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Abstract

Suppose that lens space L(p, q) is obtained from p-surgery of a knot in S3. Let d
be the degree of the Alexander polynomial Ak (z). We show that the coefficients of
the degree z% and %! are 1 and —1 when d < E. Furthermore we also generalize
that result. ! 2

1 Introduction

Ozsvéth and Szabd have studied a constraints of the Alexander polynomial of a knot
yielding a lens space in [8]. The main theorem is the following

Theorem 1.1 (P. Ozsvath-Z. Szabé [8]) Let K C S® be a knot for which there is
an integer p for which S’;’(K) is an L-space and the Alexander polynomial is not 1.
Then the Alexander polynomial of K has the form

Aa) = (-1 +

J

k
()" (@™ +a™™),
=1

for some increasing sequence of positive integers 0 < nj; < ng < --- < np =d.

This theorem says that the coefficients of Alexander polynomials of knots admitting
lens surgery are 0 or +1 and the non-zero terms of the polynomial alternate in sign.
In this paper we always use symmetrized Alexander polynomial.

From Theorem 1.1 the top coefficient of such an Alexander polynomial is one. In
the present paper we show that the second term of the Alexander polynomial can be
determined naturally by means of Theorem 1.1 and the main result of [9]. We state
the main result.

Theorem 1.2 Let K C S® be a knot for which there is an integer p for which Sg’(K)

is a lens space. The notations ng, nr_1, and d are the same as Theorem 1.1. Then

we have
1 d< bt
e T LT o 0 D is oddanddz%.
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This result solves Question 1.2 in [3] except 2d — 1 = p.
Alexander polynomial of K admitting lens surgery is as either

r

Ag(z)=1+ Z(x’” + 7P — Z(xmj + 7)), (1)

i=1 j=1

where 0 =pg <mq <p1 <Mmg <pyg < -+ <pr_1<m <p.=d,or

T

Ag(e) = =143 (@ +a7) = (@™ +27™), (2)

Jj=2

where 0 =mp <p;1 <Mmo <pa <mzg- - < pr_1 <My <p- =d. Theorem 1.2 asserts
m, =d— 1 holds if d < 25,
We denote by a;(K) the coefficient of Ak (z) mod 2P — 1, i.e.,

The coefficient a;(K) is

1+apT4(K) pisoddandd:%,andizid, +(d-1)
a;(K)=4q 2 piseven,d= 25 and i==+d (3)
a;(K) otherwise

from the estimate 2d — 1 < p proven in [5].
We define d = d(K,p) as max{i|a;(K) # 0 (0 <i < [5])}. Thus if K admits lens
surgery, then from Equation (3) we have

) ngp_s pis odd andd:p—;l, and n_1 =d—1
d=1¢ d-1 pisoddandd:p—'gl,andnk_l;édfl

d otherwise.

We define lens space L(p, q) by SS 14(U), where U is unknot. We take an isomor-
phism Hy(L(p, q)) = Z/pZ which sends the core of a handlebody of genus one Heegaard
decomposition of L(p,q) to 1. Suppose that Sg(K) is homeomorphic to L(p, q). Then
let h be an integer with 0 < h < p which it corresponds to [K*] by the isomorphism.
Here K* is the dual knot of K in L(p, q). Thus we have h? = ¢*! mod p. We consider
a set {h,p—h,h/,p—Rh'}. If ¢ = =+1mod p, then the number of the components of
the set is two. We assume that ¢ # +1 mod p and permute the elements in this set to
define as 0 < ho < hy < p—h1 < p— ho < p. Here we state a more extended theorem
than Theorem 1.2. It is proven in Section 3.

Theorem 1.3 Suppose that S;’(K) is homeomorphic to L(p,q). The notations m;

and p; are the same as above. Let M be a set {m;|m; > d— hi + 1}. Then we have
pi =m;+1 form; € M. Namely A (z) can be expanded as the following: if d < p#,
then

AK(J:) = gPr — ppr—1 4ogPr-1 pPr—1—1 i . pPs—1 4. (4)

and if d = p—;l, then

Axc(x) = gPr — pPr—1l pogPr—1 _ gpr—1=1 o pPs  gpps—l L ag_1(K) #0
K\T) = xPr _xp7~—2+xpr71 _xprfl_l +..._A'_:L-ps —$p5_1+"‘ ad*l(K> :0

where s := min{ilp; — 1 >d — hy + 1}.

In particular since hy > 2, we have s > 1, this leads to Theorem 1.2.



Hence we can prove the following easily.

Corollary 1.1 Suppose that K admits lens surgery. If d < hq, then the Alexander
polynomial Ak (x) is either

r

Ag(z) =14 (aP +a7P) =Y (aP 4 a7Pth),

i=1 j=1

or
T

T
Bl =~ Y (a4 - 3 ),
i=1 =
where p; +1 < pit1.

For example let K be (—2, 3, 7) pretzel knot. A homeomorphism S3g(K) = L(18,5)
induces a set {5,7,11,13}. Since d = 5, the non-zero coefficients of Ag () are every-
where adjacent in pairs. In fact A (x) is

. _ . B
Dt —r+l—az 42—t 4270

Conversely Alexander polynomials of knots yielding lens spaces do not satisfy this
condition generally. For example the Alexander polynomial of (4, 7)-torus knot is

A I i

The Alexander polynomials of knots yielding lens surgery has been studied in
[4, 6, 8,9, 10]. Here we review the formulae used in this paper. Suppose that K yields
lens space L(p, q) and K* is the dual knot of K. Let h be the integer corresponding to
homology class [K*] and g a positive integer satisfying hg = 1 mod p and ged(h, g) = 1.
Then the Alexander polynomial satisfies the following:

_ e (2 —1)(z — 1)

—_— P 1.
@ =129 1) mod x

Ag(z) ==z

The right hand side is the famous Alexander polynomial of (h, g)-torus knot.
We denote by ¢ the following.

%1 pg = 1mod 2
c=c(p,h) = pjg_l p(p —¢q) = 1 mod 2 (5)
% p = 0 mod 2.

Let p be a positive number. We denote by the symbol o], the representative satisfying
0 < [a], < p and a = [a], mod p. For any class x € Z/pZ we define 2’ by [z71],.

Definition 1.1 For h,z € Z we define a {0, 1}-valued function §,(x) as follows:

_ 1 [x]P € {172’37"' ’[h]P}
On(z) = { 0 otherwise
From Theorem 1.5 in [9] and [10] we have
a;(K) = —m + ®lte(p), (6)

where h is the class corresponding to homology class [K*] and ®f  (h) := #{j €
{1,2,--- ,h}| 0p(qj — ¢) = 1} and m = hh;)_l. From here we abbreviate (K) in any
coefficient a;(K).




2 Proof of Main theorem

First of all we prove the five lemmas to prove the main theorem.

Lemma 2.1 If S3(K) is homeomorphic to L(p,q), the following is satisfied for any
G; + -1+ -+ @i—py1 = On(q — hi —¢),

where h is the same integer defined before.
Proof) From Equation (6)

h—1
ittt = —mh+ > #{G€{1,2,- W Hon(gi — (i —1)+¢)) =1}
=0
= —mh+mh+#{j € {1}|6n(qj — hi —c) =1}

= d(g—hi—c)
|
From Lemma 2.1 and symmetry of Alexander polynomial we have
a4 + Qi1+ -+ QGi—pt1 = A+ a—jp1 + o+ A—ipn—1
= Op(g—h(—-i+h—-1)—¢)
= Op(h(i+1)—c).
Thus, by subtracting the equation replaced i by i — 1,
ELZ' — Zli,h = 5h(h(2 + 1) - C) - 5h(hl — C)
Hence
|a; — ai—pn| < 1. (7)

We replace h with p — h to be 0 < h < &, if not.
Lemma 2.2 Thus it follows that

1 & oph(i+1)—¢c)=1and op(hi—c)=0
;i —a;i—p =< —1 & op(h(i+1)—c)=0 and op(hi —c) =1 (8)
0 < Oh(@E+1)—c)=0anddp(hi—c)=0.
From this lemma the following lemma holds

Lemma 2.3 Suppose that SS(K) is homeomorphic to L(p,q). Let h be the same as
stated above. Then

&i - di—h = 1, Zf and only Zf di+1 — ai_h+1 = —1.

Proof) By using Equation (8) and 0 < h < &, the assertion demanded is obtained
easily.
(Il

Lemma 2.4 Suppose that L(p,q) = SE(K) and d # £. Let h be the same as defined
previously and 0 < h < §. Then we have

ad~+h =0

andpfmu+1<(z+h<pfpuforu with 1 < pu <.
Ifd=1%, thenag , =1.



Proof) From Theorem 1.1 |aj ,|is O or 1. If a7, , = —1, then a5 — az, , = 2. This
is inconsistent with Inequality (7)

We assume that dJ+h = 1. Then there exists an integer v with 1 < v < r such that
d+h= p—pv. Hence we have aj—ag,, = 0. In the case where p, —m, <p— 2(5, we
have Gp—p, +i = p—p,+i—n =0 (1 <i < p,—m,) when p, > m,+1and ap_p,+1 = —1,
Gp—p,+1—h = 0 when p, =m, + 1. Anyway

Gp—my, — Gpmy—h = —1—0=—1.

This is inconsistent with Lemma 2.3. In the case where p — 2d < Py, — my, similarly
since we have

A, gopn =0, g=0-1=-1,
this is inconsistent with Lemma 2.3. In the case where p — 2d = Py — m,,, since we
have

Gpm, — G, g=—1—1=—2
this is inconsistent with Inequality (7). Therefore a g, , = 0.

Ifp—p, < d+h<p-— m,,, then by the same argument as above this turns out

inconsistencies. Therefore p —my,+1 <d+h <p—p,.

Ifd= £, then from Inequality (7) az,, = 1. O

Lemma 2.5 Suppose that L(p,q) = Sg(K). Let h be the same as defined previously
and 0 < h < §. Then we have

G‘J+h71 =0.

Proof) In the case where d+ £, the coefficient agz,, , is 1 or 0. From Lemma 2.4

Ajyp_ =0
In the case where d = £, from Lemma 2.4 the coefficient Agyp_q1 is =1 or 0. From
Theorem 1.1, ag,, , = 0. O
We are now in a position to prove Theorem 1.2.
Proof of Theorem 1.2) Since ag,, — a; = —1 holds, from Lemma 2.3 and 2.5,

a;j_; = —1 holds.
Ifd= p%l and ny_1 = d — 1, then p; = m; + 1 holds.
Ifd= pTH and ng_1 #d— 1, then

AK(x) = ;ppT-H —x™ ...
pt1 p=1 p=1 m
— T 2 —x 2 _|_Jj2 —x 1+
Hence cZ:pTl and my :%37then p1 —my = 2.
If d # 2EL then d = d, then my = d — 1. O

3 Proof of Theorem 1.3

Suppose that L(p,q) = SS (K). Let h,p;, m; are the same integers as before.

Proof of Theorem 1.3) If p — 2d > h, then since a;, ), = ag,p,_ 1 = - =az,., =0,
from Lemma 2.3, any a;,d;_1 in {dJ—h+i|1 < i < h} are satisfied that if a; = 1 if and
only if a;_1 = —1. Therefore in this case this theorem holds.

We assume that p — 2d < h and d # £. Then

lai| <1 (9)



holds for any 7. If d+h— p+my41 — 1 =m, —pr_1, then
Ap—myyy —Ap,_, =—1—-1=-=2

This is inconsistent with Inequality (7).
Ifm,+h—p+myy1 =my, —p,—1 for A\, v, then

Amy+h—(my,+h—p+mxg1) ~ Cmy,—(m,—py_1) = Gp—mxp1 — Ap, 1 = -1-1=-2.

This is inconsistent with Inequality (9). Therefore m, +h — p + mx11 # m, — pu_1
holds. Here we prove the following claims.

Claim 3.1 Let h be the same as before and 0 < h < &. Suppose that

e p,=m,+1 foran integer v satisfying 2 <v <r, and

o p—myr1 <my, +h<p,+h<p—Dpy, where X satisfies 1 <X <r —1.
Then either

e p, 1 =my_1+1 and

e p—myp1 <My_1+h<p,_1+h<p—py.
or

® pry1 =myp1 + 1 and.

e p, 1 <p—prxt+1 —h<p—mypz1—h<my
holds.

Claim 3.2 On the other hand suppose that
o p—my, =p—pu+1 for an integer p satisfying 1 < p <r—1, and
® p1 <p—pu—h<p—my—h<m,., where k satisfies 2 <k <.
Then either
® pur1=mu1 + 1 and,
® D1 <P—DPut1 —h<p—myup —h <mg.
or
® po1 =mg_1+1 and.
e p—myu1 <Me1+h<pe1+h<p-—p,
holds.

Proof of Claim 3.1 Suppose that p, = m, + 1 for an integer v and p — my41 <
my, +h <p,+h < p—px. Then we can divide this situation into the following cases
(a), (b).
(a) The m,+h—p+myy1 < my,—p,—1 case: When my,+h—p+myy1 > 1, Gy +h—i =
Gm,—i =0 (1 <i<my,+h—p+mys1). Or when m, + h — p+ myy1 = 1,
(@m,+h—1,0m,—1) = (—1,0). Anyway,

Gp—myy1 — Op—map1—h = —1-0=-1.

If Gp_myyi—1-n = 1, then due to Gp_m, 1—1 — Gp—my—1-n = 1, we have
Ap—my.,—1 = 2. This is inconsistent with Inequality (9). Hence ap_p,,,—1-n =
0, Gp—my1—1 = 1 namely, pxy1 = may1+1. The condition p—myi1 < my,+h <
Py + h < p— py holds clearly.



(b) The m, +h —p+mxy1 > m, —p,—1 case: Exchanging m, +h —p+my41 and
my — Pv—1 in (a)a
dp,/71+h - a’pu71 =0-1=-1

By the same way as (a) ap, ,4+n—1 = 0 and a,, ,—1 = 1 are proven easily.
Therefore p,—1 —1=my,_1 and p,—1 <P —prx+1 —h <p—myrs1 — h < m,.

a
Proof of Claim 3.2 Suppose that p —m, = p —p, + 1 for an integer p and p.41 <
p—pu—h<p—m, —h <m,. Then we can divide this situation into the following
cases (c), (d).

(c) The p—pu —h — pry1 < muy1 — p, case: By the same way as (a),
&pn+1+h - a’p»-;,-;-l =0-1=-1,

Ap,i1+h-1 = 0 and ap,,,—1 = —1 holds. Therefore p,—y —1 = m,_1 and
Pr—1 <p*p/t+1 *h<p*mﬂ+1 —h < My
(d) The p —pu — h — pry1 > muy1 — p,, case: By the same way as (a),

Up—mypr = Op—myy—h = —1 =0=—1,

ap—m,1—h—1 = 0 and ap—m,,,—1 = 1. Therefore p,11 —1 = my41 and p —
mMy+1 < Mg—1 +h < Dr-1 +h <p7pp'

|
By applying Lemma 2.4 and 2.5 to Claim 3.1, we have p,_1 = m,_1 + 1 or pr41 =
mx+1 + 1. We apply these condition to Claim 3.1 or Claim 3.2. After here, by
applying either of the two claims inductively, shifting ¢ of (a;yn, ;) per —1, i reaches
i:p—aNZ—h. When i <p—ci—h, since dp—ci—l = dp_J_Q =...= dzi—&-l = 0, this is
reduced to the case of p — 2d > h. Therefore the result demanded holds.
The case of d = £ is easily proven by putting a; = 2 and agyp, =1
Since if we exchange ¢ for ¢’ and h for A’ or p — '/, the same argument holds, we
may assume that h = h;. ([l
We remark that taking account of Goda and Teragaito’s conjecture in [2], for
general knots yielding lens surgery at least 2d +1 < p conjecturally holds. The author

hopes that the cases of d = % or d = & in Theorem 1.2 1.3 are removed in the
future.
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