R. Stern’s theorem in [3] says that if a Dehn surgery over a homology sphere yields a lens
space, then q is always the quadratic residue mod p. In Theorem 1.1 we may assume that the condition
0 ≤ |q| < p is satisfied. Here x is said to be reduced positively (or negatively) by mod p if x is 0 ≤ x < p
(or −p < x ≤ 0). This theorem contains the assertion that the lens spaces which have negative second
parameters and which are obtained by negative Dehn surgery are finite.

The result in [6] showed that the lens space L(2, 1), which includes the non-orientable surface RP2, can
be obtained by the unknot only. M. Teragaito in [15] determined genus one knots which yield manifolds
containing a Klein bottle. He has also conjectured that lens spaces containing a Klein bottle cannot be
constructed from Dehn surgery of any hyperbolic knot.

Conjecture 1.1 ([14]) If a lens space obtained by Dehn surgery of a knot contains a Klein bottle, then
the knot is non-hyperbolic.
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K. Ichihara and T. Saito in [11] have solved this conjecture in the case of doubly primitive knots. The
notion of doubly primitive knots is defined in [1]. It is conjectured that doubly primitive knots are all
knots admitting lens surgery. We shall prove the following theorem in Section 4.

Theorem 1.2 If a lens space obtained by negative or positive Dehn surgery of a knot contains a Klein
bottle, then the lens space is either L(4,±1),L(16,±7) or L(20,±9).

These lens spaces are the same as ones obtained in [11]. But the author does not know whether these
lens spaces, except L(4,±1), can be obtained from non-doubly primitive, hyperbolic knots.

As the appendix we will show that the correction term by P. Ozsváth and Z. Szabó, using the formulae
proven in [12], coincides with the theta divisor invariant [10] by P. Ozsváth and Z. Szabó and the w-
invariant [16] by Y. Fukumoto and M. Furuta for all lens spaces.

2 The computations of correction term and lens surgery

We shall review Heegaard Floer homology and correction terms of lens spaces and results in [12]. We
define the notations used here. The floor function bαc is the largest integer less than or equal to α. The
bracket [β]p stands for the positive reduction of β mod p. We denote by x′ the inverse of x ∈ (Z/pZ)×

and always reduce x′ positively as modp.
Let Y be an oriented closed 3-manifold. P. Ozsváth and Z. Szabó have defined in [8] Heegaard Floer

homologies HF∞(Y, s),HF+(Y, s) and HF−(Y, s), which are topological invariants with respect to spinc-
structure s. They also gave the long exact sequence

· · · → HF−(Y, s) → HF∞(Y, s) π∗→ HF+(Y, s) → HF−(Y, s) → · · · .

Moreover, for a rational homology sphere Y they introduced a grading of these homologies as in [7]. The
correction term d(Y, s) is defined to be the minimal grading of the image HF∞(Y, s) π∗→ HF+(Y, s). If Y
is a lens space, then we can identify Spinc(Y ) with Z/pZ. This is called the canonical ordering in [7] and
is determined by genus one Heegaard decomposition of the lens space. For any integer i the correction
term d(L(p, q), i) can be computed by using the following recursive formula for 0 ≤ i < p + q in [7]:

d(L(p, q), i) =
pq − (2i + 1 − p − q)2

4pq
− d(L(q, r), j),

where 0 < q < p, r := [p]q and j := [i]q are satisfied.
On the other hand, the author defined the non-recursive formula of d(L(p, q), i) in [12] as follows:

d(L(p, q), i) = −3s(q, p) +
1 − p

2p
+

[i]p
p

− 2
i∑

j=1

((
q′j

p

))
, (1)

((α)) :=
{

α − [α] − 1
2 α 6∈ Z

0 α ∈ Z,

where s(q, p) is the Dedekind sum.
For each pair of four positive integers p, q, h, and k we denote Φk

p,q(h) by

Φk
p,q(h) := #{j ∈ {1, 2, · · · , h′}| 0 < [qj − k]p ≤ h},

where h and h′ are positively reduced integers satisfying hh′ = 1 mod p. The Alexander polynomial ∆K(t)
of K is symmetrized as ∆K(t) = ∆K(t−1) and the i-th coefficient of ∆K(t) is denoted by ai(K). We put
ãi(K) :=

∑
j≡i mod p ai(K).
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Proposition 2.1 ([12]) Suppose that a lens space L(p, q) is homeomorphic to S3
−p(K). Then there exists

an integer h ∈ (Z/pZ)× satisfying h2 = q mod p such that

ãi(K) = −m + Φhi+c
p,q (h)

holds for any i, where c := (h+1+p)(h−1)
2 and m = hh′−1

p .

The h has four choices among {h, h′, p−h, p−h′}. If we replace h with one of them, then the same formula
with respect to the new choice holds. We will prove the following proposition. The second equality was
also proven in [12].

Proposition 2.2 Let p and q be a pair of coprime integers with 0 < q < p. Suppose that the integer
0 < h < p is one of the solutions to x2 = q mod p. Let w be the integer with qh′ = h + pw. Then we
have

Φ−1
p,q(h) = −2

w∑
j=1

[
pj

q

]
+ (w + 1)(h′ − 1). (2)

On the the hand, suppose that the integer 0 < h < p is one of the solutions to x2 = −q mod p. Let w be
the integer with qh′ + h = pw. Then we have

Φ−1
p,−q(h) = 2

w−1∑
j=1

[
pj

q

]
− (w − 1)(h′ − 1). (3)

Proof. We prove the first part of the proposition. Let w be the integer with qh′ = h+pw. Then we have

Φ−1
p,q(h) = #{j ∈ {1, 2, · · · , h′}|0 ≤ [qj]p < h}

=
[
h

q

]
−

[
0
q

]
+

[
h + p

q

]
−

[
p

q

]
+ · · · +

[
h + pw

q

]
−

[
pw

q

]
− 1

=
w∑

j=0

([
h + pj

q

]
−

[
pj

q

])
− 1

=
w∑

j=0

([
h′ − p(w − j)

q

]
−

[
pj

q

])
− 1

=
w∑

j=0

(
h′ −

[
p(w − j)

q

]
− 1 −

[
pj

q

])

= −2
w∑

j=1

[
pj

q

]
+ (w + 1)(h′ − 1).

We now prove the second part. Let w be the integer with qh′ + h = pw. Then we have

Φ−1
p,−q(h) = #{j ∈ {1, 2, · · · , h′}|0 ≤ [−qj]p < h}

= #{j ∈ {1, 2, · · · , h′}|p − h < [qj]p}

=
[
p

q

]
−

[
p − h

q

]
+

[
2p

q

]
−

[
2p − h

q

]
+ · · · +

[
p(w − 1)

q

]
−

[
p(w − 1) − h

q

]
=

w−1∑
j=1

([
pj

q

]
−

[
pj − h

q

])

=
w−1∑
j=1

([
pj

q

]
−

[
qh′ − p(w − j)

q

])

= 2
w−1∑
j=1

[
pj

q

]
− (w − 1)(h′ − 1).
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¤
Let a be the quotient of p divided by q and b the remainder. Then we have

Φ−1
p,q(h) = −2

w∑
j=1

[
pj

q

]
+ (w + 1)(h′ − 1)

= −2
w∑

j=1

[
aj +

bj

q

]
+ (w + 1)(h′ − 1)

= −aw(w + 1) − 2
w∑

j=1

[
bj

q

]
+ (w + 1)(h′ − 1)

= −aw(w + 1) + (w + 1)h′ + α1,

where α1 = −2
∑w

j=1

[
bj
q

]
− w − 1. In the same way

Φ−1
p,−q(h) = 2

w−1∑
j=1

[
pj

q

]
− (w − 1)(h′ − 1)

= 2
w−1∑
j=1

[
aj +

bj

q

]
− (w − 1)(h′ − 1)

= aw(w − 1) + 2
w−1∑
j=1

[
bj

q

]
− (w − 1)(h′ − 1)

= aw(w − 1) − (w − 1)h′ + α2,

where α2 = 2
∑w−1

j=1

[
bj
q

]
+ (w − 1).

3 Proof of Theorem 1.1

We shall prove Theorem 1.1 in the cases where the fixed parameter q is positive reduction and q is negative
reduction separately.

Lemma 3.1 Let q be a fixed positive integer. Then the number of the lens spaces whose second parameters
are q and which are obtained by a negative (−p)-Dehn surgery is finite, unless q is a square number.

Proof. Let q be a fixed integer. We just have to consider lens spaces satisfying 0 < q < p, where p is
the first parameter and q is the second parameter, because the choices of p are clearly finite otherwise.
Suppose that the lens space L(p, q) is homeomorphic to S3

−p(K). Then by Proposition 2.1 and 2.2 there
exist integers h, c,m,w such that

ã−h′c−h′(K) = −m + Φ−1
p,q(h)

= −m − aw(w + 1) + (w + 1)h′ + α1.

From the bound |ai(K)| ≤ 1 in [9] and the genus bound 2g(K) − 1 ≤ p in [6], ã−h′c−h′(K) has −1, 0, 1
or 2. We set α3 := q(α1 − ã−h′c−h′(K)) for the same parameter α1 as in Section 2. By the definition the
value α3 is bounded for the fixed integer q. Thus we have

mq = −aqw(w + 1) + (w + 1)h′q + α3

= −(p − b)w(w + 1) + (w + 1)(pw + h) + α3

= (w + 1)h + bw(w + 1) + α3.
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We set α4 := bw(w + 1) + α3. Thus we have

mqp = (w + 1)hp + α4p.

On the other hand, by the definition of m and w, we have

mqp = q(hh′ − 1)
= h(pw + h) − q.

Thus we obtain a quadratic equation h2−hp−α4p−q = 0, and the discriminant of the quadratic equation
is (p + 2α4)2 − 4(α2

4 − q). This value must be a square number X2. Now suppose that q is not a square
number, in particular q 6= α2

4. Then the solutions (p,X) to the equation (p + 2α4)2 − 4(α2
4 − q) = X2 are

finite. Therefore the choices of p are finite, unless q is a square number. ¤

Lemma 3.2 Let −q be a fixed negative integer. Then the number of lens spaces whose second parameters
are −q and which are obtained by a negative (−p)-Dehn surgery is finite.

Proof. For the same reason as in Lemma 3.1 we may assume that 0 < q < p. Suppose that the lens space
L(p,−q) is homeomorphic to S3

−p(K). Then by Proposition 2.1 and 2.2, there exist integers h, c,m,w
such that

ã−h′c−h′(K) = −m + aw(w − 1) − (w − 1)h′ + α2.

Let a, b, and α2 be the integers defined in Section 2. Setting α5 := q(α2 − ã−h′c−h′(K)), we have that α5

is bounded for a fixed integer q by the same argument as for Lemma 3.1.

mq = (p − b)w(w − 1) − (w − 1)h′q + α5

= pw(w − 1) − (w − 1)(pw − h) + α5 − bw(w − 1)
= (w − 1)h + α6.

Setting α5 − bw(w − 1) as α6, we have

mqp = (w − 1)hp + α6p.

Thus we have

mqp = q(hh′ − 1)
= h(pw − h) − q.

Thus we get a quadratic equation h2 − hp + α6p + q = 0. The discriminant of the quadratic equation is
(p− 2α6)2 − 4(α2

6 + q). This value must be a square number. Such p is bounded for a fixed q by the same
reason as in Lemma 3.1. ¤

We shall prove Theorem 1.1 here.
Proof of Theorem 1.1. The positive q case in Theorem 1.1 follows from Lemma 3.1 and the negative
q case follows from 3.2. ¤

4 Proof of Theorem 1.2

It is known that lens spaces which contain a Klein bottle have the form of L(4n, 2n± 1) for some integer
n (see [2]).

Lemma 4.1 If L(4n, 2n± 1) (n > 0) is homeomorphic to S3
−4n(K) for a knot K, then such lens spaces

are L(4, 1), L(20, 9) or L(16, 9).
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Proof. Applying p = 4n and q = 2n − 1 to Proposition 2.1, we can find the integer h satisfying the
condition in Proposition 2.1. By definition of p and q we get the equality 2(q + 1) = 4n = p ≡ 0 mod p.
Dividing 2(q + 1) = 0 mod p by 2h, we have h + h′ = 0 mod p or h + h′ = 2n mod p. If h + h′ = 0 mod p,
then q = h2 = −hh′ = −1 mod p, hence this contradicts n > 0. Hence we have h + h′ = 2n mod p.
By replacing, if necessary, h, h′ with p − h, p − h′ we have h + h′ = 2n in Z. Then Φ−1

p,q(h) = #{j ∈
{1, 2, · · · , h′}|0 < [(2n − 1)j + 1]p ≤ h}. The sequence [(2n − 1)j + 1]p (j = 1, 2, · · · , h′) falls into either
of the two sequences:

2n, 4n − 1, 2n − 2, 4n − 3, · · · , 2n − h′ + 2, 4n − h′ + 1,

or
2n, 4n − 1, 2n − 2, 4n − 3, · · · , 4n − h′ + 2, 2n − h′ + 1.

The sequences correspond to the even h′ case and the odd h′ case respectively. None of 1, 2, · · · , and h
is contained in these sequences. Hence we get Φ−1

p,q(h) = 0. The coefficient ã−h′c−h′(K) = −m is 0 or −1
by [12]. Thus we have m = 0 or 1. If m = 0, then h + h′ = 2n and hh′ = 1. This implies n = 1. If m = 1,
then h + h′ = 2n and hh′ = 4n + 1. This implies n = 5.

Second, applying p = 4n and q = 2n + 1 to Proposition 2.1, we can find the integer h satisfying
the condition in Proposition 2.1. By definition of p and q we get 2(q − 1) = 4n = p ≡ 0 mod p. We
have h′ − h = 2n and 0 < h < 2n by the same argument as above. Then we have Φ−1

p,q(h) = #{j ∈
{1, 2, · · · , h′}|0 < [(2n + 1)j + 1]p ≤ h}. If h′ is even, then the sequence [(2n + 1)j + 1]p is the following:

[2n + 2]p, 3, [2n + 4]p, 5 · · · , [2n + h′]p, h′ + 1.

Renumbering the sequence, we have

3, 5, 7, · · · h′ + 1, 2n + 2, 2n + 4, · · · , 4n − 2, 0, 2, 4, · · · , h.

Then the intersection with 1, 2, · · · , h is

{2, 3, 4, 5, · · · , h}.

If h′ is odd, then the sequence [(2n + 1)j + 1]p is the following:

[2n + 2]p, 3, [2n + 4]p, 5 · · · , h′, [2n + h′ + 1]p.

Renumbering the sequence, we have

3, 5, 7, · · · h′, 2n + 2, 2n + 4, · · · , 4n − 2, 0, 2, 4, · · · , h + 1.

Then the intersection with 1, 2, · · · , h is

{2, 3, 4, 5, · · · , h}.

Hence in the both cases Φ−1
p,q(h) = h − 1. The coefficient ã−h′c−h′(K) = −m + h − 1 is 0 or −1 by [12].

Thus we have m = h − 1 or m = h. If m = h, then h′ − h = 2n and hh′ = 4nh + 1. This implies n = 0.
If m = h − 1, then h′ − h = 2n and hh′ = 4n(h − 1) + 1. This implies n = 4.

Similarly, when L(4n, 2n ± 1) = S3
p(K) for a knot K, such lens spaces are L(4, 3), L(20, 11), and

L(16, 7). ¤
Lens spaces L(4,±1), L(20,±9), and L(16,±7) can be constructed by torus knots. It is an open

problem whether these lens spaces are obtained by Dehn surgery of knots other than torus knots.
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Appendix: the representation of the correction term by trigono-
metric functions

In this appendix we show that the theta divisor invariant and the w-invariant coincide with the correction
term for any lens space, by using Formula (1). Here we introduce the following well-known formulae:((µ

k

))
=

1
k

∑
ζ

′
(

ζ

1 − ζ
+

1
2

)
ζµ, (4)

and
s(h, k) = −1

k

∑
ζ

′ 1
(ζh − 1)(ζ − 1)

+
k − 1
4k

, (5)

where the summation with the prime ′ means that ζ runs over complex numbers satisfying ζk = 1 and
ζ 6= 1.

By using Formula (4) and (5),

−2s(q, p) − 1 − p

2p
+

i

p
− 2

i∑
j=1

((
q′j

p

))
=

2
p

∑
ζ

′ 1
(ζq − 1)(ζ − 1)

+
i

p
− 2

p

i∑
j=1

∑
ζ

′
(

1
1 − ζ

− 1
2

)
ζq′j

=
2
p

∑
ζ

′ 1
(ζq − 1)(ζ − 1)

+
i

p
− 2

p

∑
ζ

′ 1
1 − ζq

i∑
j=1

ζj +
1
p

i∑
j=1

∑
ζ

′
ζj

=
2
p

∑
ζ

′ 1
(ζq − 1)(ζ − 1)

+
i

p
− 2

p

∑
ζ

′ ζ(ζi − 1)
(1 − ζq)(ζ − 1)

+
1
p

i∑
j=1

(−1)

=
2
p

∑
ζ

′ (1 + ζi+1 − ζ)
(ζq − 1)(ζ − 1)

. (6)

Here, using the following equality ∑
ζ

′ 1 − ζ

(ζq − 1)(ζ − 1)
=

∑
ζ

′ 1
1 − ζ

=
p − 1

2
, (7)

from (6) and (7) we have

−2s(q, p) +
1 − p

2p
+

i

p
− 2

i∑
j=1

((
q′j

p

))
=

2
p

∑
ζ

′ ζi+1

(ζq − 1)(ζ − 1)
.

Thus from Formula (1),

d(L(p, q), i) = −s(q, p) +
2
p

∑
ζ

′ ζi+1

(ζq − 1)(ζ − 1)

= −s(q, p) − 1
2p

p−1∑
`=1

e(i− q−1
2 ) 2π

√
−1

p `cosec(
π`

p
) cosec(

qπ`

p
)

= − 1
4p

p−1∑
`=1

(
cot(

π`

p
) cot(

qπ`

p
) + 2 cos

{
(i − q − 1

2
)
2π

p
`

}
cosec(

π`

p
) cosec(

qπ`

p
)
)

.
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After shifting i in this equality appropriately, the right hand side coincides with the theta divisor invariant
of L(p, q) in [10] and moreover, it also coincides with the w-invariant by Y. Fukumoto and M. Furuta for
L(p, q), which was originally defined for any homology 3-sphere in [4].

Recently M. Ue showed via various eta invariant formulae that for any spherical manifold the correction
term and Fukumoto and Furuta’s w-invariant are the same invariant [16].
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8


